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1 Introduction

For us, a variety is an integral separated scheme of finite type over a field k. In this course,
the field k will be algebraically closed (and it will be an advantage to assume that k is
of characteristic zero, e.g. k = C). Recall that two varieties X and Y over a field k are
birational, if and only if there are non-empty open subsets U ⊂ X and V ⊂ Y that are
isomorphic to each other. Equivalently, the function fields of X and Y are isomorphic to each
other. The purpose of this course is to study the birational geometry of varieties. That is,
we study varieties up to birational equivalence. By the above remark, this is the same thing
as studying finitely generated field extensions of k, but this will not be the point of view of
this course (and in fact, the geometric point of view taken in this class turns out to be much
more successful than a purely field theoretic approach).

Here are some of the fundamental questions in the subject:

Question 1.1. Let X and Y be explicitly given varieties over a field k. Can we decide
whether X and Y are birational to each other?

One instance of the above question is to decide whether a given variety X is rational, i.e.
birational to PdimX . This question is subtle and open even in seemingly simple cases. For
instance, it is unknown whether a very general cubic hypersurface X ⊂ Pn+1

C of dimension
n ≥ 4 is rational.

A related question is as follows:

Question 1.2. Let X be a variety over a field k. Can we find a particularly ’nice’ represen-
tative in its birational equivalence class?

It is natural to hope that an answer to Question 1.2 might lead to an answer of Question
1.1. Indeed, once Question 1.2 is answered positively, Question 1.1 boils down to the case
of comparing the ’nice’ representatives of X and Y and it is natural to hope that these
representatives are unique or at least not too far off from being unique, so that deciding
whether the representatives are birational to each other might be much more tractable than
the general question. For instance, if ’nice’ models as in Question 1.2 would exist in a unique
way, than X and Y would be birational if and only if their ’nice’ models are isomorphic.

Instead of concentrating on explicitly given varieties, it is also natural to take the following
more global point of view.

Question 1.3. Can we classify varieties up to birational equivalence to some extent? That
is, can we divide all varieties of given dimension over a field k into several classes, which
capture important features of their birational geometry?

The minimal model program is a (very important) branch in birational geometry that tries
to answer Questions 1.2 and 1.3 and the purpose of this course is to give an introduction
to this theory. The theory is developed to a large extent, even though it is still conjectural
at some important points. Even though it turns out that an answer to Question 1.2 cannot
answer Question 1.1 in all cases (e.g. the case of cubics cannot be answered via the minimal
model program), this is indeed true in ’most cases’.

The purpose of this lecture is to study Question 1.2. This also leads to an answer of Question
1.3, as This is a very fundamental geometric problem, which allows us to pick up several
useful concepts on the way.

1.1 Basic approach

Let X be a variety over an algebraically closed field k. We aim to find a nice representative
of X in its birational equivalence class. Replacing X by the projective closure of a non-empty
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open affine subset of X, we may assume that X is projective. Taking the normalization of
X, we may also assume that X is normal. (This uses that if X is projective and X ′ → X is
a finite morphism, than X ′ is also projective, because the pullback of an ample line bundle
on X will be ample on X ′, e.g. by Kleiman’s ampleness criterion that we will discuss later in
class.) This simple procedure solves the problem in dimension one.

Proposition 1.4. Let X and Y be normal projective varieties of dimension one. Then X
and Y are birational if and only if they are isomorphic.

Proof. Let φ : X 99K Y be a birational map. Since X and Y are normal and projective, the
next lemma shows that φ and its inverse φ−1 are both defined in codimension one. Since X
and Y are of dimension one, φ and its inverse φ−1 are in fact morphisms that must be inverse
to each other. Hence X and Y are isomorphic to each other.

The above proposition used the following well-known lemma.

Lemma 1.5. Let φ : X 99K Y be a rational map between varieties over k. Assume that X
is normal and Y is projective. Then φ is a morphism in codimension one. That is, there is
a closed subset Z ⊂ X of codimension at least two, so that the resitrction of φ to X \ Z is a
morphism.

Proof. By assumption, there is an open subset U ⊂ X such that φ restricts to a morphism
U → Y . Let D ⊂ X \ U be a prime divisor in the complement of U . Since X is normal, the
local ring OX,D of X at the generic point of D is a regular local ring of height one, hence

a discrete valuation ring. Since Y is projective, there is a closed embedding Y ⊂ PN and it
suffices to show that the rational map X 99K PN induced by φ is a morphism in codimension
one. Hence, we may w.l.o.g. assume that Y = PN . Then φ = [φ0 : · · · : φN ] for rational
functions φi ∈ k(X). Let π be a uniformizer of the dvr OX,D (i.e. a generator of the maximal
ideal). Let ν be the valuation on k(X), induced by the dvr OX,D. Up to multiplying all φi
by the same power of π, we may assume that ν(φi) ≥ 0 for all i and ν(φi) = 0 for at least
one i. Hence, φi ∈ OX,D for all i and φi|D is not identically to zero for at least one i. This
shows that the rational map φ extends over the generic point of D, as we want.

Since X \ U contains only finitely many irreducible components, it contains only finitely
many prime divisors. We may therefore repeat the process and assume that φ is defined in
codimension one, as we want.

So far our discussion works over any field. Of course the next desirable step would be to
replace a given normal projective variety X be a smooth projective model. By Hironaka’s
resolution of singularities theorem, this is known to be possible in characteristic zero.

Theorem 1.6 (Hironaka). Let X be a complex variety. Then there is a projective birational
morphism τ : X ′ → X, given as a composition of blow-ups along regular centers, such that
X ′ is regular (i.e. smooth) and τ is an isomorphism above the regular locus of X.

Moreover, resolution of singularities over a field of positive characteristic is known in dimen-
sion two and three, but it is an open problem whether in dimension at least four, resolution of
singularities still exist in positive characteristic. From now on, we thus assume that char k = 0
and there is no harm in assuming k = C. Then, by the aforementioned theorem of Hironaka,
we may assume that X is smooth and projective. Note that this smooth projective variety
will be far from unique. Indeed, in the above process, we started by choosing some affine
open subset and took its closure in some projective space. While taking normalizations is
canonical, taking resolutions is not canonical and we could always blow-up more smooth
subvarieties to arrive at another smooth projective variety that is still birational to X.
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Instead of trying to control the non-uniqueness in the above process, it is much ore practicable
to start with any smooth projective model X and to try to perform controlled birational maps
with the aim of arriving at a ’nice’ birational model.

1.2 Morphisms of varieties

Let X be a variety over a field. One of the most basic questions one can ask about X is to
describe all possible morphisms f : X → Y to another variety Y . As we are mostly interested
in (quasi-)projective varieties, there is no harm in assuming that Y is quasi-projective. This
seemingly mild assumption allows us to understand the situation completely. Indeed, if Y
is quasi-projective, then it admits an embedding into some projective space PN and so to
describe all morphisms f : X → Y from X to some quasi-projective variety Y , it suffices
to describe all morphisms from X to some projective space. That is, we may assume that
f : X → PN is a morphism to projective space. Let [x0 : · · · : xN ] be homogeneous coordinates
on PN . That is, x0, . . . , xN ∈ H0(PN ,O(1)) form a basis. Let fi := f∗xi be the pullback of
xi. Then fi is a section of the line bundle L := f∗O(1) and f is described by f = [f0 : · · · :
fN ] : X → PN Since the sections x0, . . . , xN of O(1) are base point free, i.e. have no common
zero, the same holds for f0, . . . , fN ∈ H0(X,L).

Converesely, if L is a line bundle on X and f0, . . . , fN ∈ H0(X,L) is a base point free set of
sections , i.e. for all x ∈ X there is at least one i with fi(x) 6= 0, then

f = [f0 : · · · : fN ] : X −→ PN

is a well-defined morphism. Locally at x ∈ X, this morphism is defined as follows. Let s be
a local section of L which is nonzero locally at x. Then fi = gis for some regular function gi
locally at x and we define the above morphism f locally around x to be given by

[g0 : · · · : gN ] : X −→ PN .

This is well-defined, i.e. does not depend on the choice of the section s, because a different
choice of s amounts to multiply each gi with the same invertible function, which does not
change the morphism to projective space (by definition of PN ). The well-definedness also
shows that these local definitions glue to give a global morphism f : X −→ PN as above.

Hence, we see that there is a one to one correspondence between (isomorphism classes of)
morphisms f : X → PN and (equivalence classes of) pairs of line bundles L on X with base
point-free sets of sections f0 . . . , fN ∈ H0(X,L). This explains the fundamental importance of
line bundles (aka invertible sheaves) when studying algebraic varieties and there morphisms.
We will therefore recall some of these fundamental concepts in the next section.

2 Weil divisors, Cartier divisors and invertible sheaves

A standard reference for this section is [2, II.6.].

