Die Deligne-Mumford-Kompaktifizierung von Hilbert-Moduldreifaltigkeiten als toroidale Kompaktifizierung

Patrick Bloß

11. Januar 2017

Zusammenfassung

Für Hilbert-Modulfächen gibt Hirzebruch eine kanonische Auflösung der Spitzensingularitäten an. Im Falle höherdimensionaler Hilbert Modulvarietäten lässt sich diese Konstruktion nicht in kanonischer Weise durchführen. Stattdessen kann man den Abschluss des Lokus $\mathcal{R} \mathcal{M}_{\mathcal{O}}$ solcher Riemannschen Flächen in der Deligne-MumfordKompaktifizierung von \mathcal{M}_{g} betrachten, deren Jakobische reelle Multiplikation durch eine Ordnung \mathcal{O} in einem totalreellen Zahlkörper F vom Grad g haben. Für $g=3$ werden nach Bainbridge und Möller Randstrata von $\mathcal{R} \mathcal{M}_{\mathcal{O}}$ durch Konfigurationen von Elementen in F parametrisiert, deren Einbettungen in die reellen Zahlen eine starke geometrische Bedingung erfüllen. Der Abschluss von $\mathcal{R} \mathcal{M}_{\mathcal{O}}$ in \mathcal{M}_{g} lässt sich so algorithmisch bestimmen. Wir möchten untersuchen unter welchen Umständen dieser Abschluss eine toroidale Kompaktifizierung darstellt.

