SPHERELIKE DIVISORS

ANDREAS HOCHENEGGER

Let X be a smooth projective variety of dimension d. An object S in $\mathcal{D}^b(X)$ is called *spherical* if

(1)	$\operatorname{Ext}^{\bullet}(S,S) = \mathbb{k} \oplus \mathbb{k}[-d];$	d-spherelike	object
(2)	$S \otimes \omega_X \cong S.$	Calabi-Yau	object

P. Seidel and R. Thomas showed that such an S defines an autoequivalence T_S , the *spherical twist* about S. In the context of the homological mirror symmetry conjecture, they proved that T_S is dual to the Dehn twist of a symplectic manifold about a Lagrangian.

In general, the Calabi-Yau property of a spherical object will be lost under birational transformations of X. In a joint work, M. Kalck, D. Ploog and I showed how to associate to an arbitrary spherelike object F in a triangulated category \mathcal{D} a unique maximal triangulated subcategory \mathcal{D}_F , where F becomes spherical – the spherical subcategory of F.

In this talk, I will give a short introduction to spherical subcategories and then will focus on the case of *spherelike divisors* D on a surface X, i.e. effective divisors such that \mathcal{O}_D is spherelike. Especially, I will talk about a numerical characterisation of these divisors and to what extend they can be classified.

This is work in progress with D. Ploog.