2.1 Weil divisors on normal varieties

Let X be a normal variety over a field k. A (Weil) divisor is a formal linear combination
D =

∑n
i=1 aiDi, where ai ∈ Z are integers and Di are irreducible closed subvarieties of X

of codimension one, i.e. dimDi = dimX − 1. A prime divisor on X is a divisor of the
form D = 1 ·D1 consisting of a single irreducible closed subvariety of codimension one (with
coefficient one). Sometimes we refer to the term ’prime divisor’ simply to mean a closed
irreducible codimension one subvariety of X.
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If φ ∈ k(X) is a nonzero rational function, then there is a well-defined divisor div(φ) consisting
of zeros and poles of φ, counted with multiplicities. Indeed, since X is normal, the local ring
OX,D at the generic point of any prime divisor D ⊂ X is a discrete valuation ring. Let νD be
the corresponding valuation. Then νD(φ) ≥ 0 if and only if φ is regular in a neighbourhood
of the generic point of D and νD(φ) denotes the order of vanishing of φ at the generic point
of D. Moreover, if νD(φ) < 0, then φ has a pole of order −νD(φ) at the generic point of D.
We then set

div(φ) :=
∑
D

νD(φ) ·D,

where D runs through all prime divisors of X. Since φ is regular at some non-empty open
subset, νD(φ) ≥ 0 for all but finitely many prime divisors on X. Since νD(φ−1) = −νD(φ),
the same argument applied to φ−1 shows that νD(φ) = 0 for all but finitely many prime
divisors D on X. Hence the above sum is finite and div(φ) is indeed a divisor.

Definition 2.1. Two divisors D and D′ on a normal variety X are linearly equivalent,
denoted by D ∼ D′, if there is a nonzero rational function φ ∈ k(X) with D −D′ = div(φ).

Linear equivalence of divisors is an equivalence relation. We denote the free abelian group
generated by all prime divisors on X by WDiv(X). The quotient Cl(X) := WDiv(X)/ ∼ of
all divisors on X modulo linear equivalence is an abelian group, called the class group of X.

2.1.1 Sheaf of sections of a divisor

Definition 2.2. A divisor D on a normal variety X is effective, denoted by D ≥ 0, if
D =

∑
aiDi with ai ≥ 0 for all i.

Let X be a normal variety over a field. For a divisor D on X, we define the space of sections
of D on X, denoted by Γ(X,OX(D)) ⊂ k(X), as the union of zero with the set of rational
functions φ ∈ k(X)∗ with div(φ) +D ≥ 0. As the notation suggests, this definition gives rise
to a presheaf of abelian groups OX(D) on X, whose sections over a non-empty open subset
U ⊂ X consists of the union of zero with the set of all sections φ ∈ k(X)∗ with

(div(φ) +D)|U ≥ 0.

It is easy to check that the presheaf of abelian groups defined this way satisfies the sheaf
axioms, hence is a sheaf.

Lemma 2.3. Let X be a normal variety, f ∈ k(X). Then f is regular on X if and only if
div(f) ≥ 0.

Proof. Since both assertions are local, we may wlog assume that X is affine. If f is regular,
then div(f) ≥ 0 is clear as f does not have any poles. Conversely, suppose that div(f) ≥ 0.
Then νD(f) ≥ 0 for all D ⊂ X. Hence, f ∈ k(X) lies in the localization k[X]I(D) for all prime
divisors D ⊂ X. But the prime divisors on X are via D 7→ I(D) in one to one correspondence
to the prime ideals of height one in k[X] and so

f ∈
⋂
p

k[X]p,

where the intersection runs through all prime ideals of height one. It is a deep result from
commutative algebra that the latter intersection coincides with k[X], and so f is regular.

Definition 2.4. Let X be a normal variety. A divisor D on X is Cartier if the OX-module
OX(D) is locally free of rank one.
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Lemma 2.5. Let X be a normal variety. A divisor D on X is Cartier if and only if for
all x ∈ X, there is a neighbourhood x ∈ U ⊂ X and a rational function φ ∈ k(X)∗ with
div(φ)|U = D|U . In particular, if D is effective, then it is Cartier if and only if it is locally
given by the vanishing of a single regular function.

Proof. The if direction is clear. For the only if direction, assume that D is Cartier and let
x ∈ X. Then there is a neibourhood x ∈ U ⊂ X and a section s of OX(D)|U which generates
the OX -module OX(D)|U in every point. That is, any local section of OX(D)|U is given as
the product of a local regular function with s.

The section s corresponds by definition of OX(D) to a rational function φ ∈ k(X)∗ with
div(φ)|U +D|U ≥ 0. We claim that in fact equality holds in this inequality, which proves our
claim in the lemma. For a contradiction, assume that div(φ)|U +D|U ≥ D′|U for some prime
divisor D′ on X whose generic point is contained in U . Since X is normal, the local ring of
X at the generic point of D′ is a discrete valuation ring and so there is a rational function
φ′ ∈ k(X)∗ such that div(φ′) = D′+D′′ for some divisor D′′ whose support does not contain
D′. Let V ⊂ U be the complement of the support of D′′|U . Then, div(φ′)|V = D′V . But this
implies that

div(φ/φ′)|V +D = div(φ)|V +D − div(φ′)|V ≥ D′|V −D′|V = 0.

Hence, φ/φ′ is a section of OX(D)|V . Since 1/φ′ is not regular on V ⊂ U , this contradicts
our assumption that φ generates the OX -module OX(D) in any point of U .

Weil divisors that are not Cartier are thus codimension one subvarieties which cannot be
described locally by one function. An example is given by

X := {x0x1 − x2x3 = 0} ⊂ A4 and D := {x0 = x2 = 0}.

Here X is a cone over a smooth quadric surface and D is the cone over a line on this quadric
surface. Clearly, D is a prime divisor on X. However, locally at the origin, D corresponds to
the ideal

ID := (x0, x2) ⊂ k[x0, x1, x2, x3]/(x0x1 − x2x3) = k[x0, x1, x2][x0x1/x2].

One checks that even after localizing at the maximal ideal (x0, x1, x2, x3), the ideal ID does
not become principal and so D is not Cartier.

Proposition 2.6. If X is locally factorial, i.e. all local rings OX,x are factorial, (e.g. X
smooth) and D is a divisor on X, then OX(D) is locally free of rank one. That is, any
divisor on X is Cartier.

Proof. Let x ∈ X. We need to find a neighbourhood x ∈ U ⊂ X of x, such that OX(D)|U ∼=
OU . Since X is smooth, OX,x is a regular local ring. Let D =

∑
i aiDi be a decomposition

into prime divisors Di ⊂ X. Up to shrinking X, we may assume x ∈ Di for all i. Each prime
divisor Di thus corresponds to a prime ideal

pi ⊂ OX,x,

consisting of all functions defined in some neighbourhood of x, which vanish along Di. Since
OX,x is a regular local ring, the height one prime ideal pi is principal:

pi = (gi)
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for some gi ∈ OX,x (in fact, any gi ∈ pi irreducible will do the job). Up to shrinking X, we
may assume that X is affine and gi ∈ k[X] is regular on X for each i. Then

g :=
∏
i

gaii ∈ k(X)

satisfies div(g) = D and so OX(D) ∼= OX(0) by exercise 4 on sheet 01. By Lemma 2.3,
OX(0) ∼= OX and so the proposition follows.

2.2 Cartier divisors on schemes

On arbitrary schemes, Weil divisors, i.e. linear combinations of codimension one closed sub-
schemes, do not work very well. Instead, the notion of Cartier divisor generalizes nicely to
this broader context.

Definition 2.7. Let A be a ring. The total quotient ring of A is the localization of A at the
multiplicative set of all non-zero divisors.

Let X be a scheme. Let K be the sheaf of rings that is associated to the presheaf which to an
open subset U ⊂ X associates the total quotient ring of OX(U). This sheaf of rings replaces
the notion of function field for varieties. We denote by K∗ ⊂ K the (multiplicative ) subsheaf
of invertible elements in the sheaf of rings K. Similarly, O∗X ⊂ OX denotes the multiplicative
subsheaf of the sheaf of rings OX on X.

Recall that a divisor on a normal variety is a divisor which is locally principle, i.e. the divisor
of zeros and poles of a rational function φ. Moreover, two rational functions φ and φ′ have
the same divisor of zeros and poles on some open subset U if and only if div(φ/(φ′)−1)|U = 0,
which means that φ/(φ′)−1 is regular on U , see Lemma 2.3. This explains that the follow-
ing definition generalizes our earlier definition of Cartier divisor from varieties to arbitrary
schemes.

Definition 2.8. A Cartier divisor on a scheme X is a global section of the quotient sheaf
K∗X/O∗X .

By the definition of quotient sheaves, this means that a Cartier divisor on X corresponds
to a collection of pairs (Ui, φi), where X =

⋃
Ui is an open cover, φi ∈ K∗(Ui) and φi/φj ∈

OX(Ui ∩ Uj)∗ for all i, j.

Definition 2.9. Two Cartier divisors on a scheme X are linearly equivalent, if their differ-
ence is principal, i.e. the image of global section of K∗X . The group of all Cartier divisors
modulo linear equivalence on X is denoted by CaCl(X).

Given the canonical short exact sequence

0→ O∗X → K∗ → K∗/O∗X → 0,

we get an inclusion CaCl(X) ↪→ H1(X,O∗X), which is an isomorphism if H1(X,K∗) = 0 (the
latter holds e.g. if K∗ is a flasque sheaf).

If X is regular in codimension one, then we can associated a well-defined Weil divisor to any
Cartier divisor by

(Ui, φi) 7→ {Divisor given by glueing the divisors div(φi) on Ui},

giving rise to an injective map CaDiv(X) ↪→WDiv(X).
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Proposition 2.10. Let X be a normal variety, or more generally, an integral separated
noetherian scheme which is regular in codimension one, i.e. OX,x is regular for any codimen-
sion one point.

(a) Mapping a Cartier divisor to the associated Weil divisor, we get an injective map

CaDiv(X) ↪→WDiv(X) (1)

whose image consists of all Weil divisors that are locally principal, i.e. locally given by
the divisor of a rational function. Moreover, this injection respects linear equivalence
on both sides in the sense that two Cartier divisors are linearly equivalent if and only if
the corresponding Weil divisors are linearly equivalent. In particular, the above injection
induces an injection CaCl(X) ↪→ Cl(X) of the class group of Cartier divisors to the class
group of Weil divisors.

(b) If X is locally factorial, i.e. OX,x is factorial for any x ∈ X (e.g. X is regular), then this
injection is surjective.

Proof. See [2, II.6.11 and II.6.11.2].

To give some details, note that since X is integral, K is the constant sheaf with stalk K, the
function field of X. Mapping a Cartier divisor {(Ui, φi)} to the divisor D given by glueing
the divisors div(φi) ∈WDiv(Ui) on Ui, we get a group homomorphism

CaDiv(X) −→WDiv(X).

This is injective, because div(φi) = 0 ∈ WDiv(Ui) means that φi ∈ O∗Ui
by Lemma 2.3.

Clearly, any Weil divisor in the image of this injection is locally principal. Conversely, if D
is a Weil divisor that is locally of the form D|Ui = div(φi), then div(φi/φj)|Ui∩Uj = 0 and
so φi/φj is an invertible regular function on Ui ∩ Uj , see Lemma 2.3. Hence, {(Ui, φi)} is a
Cartier divisor which associated Weil divisor D.

Also, if a given Cartier divisor is principal, then we can represent it as {(X,φ)} for a rational
function φ ∈ K∗. The corresponding Weil divisor div(φ) is then principal as well. Conversely,
if a Cartier divisor {(Ui, φi)} corresponds to a the Wil divisor D with D = div(φ) for some
rational function φ, then φi/φ is a section of O∗Ui

for all i and so the given Cartier divisor
can be represented as {(X,φ)}.
This concludes part (a). Part (b) follows by the same argument as in Proposition 2.6.

If X is a normal variety, then the above proposition shows that the above definition of Cartier
divisors is equivalent to the one given before in the context of varieties.

2.3 Invertible sheaves

Definition 2.11. Let (X,OX) be a ringed space. An OX-module on X is an invertible sheaf,
or a line bundle, if it is locally free of rank one.

The tensor product L ⊗OX
L′ of two invertible sheaves is again an invertibel sheaf. If L is

an invertible sheaf, then the dual L∨ := Hom(L,OX) is also an invertible sheaf and there is
a canonical isomorphism

L⊗OX
L∨ ∼= OX .

Altogether, we find that the set of isomorphism classes of invertible sheaves on X form a
group, called the Picard group of X and denoted by Pic(X).
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Remark 2.12. Let X be a variety. Mapping an algebraic vector bundle on X to its sheaf
of sections defines an equivalence between vector bundles of rank r on X and locally free
OX-modules of rank r. For this reason, locally free sheaves of rank one can be thought of as
line bundles.

Definition 2.13. Let D be a Cartier divisor on a scheme X, represented by {(Ui, φi)} as
above. Then the associated sheaf of sections OX(D) is the OX-submodule of K, generated by
φ−1
i on Ui.

Note that OX(D) is well-defined, because φi/φj is invertible on Ui∩Uj and so φi and φj span
the same OX -submodule over Ui ∩ Uj .
Note also that the above definition is compatible with our earlier definition, because a rational
function φ satisfies div(φ)|U +D|U ≥ 0, where D|U = div(φi), if and only if φ · φi is regular,
which means that φ is the product of φ−1

i with a regular function.

Proposition 2.14. Let X be a scheme and let D, D1 and D2 be Cartier divisors on X.
Then

(a) OX(D) is an invertible sheaf;

(b) OX(D1 −D2) ∼= OX(D1)⊗OX(D2)−1;

(c) D1 ∼ D2 if and only if OX(D1) ∼= OX(D2) (as abstract OX-modules).

Proof. See [2, II.6.13].

To give some details, let D = {(Ui, φi)}. Then OX(D) ⊂ KX is generated as an OX -module
by φ−1

i . Since

OUi −→ K|Ui , f 7→ f · φ−1
i

is injective, the claim in (a) follows.

If D1 = {(Ui, φi)} and D2 = {(Ui, ψi)}, then OX(D1−D2) is locally generated by φ−1
i ψi and

this subsheaf of K is isomorphic to OX(D1) ⊗ OX(D2)−1, because OX(D1) is generated by
φi and OX(D2) is locally generated by ψi. This proves (b).

By (b) it suffices to show that D ∼ 0 if and only if OX(D) ∼= OX . Clearly, if D ∼ 0, then
there is a global section φ of K∗ such that OX(D) = φ · OX ⊂ K and so OX(D) ∼= OX .
Conversely, if OX(D) ∼= OX , then the unit section 1 ∈ Γ(X,OX) corresponds to a global
section φ of OX(D) and so D is principal. This proves (c).

By the above proposition, we get an injection CaCl(X) ↪→ Pic(X). This is surjective in most
situations (i.e. e.g. if K is acyclic so that H1(X,K) = 0), but not always, as there might be
situations where not every invertible sheaf on X is a subsheaf of K.

Proposition 2.15. If X is integral, then CaCl(X) ↪→ Pic(X) is surjective.

Proof. Since X is integral, K is the constant sheaf with stalk K, the quotient field of X.
This sheaf as well as its subsheaf K∗ ⊂ K is flasque and so H1(X,K∗) = 0. The short exact
sequence 0→ O∗X → K∗ → K∗/O∗X → 0 thus yields the result, because

Pic(X) ∼= H1(X,O∗X)

as one sees by representing line bundles by Cech one-cycles.
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For a more elementary proof, we again use that K is constant and note that for any invertible
sheaf L on X, the tensor product L⊗OX

K is isomorphic to K and so we obtain a subsheaf

L ↪→ L⊗OX
K ∼= K.

This subsheaf is an OX -submodule of rank one and so it is locally generated by a single
nonzero section of K, as we want.

Definition 2.16. A Cartier divisor D is effective if H0(X,OX(D)) 6= 0. This is equivalent
to saying that D can be expressed as {(Ui, φi)} with φi ∈ H0(Ui,OX).

3 Morphisms to projective space and ample line bundles

The reference for this section is [2, II.7].

3.1 Morphisms to projective space

Definition 3.1. Let X be a scheme. An OX-module F on X is globally generated, if for
each x ∈ X, the images of the global sections s ∈ H0(X,F) in the stalk Fx of F at x generate
Fx as an OX,x-module.

Let A be a ring and let PnA := ProjA[x0, . . . , xn]. Then O(1) is globally generated by the
global sections x0, . . . , xn ∈ H0(PnA,O(1)).

Theorem 3.2. Let A be a ring and let X be a scheme over A.

(a) If f : X → PnA is a morphism over A, then L := f∗O(1) is an invertible sheaf on X
which is generated by the global sections f∗xi, i = 0, . . . , n.

(b) Conversely, if L is an invertibal sheaf on X which is generated by global sections f0, . . . , fn,
then there is a unique morphism

f : X → PnA
with f∗O(1) = L and fi = f∗xi.

Proof. See [2, II.7.1].

To see part (a), note that Lx = O(1)f(x) ⊗OY,f(x)
OX,x. Hence, the statement follows from

the fact that the global sections x0, . . . , xn ∈ H0(PnA,O(1)) generate O(1).

To see part (b), we intuitively want to define f as [f0 : · · · : fn]. To make this precise in the
current setting, let

Vi := X \ {fi = 0} = {x ∈ X | f i 6= 0 ∈ L⊗OX
κ(x)}.

Since L is globally generated by f0, . . . , fn, we see that X =
⋃
Vi is an open cover of X. Let

Ui = PnA \ {xi = 0} be the standard open cover of PnA. We then aim to produce morphisms
Vi → Ui that glue on overlaps. For this, note that

Ui = SpecA[y0, . . . , ŷi, . . . yn]

with yj = xj/xi. The morphism Vi → Ui is then defined by

A[y0, . . . , ŷi, . . . yn] −→ OX(Vi), yj 7→ fj/fi.

This makes sense, because fj/fi is a regular section of L⊗L−1 ∼= OX over Ui, hence a regular
function. One easily checks that this definition glues on overlaps, giving rise to the desired
morphism f : X → PnA. It is also easy to check that L = f∗O(1) with fi = f∗xi.
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Proposition 3.3. Let k be an algebraically closed field and let X be a projective scheme over
k. Let f : X → Pnk be a morphism over k, L = f∗O(1) and V := f∗H0(Pn,O(1)) ⊂ H0(X,L).
Then f is a closed immersion, if and only if:

(a) elements of V separate points, i.e. for any distinct closed points x, y ∈ X, there is a
section s ∈ V with s(x) = 0 and s(y) 6= 0, i.e. sx ∈ mx · Lx and sy /∈ my · Ly.

(b) elements of V separate tangent vectors, i.e. for any closed point x ∈ X, the set {s ∈ V |
sx ∈ mx · Lx} spans the k-vector space

mxLx/m
2
xLx
∼= (mx/m

2
x)⊗OX,x

Lx ∼= mx/m
2
x.

Proof. See [2, II.7.3].

3.2 Ample line bundles

Definition 3.4. A line bundle L on a noetherian scheme X is ample, if for every coherent
sheaf F on X, there is some integer m0 > 0, such that F ⊗ Lm is globally generated for all
m ≥ m0, where Lm = L⊗m.

Lemma 3.5 ([2, II.7.5]). Let L be a line bundle on a noetherian scheme X. Then the
following conditions are equivalent:

(i) L is ample;

(ii) Lm is ample for all m > 0;

(iii) Lm is ample for some m > 0.

Proof. The implication (i) ⇒ (ii) ⇒ (iii) is clear. We need to prove (iii) ⇒ (i). So assume
that Lm is ample for some m > 0 and let F be a coherent OX -module. We need to show
that F ⊗ Ln is globally generated for all sufficiently large n, while we only know that this is
true for all sufficiently large n that are divisible by m. However, since F ⊗Li is coherent for
each i, the ampleness of Lm implies that

F ⊗ Li ⊗ Ln ∼= F ⊗ Ln+i

is globally generated for each sufficiently large n that is divisible by n. Choosing n so large
that this works for all i = 0, . . . ,m− 1, we conclude that F ⊗Ln is globally generated for all
sufficiently large n (not necessarily divisible by m anylonger). This proves the lemma.

Definition 3.6. A line bundle L on a scheme X (over a base scheme S) is very ample, if
L = f∗O(1) for some embedding f : X ↪→ PnS.

The following two theorems of Serre are crucial:

Theorem 3.7. Let X be a projective scheme over a noetherian ring A. Then any very ample
line bundle on X over SpecA is ample.

Proof. See [2, II.5.17].

We sketch a slightly different argument. For this, let f : X ↪→ PnA be a closed embedding with
L = f∗O(1). For a coherent OX -module F , we then have to show that F ⊗ Lm is globally
generated for all sufficiently large m. Let

S :=
⊕
i≥0

H0(X,Li)

11



be the graded coordinate ring with respect to the embedding f : X ↪→ Pn. Then X = ProjS

and any coherent OX -module F on X is of the form F = M̃ for some finitely generated
graded S-module M , see [2, II.5.15]. Since M is finitely generated, there is some m0, such
that M is generated as an S-module by its elements of degree at most m0.

Since L = f∗O(1), we have Lm = S̃(−m), where S(−m) is given by the ring S, where the
grading is shifted, so that S(−m)i = Si−m. The tensor product F ⊗Lm is thus associated to
the graded S-module

M ′ := M ⊗S S(−m).

The global sections of F ⊗ Lm correspond to the elements of degree zero in M ⊗ S(−m).

Let now s ∈Mm′ be one of the (finitely many) generators of M as an S-module with M ′ ≤ m0.
Then the elements

s · xm−m′i ∈M ′0
correspond to global sections of F ⊗Lm for all i = 0, . . . , n. Since x0, . . . , xn have no common
zero on PnA (on the affine open subset Ui = X \ {xi = 0}, xi is nonzero by definition and X
is covered by these open subsets), this proves that for m ≥ m0 the global sections of F ⊗Lm
of the form

s · xm−m′i ∈M ′0
with s ∈ Mm′ , m

′ ≤ m0 and i = 0, . . . , n generate the sheaf F ⊗ Lm, as we want. (If you
want to see more details, work out what this means on each open subset Ui from above.)
This concludes the proof.

Theorem 3.8 ([2, II.7.6]). Let X be a scheme of finite type over a noetherian ring A, and
let L be a line bundle on X. Then L is ample if and only if Lm is very ample over SpecA
for some m > 0.

In the proof of the above theorem, we need the following technical lemma.

Lemma 3.9. Let X be a noetherian scheme and let L be an invertible sheaf on X. Let
s ∈ H0(X,L) be a global section and let

Xs := X \ {s = 0} := {x ∈ X | sx /∈ mxLx}.

If F is a quasi-coherent sheaf on X and t ∈ H0(Xs,F) is a section of F over Xs, then for
some n� 0, the section snt of Ln ⊗F extends from Xs to a global section of Ln ⊗F on X.

Proof. The assumption that X is noetherian implies that X as well as any open subset of X
is quasi-compact. The statement thus follows from [2, II.5.14], see also [2, II.5.3].

Proof. Let us first assume that Lm is very ample over SpecA for some m > 0. The line bundle
Lm induces by assumption an embedding X ↪→ PnA over A and we let X be the closure of

this embedding. Then X is projective over A. Since the pushforward of a coherent sheaf on
X to X is again coherent, one easily reduces to the case where X = X. (E.g. this would be
automatic if we had assumed that X is proper to begin with.) Once we’ve reduced to the
case where X = X is projective over A, the previous theorem and Lemma 3.5, imply that L
is ample if a positive tensor power of L is very ample (over SpecA). This proves one direction
in the theorem.

To prove the converse, assume that L is ample. We need to find a positive tensor power of L
whose global sections embed X into some projective space. We proceed in several steps.

Step 1. Fix a point x ∈ X. Up to replacing L by a positive power Lm, there is a section
s ∈ H0(X,L), such that

Xs := X \ {s = 0} := {x ∈ X | sx /∈ mxLx}

12



is affine and contains x; i.e. s does not vanish at x and the complement of the vanishing locus
of s in X is affine.

To prove the claim in step 1, let U ⊂ X be an affine open neighbourhood of x, such that
L|U ∼= OU is trivial. Let Z := X \ U with the induced reduced scheme structure. Then
the ideal sheaf IZ is a coherent sheaf and so up to replacing L by a suitable power, IZ ⊗ L
is generated by global sections. Since IZ ⊂ OX is a subsheaf, we see that there is a global
section s ∈ H0(X,L) which vanishes along Z and which does not vanish at x. Since L|U ∼= OU
is trivial, the restriction of s to U corresponds to a regular function f and so

Xs = U \ {f = 0} = SpecA(f)

is affine, where U = SpecA. This proves step 1.

Step 2. Up to replacing L by a positive power Lm, we may assume that there are finitely
many sections si ∈ H0(X,L) such that Xi := Xsi is affine for each i and X =

⋃
Xi is an

open cover.

Since X is noetherian, it can be covered by finitely many open subsets as in step 1. Step 2
follows immediately from this and the fact that Xsm = Xs, so that passing to further powers
is no problem.

Step 3. Since X is of finite type over A, Xi = SpecBi, where Bi = H0(Xi,OXi) is finitely
generated as an A-algebra. Let bij ∈ Bi be finitely many generators. Up to replacing si and L
by suitable powers, the section sibij of L over Xi extends to a global section cij ∈ H0(X,L).

This is a direct consequence of Lemma 3.9.

Step 4. The morphism f : X → PNA that is induced by the global sections si and cij of L is
an embedding/immersion (i.e. composition of a closed embedding and an open embedding).

Note first that X is covered by Xsi and so the si have no common zeros, i.e. the sections Si
generate L and so f is indeed a morphism. Let xi and xij be homogeneous coordinates on
PN that correspond to si and cij . Then Ui := PNA \ {xi = 0} is an affine open subset of PNA
with f−1(Ui) = Xi = SpecBi. The morphism f restricts on Xi to a morphism

Xi = SpecBi −→ Ui = SpecAi.

Here Ai us a polynomial ring over A and the above map is induced by a homomorphism of
A-algebras

Ai −→ Bi

which by construction has each bij in its image, hence is surjective. This proves that Xi → Ui
is a closed embedding. Hence, f : X → PNA is the composition of a closed embedding of X
into

⋃
Ui, and the open embedding of

⋃
Ui into PNA . This concludes the proof.

Theorem 3.10. Let A be a noetherian ring and let X be a proper scheme over SpecA. Let
L be a line bundle on X. Then the following are equivalent:

(a) L is ample;

(b) for each coherent sheaf F on X, there is an integer n0 such that

H i(X,F ⊗ Ln) = 0

for all i > 0 and n ≥ n0.

Proof. See [2, Proposition III.5.3].
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4 Intersection numbers

4.1 Intersecting Cartier divisors with curves

Let X be a scheme of finite type over a field. Let D be a Cartier divisor on X and C ⊂ X a
proper curve, i.e. proper reduced subscheme of pure dimension one. Then we define

D · C := deg(τ∗(OX(D)|C))

where τ : C ′ → C denotes the normalization of C. Here we use that

τ∗(OX(D)|C) ∈ Pic(C ′) ∼= CaCl(C ′)

and taking the degree of a divisor on a smooth projective curve over a field respects linear
equivalence of divisors.

Here we recall that on a smooth proper curve C ′ over a field k, the degree of a divisor
∑
aixi

is defined by
∑
ai deg(κ(xi)/k), where deg(κ(xi)/k) denotes the degree of the finite field

extension κ(xi)/k. If the ground field k is algebraically closed, then κ(xi) ∼= k and so we
arrive at deg

∑
aixi =

∑
ai.

By definition, the intersection number of a Cartier divisor D on X with a proper curve
depends only on the isomorphism class of the line bundle OX(D)) and hence only on the
linear equivalence class of D.

The concept of intersecting Cartier divisors with (proper) curves is fundamental to birational
geometry. To illustrate this, let X be a normal projective variety and let f : X → Y be a
morphism to another projective variety Y . We know that f corresponds to a line bundle L
on X together with a bunch of base-point-free sections s0, . . . , sN ∈ H0(X,L). Moreover,
L = f∗A for some ample line bundle A on Y .

Fundamental observation. Let f : X → Y be a proper morphism between quasi-projective
varieties. Let L := f∗A for some ample line bundle A on Y . A proper irreducible curve C ⊂ X
is contracted by f , i.e. f(C) is a point, if and only if L · C = 0.

Proof. If f(C) is a point, then f∗A|C is the trivial line bundle, as it factors through the
restriction of A to f(C). Hence, L · C = 0.

Conversely, let C ⊂ X be a proper irreducible curve with L · C = 0. Let τ : C ′ → C be the
normalization and let LC′ := τ∗L|C . We know that f = [f0 : · · · : fN ] for some base-point-free
set of sections fi ∈ H0(X,L). These sections fi restrict to sections of L|C on C and so they
pullback to sections f ′i := τ∗fi of LC′ = τ∗L|C . The composition C ′ → C ⊂ X → Y is given
by

[f ′0 : · · · : f ′N ] : C ′ → Y

and we need to show that this morphism is constant. But LC′ is a line bundle of degree zero
on C ′ that has nonzero sections (at least one of the f ′i does not vanish identically, because
f ′0, . . . , f

′
N is base-point-free, as f0, . . . , fN is base-point-free.) Hence, LC′ ∼= OC′ is trivial

and so f ′i is constant for all i. This proves our claim.

4.2 Digression: morphisms with connected fibres

The above observation allows us to understand which curves on X are contracted by a
morphism f : X → Y . Of course, this does in general not describe the morphism, as f could
for instance be finite and so it does not contract any curve, but still the morphism might be
highly nontrivial.

A class of morphisms f : X → Y that are in some sense completely understood in terms of
the curves they contract are given by morphisms with connected fibres:
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Definition 4.1. Let f : X → Y be a morphism between varieties. We say that f has
connected fibres if f∗OX = OY .

Note as an example that if f is the normalization of a cuspidal curve, then f does not have
connected fibres via the above definition, but still the set-theoretical fibres of f are connected.

The following important result shows conversely, that morphisms with conencted fibres indeed
have connected fibres.

Theorem 4.2 ([2, III.11.3]). Let f : X → Y be a projective morphism with connected fibres
between noetherian schemes (e.g. varieties over a field k). Then f−1(y) is connected for each
y ∈ Y .

The following two results show why morphisms with connected fibres play an important role
for us (which in turn explains why it is important for us to understand the intersection of
line bundles with curves).

Theorem 4.3 (Zariski’s Main Theorem [2, III.11.4]). Let f : X → Y be a birational proper
morphism between quasi-projective varieties. Then for any y ∈ Y , f−1(y) is connected.

Theorem 4.4 (Stein factorization [2, III.11.5]). Let f : X → Y be a projective morphism
between noetherian schemes (e.g. varieties over a field). Then f factors into the composition
of a morphism f ′ : X → Y ′ with connected fibres and a finite morphism g : Y ′ → Y :

f = g ◦ f ′.

Remark 4.5. The three theorems above are all consequences of the theorem on formal func-
tions [2, III.11.1], which asserts that if f : X → Y is a projective (or proper) morphism
between noetherian schemes, and F is a coherent OX-module, then for any y ∈ Y ,

Rif∗F ⊗ ÔY,y ∼= lim
←n

H i((Xy)n,F|(Xy)n),

where (Xy)n = X ⊗ Spec(OY,y/mn
y ) is an infinitesimal neighbourhood of the fibre Xy of f

above y and

ÔY,y = lim
←n

(OY,y/mn
Y,y)

is the formal completion of the local ring OY,y.

4.3 Intersecting Cartier divisors with each other

For most of this course (i.e. once Kleiman’s ampleness criterion is proven), it will be enough
to understand how to intersect a Cartier divisor with a curve. However, in the proof of this
ampleness criterion, we will need to intersect Cartier divisors D1, . . . , Dn on a projective
scheme of dimension n (over an algebraically closed field) with each other (often the same
Cartier divisor with itself). If the Di meet properly, we would like to say that D1 · · ·Dn

is the number of intersection points with suitable multiplicities. However, this definition is
problematic if e.g. Di = D for all i and so the set-theoretic intersection is far from being
zero-dimenisonal. One way around this is to show that we can replace the Cartier divisors
Di by lienarly equivalent Cartier divisors Di ∼ D′i, such that the components of the D′i meet
properly and transversely in finitely many points. Then we define D1 · · ·Dn = D′1 · · ·D′n, but
making this work one has to show that this definition is independent from choices. Instead of
making this approach work, we sketch in this section another approach, taken in [1, Section
1.2]. This approach uses cohomology to define the required intersection numbers. Even
though it is not very geometric, it is comparatively quick.
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To motivate the discussion, note that if C is a smooth projective curve over an algebraically
closed field k and L is a line bundle on C, then

χ(C,Lm) = m · deg(L)− g(C) + 1

by the Riemann–Roch theorem. Hence, χ(C,Lm) is a linear polynomial in m whose leading
coefficient is deg(L) = C · L. This point of view generalizes as follows.

Theorem 4.6. Let D1, . . . , Dn be Cartier divisors on a proper scheme X over a field k.
Then the function

(m1, . . . ,mn) 7→ χ(X,OX(m1D1 + · · ·+mnDn))

is a polynomial function on Zn with rational coefficients. The degree of this polynomial is at
most equal to the dimension of X.

Proof. We sketch the proof in what follows, for more details, see [1, Theorem 1.5].

The main point is that if 0 → A → B → C → 0 is a short exact sequence of coherent OX -
modules, then the associated long exact sequence together with the basic fact that cohomology
of coherent OX -modules vanishes in degree i > dimX shows that

χ(X,B) = χ(X,A) + χ(X,C).

Using this and the fact that any coherent OX -module F admits a filtration by coherent
submodules Fi ⊂ Fi+1 ⊂ · · · ⊂ F such that Fi+1/Fi is torsion-free on an integral subscheme
of X, we reduce to the case where X is integral and F is torsion-free. Moreover, any coherent
OX -module is locally free on some non-empty open subset U ⊂ X: F|U ∼= O⊕rU . This yields

an embedding F ↪→ K⊕r and we let G := F ∩O⊕rX . Then we get two short exact sequences

0 −→ G −→ F −→ G1 −→ 0

and
0 −→ G −→ O⊕rX −→ G2 −→ 0,

where G1 and G2 are supported on Z := X \ U , which has smaller dimension than X. By
the additivity of Euler characteristics in short exact sequences, we reduce the problem by
induction to the case where F = OX and X is integral.

Case 1. n = 1.

To prove the n = 1 case in the theorem, we need to show that on any proper scheme X over
a field k and for any Cartier divisor D on X, χ(X,OX(mD)) is a polynomial of degree at
most dimX in m. Since D is Cartier, OX(D) ⊂ K. Let

J ′ := OX(−D) ∩ OX and J ′′ := OX(D) ∩ OX .

These are OX -submodules of OX , hence they are ideal sheaves. Let Y ′, Y ′′ ⊂ X be the
closed subschemes associated to the ideal sheaves J ′ and J ′′, respectively. Concretely, these
subschemes are given as follows: whenever D is locally given by a rational function f/g,
where f and g are local regular functions on X that are not zero divisors, then g ∈ J ′ and
f ∈ J ′′. This implies

J ′(D) = J ′′ ⊂ K.

Hence there are exact sequences

0 −→ J ′(mD) −→ OX(mD) −→ OY ′(mD) −→ 0
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and

0 −→ J ′(mD) = J ′′((m− 1)D) −→ OX((m− 1)D) −→ OY ′′((m− 1)D) −→ 0.

This implies

χ(X,OX(mD))− χ(X,OX((m− 1)D)) = χ(X,OY ′(mD))− χ(X,OY ′′((m− 1)D)).

The right hand side is a polynomial of degree at most max(dimY ′,dimY ′′) ≤ dimX−1. This
implies that χ(X,OX(mD)) is a polynomial of degree at most dimX, because if f : Z→ Z is
a function such that f(m)−f(m−1) is a polynomial of degree n−1, then f(m) is a polynomial
of degree n, see [2, I.7.3(b)]. (Idea: Since f(m)− f(m− 1) is a polynomial of degree n− 1,
one easily cooks up a polynomial g of degree n with f(m)− f(m− 1) = g(m)− g(m− 1) for
all m. But then f(m)− g(m) does not depend on m, hence is constant and so f and g differ
by a constant. Hence, f is a polynomial of degree n.)

Case 2. n > 1.

By the same inductive argument used in case 1 (or in fact by the result of case 1, applied to
a suitable sheaf F), we see that for each fixed index i ∈ {1, . . . , n}, the function

f(m1, . . . ,mn) := χ(X,OX(m1D1 + · · ·+mnDn)),

thought of as a function in mi is a polynomial of degree at most dimX in mi. It is an
elementary fact that this implies that the above function is a polynomial in m1, . . . ,mn.
(This is a slightly subtle point, as it was not true if we did not know that the degree of these
polynomials is bounded from above by a constant – dimX – that does not depend on the
fixed values of mj for j 6= i. Indeed, using this boundedness result, we can write

f(m1, . . . ,mn) := p(mn) :=
dimX∑
j=0

aj(m1, . . . ,mn−1)mj
n

and all we need to show is that aj(m1, . . . ,mn−1) is a polynomial. But by induction on
the number of variables, it suffices to show that it is a polynomial function, and this in
turn follows from the fact that we can express the coefficients aj as suitable rational linear
combinations of p evaluated at different values of mn, e.g. at the values mn = 0, . . . ,dim(X),
where we use that the Vandermonde matrix (aij)0≤i,j≤dimX with aij = ij is invertible.)

Now that we know that f is a polynomial, we still need to see that its degree is only dimX.
Sloely the fact that the degree of f as a polynomial in each mi is at most dimX does not
guarantee this (think about the polynomial

∏
im

dimX
i whose degree is n ·dimX, even though

as a function in each mi its degree is dimX). To show that in fact its degree is bounded from
above by dimX, one considers mi = m ·m′i for suitable but fixed m′i and applies case 1 to
the divisor D =

∑
m′iDi. (E.g. to rule out the polynomial

∏
im

dimX
i mentioned above, use

m′i = 1 for all i; then we get the polynomial mn·dimX whose degree is too large if n > 1, as
we want.) This proves the theorem.

Definition 4.7. Let D1, . . . , Dn be Cartier divisors on a proper scheme X over a field k with
n = dim(X). Then we define the intersection number

D1 · · ·Dn

to be the coefficient of m1m2 · · ·mn in the polynomial χ(X,OX(m1D1 + · · ·+mnDn)).

A priori, the intersection number defined above is only a rational number. But we will see in
a second that it is in fact an integer.
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Remark 4.8. By definition, the intersection number D1 · · ·Dn depends only on the OX-
modules OX(Di), and hence only on the linear equivalence class of the Di.

Definition 4.9. Let X be a proper scheme over a field k. If Y ⊂ X is a closed subscheme
of dimension dimY ≤ s, then for any Cartier divisors D1, . . . , Ds on X, we define

D1 · · ·Ds · Y := D1|Y · · ·Ds|Y .

Here, Di|Y denotes the pullback of Di to Y . In general, this pullback is not well-defined on
the level of Cartier divisors (e.g. when Y , or an associated point of Y , is contained in the
support of Di), but it is well-defined on the level of associated invertible sheaves, and that’s
what we mean by Di|Y in the above formula. This works, because the intersection number
defined above depends only on the linear equivalence class of divisors.

Example 4.10. Let X be a proper scheme over a field k and let C ⊂ X be a closed integral
subscheme of dimension one. Let τ : C ′ → C be the normalization of C. Then for any
Cartier divisor D on X, we have

D · C = deg(τ∗OX(D)|C).

Proof. To prove the claim made in the above example, note that we need to compute the
leading coefficient of the linear polynomial χ(C,OX(mD)) in m. Consider the normalization
τ : C ′ → C. We get a short exact sequence

0 −→ OC −→ τ∗OC′ −→ δ −→ 0,

where δ is a sheaf on δ that is supported on the finitely many singular points of C. Twisting
the above sequence with OX(mD), we get

χ(C, τ∗OC′(mD)) = χ(C,OC(mD)) + χ(C, δ(mD)).

Since τ is finite,
H i(C ′,F) ∼= H i(C, τ∗F)

for any coherent OC′-module F . (If you know about the Leray spectral sequence, this follows
from Riτ∗F = 0 for i > 0, which in turn follows from the fact that τ is affine and coherent
modules on affine varieties have no higher cohomology.) Hence,

χ(C ′,OC′(mD)) = χ(C,OC(mD)) + χ(C, δ(mD)).

Since χ(C, δ(mD)) is constant (as the support of δ is zero dimensional), the claim follows
from Riemann–Roch on C ′.

Proposition 4.11. Let D1, . . . , Dn be Cartier divisors on a proper scheme X of dimension
n over a field k. Then,

(a) the map
(D1, . . . , Dn) 7→ D1 · · ·Dn

is multilinear, symmetric and takes integral values;

(b) if Dn is effective with associated subscheme Y ⊂ X, then

D1 · · ·Dn = D1 · · ·Dn−.1 · Y.
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Proof. See [1, Proposition 1.8]. We sketch the argument in what follows.

To prove (a), note that while symmetry of D1 · · ·Dn is clear by our definition, neither in-
tegrality nor multilinearity is clear. It turns out that both properties follow from formal
properties of the definition as follows. The main point is the following. If P (T1, . . . , Tn) is a
polynomial of degree at most n, then the coefficient in front of T1 · · ·Tn is given by∑

I⊂{1,...,n}

(−1)|I|P (−εI),

where εI is the vector of length n whose i-th entry is 1 if i ∈ I and 0 otherwise.

In the situation of the proposition, n ≥ dimX and we know by the above theorem that
χ(X,m1D1 + · · ·+mnDn) is a polynomial of degree at most dimX. Hence,

D1 · · ·Dn =
∑

I⊂{1,...,n}

(−1)|I|χ(X,−
∑
i∈I

Di). (2)

This implies that D1 · · ·Dn is indeed an integer (because the above right hand side obviously
is).

For (a), it remains to prove that

(D1 +D′1) ·D2 · · ·Dn = D1D2 · · ·Dn +D′1D2 · · ·Dn.

To see this, note that it is a formal consequence of (2) that

(D1 +D′1)D2 · · ·Dn −D1D2 · · ·Dn −D′1D2 · · ·Dn = D′1D1D2 · · ·Dn,

where the right hand side is the coefficient of m′1m1 · · ·mn in the polynomial

χ(X,m′1D
′
1 +m1D1 + · · ·+mnDn).

But by the previous theorem, this coefficient must be zero, because dimX = n. This proves
(a).

For (b), let I ⊂ {1, . . . , n− 1} and consider the exact sequence

0 −→ OX(−Dn −
∑
i∈I

Di) −→ OX(−
∑
i∈I

Di) −→ OY (−
∑
i∈I

Di) −→ 0.

This implies

χ(X,OX(−
∑
i∈I

Di))− χ(X,OX(−Dn −
∑
i∈I

Di)) = χ(Y,OY (−
∑
i∈I

Di)).

The claim follows now easily from the formula (2).

4.4 Self-intersection of ample divisors and degree of projective schemes

In this section we collect four corollaries of the theory of intersection numbers (Theorem 4.6
and Proposition 4.11), developed in the previous section.

Corollary 4.12. Let X ⊂ PNk be an integral projective scheme of dimension n over an
algebraically closed field k and let D := O(1)|X . Then Dn is the degree of X, defined as the
number of intersection points

degX := ](X ∩ P )

of a general linear subspace P ⊂ PNk of codimension n with X. In particular, Dn > 0.
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Proof. If n = 0, then nothing is to prove. If n = 1, then the statement follows directly
from Example 4.10. If n > 1, then a general hyperplane section of X is integral by Bertini’s
theorem [2, II.8.18], and so the statement follows by induction from item (b) in Proposition
4.11.

It is worth to try to understand to which extent the above corollary generalizes to projective
schemes that are not necessarily integral.

Corollary 4.13. Let X ⊂ PNk be a projective scheme of dimension n over an algebraically
closed field k and let D := O(1)|X . Then Dn is the degree of X, defined as the number of
intersection points of a general linear subspace P ⊂ PNk of codimension n with X counted
with multiplicity. That is,

degX :=
∑

x∈X∩P
length(OX∩P,x)

where length(OX∩P,x) denotes the length of the local ring OX∩P,x of the scheme-theoretic
intersection X ∩ P at the point x (which in this case is an artinian k-algebra). (Note also
that the above sum is finite, because X ∩ P is zero-dimensional.)

Proof. If n = 0, then X is a zero-dimensional scheme. Since OX(m · D) is a locally free
OX -module for all m, it is in fact free, i.e. OX(m ·D) ∼= OX . By definition, we get

D ·X = χ(X,OX(m ·D)) = χ(X,OX) = dimk(H
0(X,OX)),

because H i(X,OX) = 0 for i > 0, since X has dimension zero. Again because X has
dimension zero, we have

H0(X,OX) =
⊕
x∈X
OX,x

and the dimension of this k-vector space is exactly the sum of the length of the individual
artinian k-akgebras OX,x. This proves the corollary in the case n = 0.

The general case follows by induction. For this we note that if we cut X with a general
hyperplane section, than by Krull’s Hauptideal Satz its dimension goes down by exactly
one. The only subtle point in this inductive argument is the following: Since X might have
embedded points, it is not true that a Cartier divisor D on X can as a divisor be restricted
to any codimension one subscheme Y ⊂ X. It can only be restricted as a Cartier divisor up
to linear equivalence, i.e. restricted as a line bundle. However, if the support of D meets the
embedded points of Y as well as all components of Y properly, then the restriction of D to
Y as a Cartier divisor makes sense and the corresponding divisor class is indeed the pullback
of the divisor class of D.1

The genericity assumption on the linear subspace P implies that P is the intersection of n
general hyperplanes in PN . Since k is algebraically close, it is infinite. On the other hand,
X being projective over a field implies that it has only finitely many components and only
finitely many embedded points. Hence, the genericity assumption on the aforementioned
hyperplanes (i.e. Cartier divisors) ensures that we can restrict them as divisors, making the
induction work. This concludes the proof.

Corollary 4.14. Let X be a projective scheme of dimension n over an algebraically closed
field k and let D be an ample divisor on X. Then Dn > 0.

1Recall from [2, p. 257] that an associated point of a scheme X is a point x ∈ X, such that every element
of the maximal ideal mx is a zero divisor in the local ring OX,x. An associated point of X which is not a
generic point of a component of X is called embedded point.
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Proof. Up to replacing D by some multiple, we may assume that D is very ample. Then the
corollary follows from Corollary 4.13, because X ∩ P is non-empty. To prove the latter by
induction, we need to show that the intersection of X with a general hyperplane H ⊂ PNk
has dimension dimX − 1. Since k is algebraically closed, it is an infinite field and so H
meets each component of X properly, by the genericity assumption on H. This implies
that locally, the defining equation of H restricted to X is not a zero divisor. To prove that
dim(X ∩ H) = dimX − 1, it thus suffices by Krull’s Hauptideal Satz (see e.g. [2, I.1.11A])
that the local equation of H is not a unit on any component of X. But if this was the case
on one component X ′ of X, then X ′ ⊂ PNk \H ∼= ANk . Hence, X ′ is projective and affine at
the same time, and this implies that X ′ is zero-dimensional. This concludes the proof.

Remark 4.15. In the above arguments, we used repeatedly that our ground field k is infinite
to ensure that for any given closed subscheme X ⊂ PN we can find a hyperplane H ⊂ PN

which meets X properly in all its associated points. If X has only one associated point (i.e.
it is integral), then this conclusion does not need k to be infinite, because if X was contained
in {xi = 0} for all i, then X = ∅. However, if X has several components, than |k| = ∞
is necessary, as one can see by the simple example, where k is a finite field and X is the
union of all closed points of PN – in this case surely no hyperplane (defined over k) meets X
properly.

Corollary 4.16. Let X ⊂ PNk be a projective scheme of dimension n over an algebraically
closed field k and let D := O(1)|X . Then the Hilbert function

m 7→ h0(X,OX(mD)) := dimH0(X,OX(mD))

coincides with χ(X,OX(mD)) for large m and this is a polynomial of degree dimX in m
whose leading coefficient is given by

Dn

n!
.

Proof. The fact that
χ(X,OX(mD)) = h0(X,OX(mD))

for m� 0 is a direct consequence of Serre vanishing, see Theorem 3.10. By Theorem 4.6, it
follows in particular, that the so called Hilbert function

m 7→ h0(X,OX(mD))

is a polynomial of degree at most dimX in m for m� 0. It is a formal consequence of this
and the definition of Dn that for m� 0, we have

h0(X,OX(mD)) =
Dn

n!
mn + ”lower order terms”.

As the left hand side is positive, it follows that Dn ≥ 0. In fact, the previous corollary shows
that Dn > 0, but there is also a slightly more elementary/classical way of seeing this.

The classical way of seeing this is as follows. We may up to replacing D by a positive
multiple assume that D is very ample. That is, there is a closed embedding f : X ↪→ PNk
and OX(D) ∼= f∗O(1). The embedding f yields a presentation X = ProjS, where S is a
graded ring, given as a quotient of k[x0, . . . , xN ] by the graded ideal given by the kernel of
the natural map

k[x0, . . . , xN ] =
⊕
i≥0

H0(PNk ,O(i)) −→
⊕
i≥0

H0(X,OX(iD)).
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We use f to think about X as a closed subscheme of PNk . We have a short exact sequence

0 −→ IX −→ OPN −→ OX −→ 0,

where IX is the ideal sheaf of X. Tensoring this with O(m), we find

0 −→ IX(m) −→ OPN (m) −→ OX(mD) −→ 0.

By Serre’s vanishing theorem (see Theorem 3.10), H1(PN , IX(m)) = 0 for m� 0. Hence,

H0(PN ,OPN (m)) −→ H0(X,OX(mD))

is surjective for large m� 0. In other words, for large enough m� 0, we have

H0(X,OX(mD)) ∼= dimk(Sm),

where Sm denotes the degree m part of the graded ring S with X = ProjS from above. It is
a basic theorem of Hilbert and Serre that the function

m 7→ dimk(Sm)

is for m� 0 a polynomial of degree dimX. Hence Dn > 0, as claimed.

5 Nakai–Moishezon Ampleness Criterion

Our final goal of this first part of this course is the Klaiman ampleness criterion, which shows
that ampleness of a Cartier divisor only depends on its intersection behaviour with curves.
A first step toward this direction is the Nakai–Moishezon ampleness criterion, which is the
following theorem.

Theorem 5.1. A Cartier divisor D on a proper scheme X over a field k is ample if and
only if, for every integral subscheme Y of X, one has DdimY · Y > 0.

Remark 5.2. The condition that Y is integral makes it easier to apply the theorem. But
once D is ample, it follows that DdimY · Y > 0 for any closed subscheme Y ⊂ X and so one
could as well drop the integrality assumption on Y in the theorem.

To prove the above theorem, we need the following consequence of Serre’s cohomological
characterization of ample line bundles in Theorem 3.10.

Corollary 5.3. Let f : X → Y be a quasi-finite morphism between proper schemes over a
field k. Then for any ample line bundle L on Y , f∗L is ample.

Proof. Let F be a coherent OX -module. By Theorem 3.10, we need to show that

H i(X,F ⊗ f∗Lm) = 0

for all i > 0 and m� 0. Since f is quasi-finite, the theorem on formal functions (see Remark
4.5) shows that Rif∗F = 0 for all i > 0 and this implies by the Leray spectral sequence that

H i(X,F ⊗ f∗Lm) = H i(Y, f∗(F ⊗ f∗Lm))

By the projection formula, f∗(F ⊗ f∗Lm) = f∗F ⊗ Lm and so

H i(X,F ⊗ f∗Lm) = H i(Y, f∗F ⊗ Lm)

which vanishes for i > 0 and m� 0 by the Serre vanishing theorem, see Theorem 3.10. This
concludes the proof.
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Proof of Theorem 5.1. One direction follows directly from Corollary 4.12. For the converse,
assume that DdimY · Y > 0 for any closed subscheme.

Since the sheaf cohomology of a OX -module F is the same as the sheaf cohomology of F ,
viewed as a sheaf of k-algebras and not as a sheaf of algebras over OX , it follows that
H i(X,F) = H i(Xred,F) for any proper scheme X over a field k. It thus follows from Serre’s
ampleness criterion 3.10, that D is ample on X if and only if its pullback to the reduction
Xred is ample. Using Theorem 3.10 once again, one can also show that D is ample on X if
and only if its pullback to each irreducible component of Xred is ample. This reduces the
proof of the theorem to the case where X is integral. As in the proof of Theorem 4.6, consider

J ′ = OX(−D) ∩ K and J ′′ = OX(D) ∩ K

and let Y ′, Y ′′ ⊂ X be the corresponding subschemes cut out by the ideal sheaves J ′ and J ′′.
Recall that J ′(D) = J ′′ and so we have two short exact sequences

0 −→ J ′(mD) −→ OX(mD) −→ OY ′(mD) −→ 0

and
0 −→ J ′′((m− 1)D) −→ OX((m− 1)D) −→ OY ′′((m− 1)D) −→ 0.

By induction, the restriction of D to Y ′ and Y ′′ is ample. Hence, by Serre vanishing (see
Theorem 3.10), we know that

hi(OX((m− 1)D)) = hi(J ′′((m− 1)D)) = hi(J ′′(mD)) = hi(OX(mD))

for all i ≥ 2 and m� 0. Hence,

χ(X,OX(mD)) = h0(OX(mD))− h1(OX(mD)) + ’constant term’

for all m � 0. Our assumption implies that DdimX > 0 and so the above expression is a
polynomial of degree dimX which goes to +∞ for m→∞. In particular, h0(OX(mD)) > 0
for m � 0. Up to replacing D by a suitable positive multiple, we may thus assume that D
is effective, i.e. h0(X,OX(D)) > 0. In other words, OX(−D) ⊂ OX is an ideal sheaf and by
abuse of notation, we denote the subscheme D ⊂ X cut out by this ideal sheaf by D. We
then get a short exact sequence

0 −→ OX((m− 1)D) −→ OX(mD) −→ OD(mD) −→ 0.

By induction, OD(D) is ample. Hence, by Serre vanishing,

H1(X,OX((m− 1)D))� H1(X,OX((m)D))

is surjective for all m � 0. Hence, h1(OX(mD)) is constant for all m � 0. But then for
m� 0, the above map is not only surjective but also injective, and so

H0(X,OX(mD))� H0(D,OD(mD))

is surjective for m � 0. Since OD(D) is ample on D, OD(mD) is globally generated for
m � 0. The above surjection thus shows that mD has no base points on D, hence no base
points at all, because mD has a section that vanishes exactly on D but nowhere else. Hence,
for m� 0, OX(mD) is base point free and so it gives a morphism

f : X −→ PNk

with f∗O(1) = OX(mD) for some m > 0 and we may w.l.o.g assume m = 1. By assumptions,
OX(mD) has positive degree on each curve in X, hence f cannot contract any curve. That is,
f is quasi-finite (it has finite fibres). Thus OX(D) = f∗O(1) is ample by Corollary 5.3.
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Remark 5.4. It is tempting to think that instead of asking DdimY · Y > 0 for all integral
closed subschemes Y ⊂ X, it might be enough to ask this only for those that have dimension
one, i.e. for curves. Somewhat surprisingly, this fails already for surfaces: there is a smooth
projective surface S over C, which is the projectivization of a rank two vector bundle over a
curve C of genus at least two, such that there is a line bundle L on S that has positive degree
on each curve, but L is not effective (the issue being that L2 = 0), see [1, §1.35].

6 Cone of curves

6.1 Basic definitions

Definition 6.1. Let X be a proper scheme over a field k. Two Cartier divisors D1 and D2

on X are called numerically equivalent, denoted by D1 ≡num D2, if for any proper curve
C ⊂ X,

D1 · C = D2 · C.
The group of all Cartier divisors on X modulo numerical equivalence is denoted by

N1(X) := CaDiv(X)/ ≡num

For convenience of notation, we sometimes denote numerical equivalence also by ≡.

It is clear from the definition that N1(X) is an abelian group that must be torsion-free. It is
an important fact that we will use without proof that this group is in fact finitely generated
and hence free.

Theorem 6.2. Let X be a proper scheme over a field k. Then N1(X) is finitely generated,

hence a free abelian group N1(X) ∼= Zρ(X) whose rank is denoted by ρ(X), called the Picard
rank of X.

By the above theorem,

N1(X)Q := N1(X)⊗Z Q and N1(X)R := N1(X)⊗Z R

are finite dimensional vector spaces over Q and R of dimension ρ(X). An element in N1(X)Q,
resp. N1(X)R is represented by a Q-linear (resp. R-linear) combination of Cartier divisors on
X. Numerical equivalence works well also for such linear combinations.

Definition 6.3. A 1-cycle on a proper scheme X over a field k is a finite formal Z-linear
combination γ =

∑r
i=1 niCi, where ni ∈ Z and Ci is an integral proper curve on X. Two

1-cycles γ and γ′ are numerically equivalent, denoted by γ ∼ γ′ or γ ≡ γ′, if

D · γ = D · γ′

for any Cartier divisor D on X, where the intersection number of a Cartier divisor and a
1-cycle are defined by linearity. The group of all 1-cycles on X modulo numerical equivalence
is denoted by N1(X). Similarly, we put N1(X)Q := N1(X)⊗Z Q and N1(X)R := N1(X)⊗Z R.

By definition, the natural pairing

N1(X)×N1(X) −→ Z

is non-degenerate. In particular, N1(X) a free abelian group of rank ρ(X) and N1(X)Q (resp.
N1(X)R) are dual to N1(X)Q (resp. N1(X)R).

We endow the R-vector spaces N1(X)R and N1(X)R with the natural euclidean topology,
allowing us in particular to talk about closures of sets, etc.
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Definition 6.4. Let X be a proper scheme over a field k. Then the cone of curves on X
is the subcone NE(X) ⊂ N1(X)R generated by effective 1-cycles, i.e. 1-cycles of the form
γ =

∑
niCi with ni ≥ 0. The closed cone of curves, denoted by NE(X) ⊂ N1(X)R is the

closure of NE(X).

6.2 Rigidity Lemma

The rigidity lemma refers to the following statement.

Proposition 6.5. Let π : X → Y and π′ : X → Y ′ be proper morphisms between varieties
over some field k. Assume that π has connected fibres.

(a) If π′ contracts one fibre π−1(y0) of π to a point, there is a neighbourhood U ⊂ Y of y0,
so that π′ : π−1(U) → Y ′ factors uniquely through π, i.e. there is a unique morphism
f : U → Y ′, making the following diagram commutative

π−1(U)
π //

π′

��

U

f{{
Y ′ .

(b) If π′ contracts any fibre of π to a point, then π′ factors uniquely through π, which means
that we may take U = Y in item (a).

Proof. Let Z be the image of

g := (π, π′) : X −→ Y × Y ′

and let p : Z → Y and p′ : Z → Y ′ be the two projections. Then π = p ◦ g and since this
morphism has connected fibres, p must be surjective. Moreover, since π is proper, p is proper
as well [2, Exercise II.4.4]. Since π′ contracts π−1(y0), one checks that p−1(y0) is a single
point. By the theorem on the dimension of fibres (see e.g.[6, Corollary 5.22]), p is quasi-finite
above a neighbourhood U ⊂ Y of y0. Moreover, if we are in case (b), we can take U = Y .
Up replacing Y by U and X by X ×Y U , we may assume that p is proper and quasi-finite,
hence finite (because quasi-finite proper morphisms are finite), and we aim to show that π′

factors uniquely through π.

We first prove existence of such a factorization. Since π′ clearly factors through g, it suffices
for this to show that p : Z → Y is an isomorphism – the morphism f : Y → Y ′ is then given
by the composition of p−1 with the second projection Z → Y ′ (i.e. Z is this way identified to
the graph of f). On the other hand,

OY ⊂ p∗OZ ⊂ p∗g∗OX = π∗OX = OY ,

where we used that π has connected fibres. Hence p∗OZ = OY , i.e. p has connected fibres.
But a finite morphism with connected fibres is an isomorphism, which shows that p : Z → Y
is an isomorphism and so Z is the graph of a morphism f : Y → Y ′ with π′ = f ◦π. It remains
to proof uniqueness of f . For this, let f ′ : Y → Y ′ be another morphism with π′ = f ′ ◦ π.
Then the graph of f ′ is a subvariety Γf ′ ⊂ Y ×Y ′ with Z ⊂ Γf ′ . But since the first projection
induces isomorphisms Z → Y and /Gammaf ′ → Y , we find that Z = Γf ′ and so f = f ′

because Z = Γf by the construction of f above. This concludes the proof.

Let π : X → Y be a proper morphism. For any integral curve C ⊂ X, we define π∗C =
deg(C → π(C)) · π(C) if π(C) is a curve and π∗C = 0 otherwise.
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Lemma 6.6. The proper pushforward on 1-cycles defined above descends to 1-cycles modulo
numerical equivalence, and hence yields a push-forward map π∗ : N1(X)→ N1(Y ).

Proof. By the projection formula,

C · π∗L = π∗C · L

for any integral curve C on X and line bundle L on Y . By linearity, this formula remains
true in the case where C is a 1-cycle. The lemma follows immediately from this formula, as
it says that if C and C ′ are numerically equivalent on X, then π∗C and π∗C

′ are numerically
equivalent on Y .

Definition 6.7. Let C ⊂ Rn be a cone, i.e. a subset that is closed under addition and
multiplication with non-negative real numbers. A subcone C ′ ⊂ C is extremal if the following
holds: whenever a, b ∈ C with a+ b ∈ C ′, then a, b ∈ C ′. Equivalently, there is a hyperplane
H ⊂ Rn which contains C ′ and such that C is contained on one side of the hyperplane.

Definition 6.8. Let π : X → Y be a morphism of projective (or proper) varieties. We define
the subcone NE(π) ⊂ NE(X) to be spanned by all effective curves C ⊂ X with π∗C = 0, i.e.
which are contracted to points on Y .

Theorem 6.9. Let X,Y and Y ′ be projective varieties and let π : X → Y be a morphism.

(a) The subcone NE(π) of NE(X) is extremal;

(b) Assume π∗OX = OY and let π′ : X → Y ′ be a morphism to another projective variety
Y ′. If NE(π) ⊂ NE(π′), then there is a unique morphism f : Y → Y ′ with π′ = f ◦ π. In
particular, π is uniquely determined by NE(π) up to unique isomorphism.

Proof. To prove the first statement, let γ, γ′ ∈ NE(X) with γ + γ′ ∈ NE(π). That is,

0 = π∗γ + π∗γ
′ ∈ N1(Y ).

Since γ and γ′ are effective, the above class is represented by an effective curve. Since Y is
projective, an effective curve is zero on N1(Y ) if and only if the curve is zero. Hence, 0 = π∗γ
and 0 = π∗γ

′. That is, γ, γ′ ∈ NE(π). This proves (a).

To prove (b), assume that π has connected fibres and NE(π) ⊂ NE(π′). Since the targets
of π and π′ are projective, the morphisms π and π′ correspond to line bundles L (resp. L′)
and an effective curve C ⊂ X is contracted by π (resp. π′) if and only if L · C = 0 (resp.
L · C ′ = 0). This implies that the question whether an effective curve on X is contracted by
a given morphism (with projective target) depends only on the class of C in N1(X). So the
inclusion NE(π) ⊂ NE(π′) means that every irreducible curve that is contracted by π is also
contracted by π′. The existence and uniqueness of f : Y → Y ′ follows therefore from the
rigidity Lemma (Proposition 6.5). This concludes the proof.

6.3 Examples

Most of the material discussed in this section can be found in [4, I.1.5].

6.3.1 ρ = 1

If ρ(X) = 1 (e.g. X = Pn), then N1(X)R is the real line and NE(X) = NE(X) is the half-line,
generated (over R) by any effective curve on X.
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6.3.2 Product of projective spaces

Let X = Pm × Pn with m,n ≥ 1. Then Pic(X) ∼= Z2 and so ρ(X) = 2. One easily checks
that NE(X) = NE(X) is generated by lines in the two factors

`1 := P1 × {pt.} ⊂ X and `2 := {pt.} × P1 ⊂ X.

In particular, NE(X) = R+`1 + R+`2, where R+ := R≥0 denotes the set of non-negative real
numbers, has two extremal subcones, corresponding to the projections to the first and second
factor of X = Pm × Pn, respectively.

6.3.3 Ruled surfaces

In this subsection, we follows [4, I.1.5.A].

Let C be a smooth projective curve an let E be a locally free sheaf of rank two on B, i.e. a
rank two vector bundle on C. We define

P(E) := ProjOC

⊕
n≥0

(SymnE)

to be the projective bundle of one-dimensional quotients of E. There is a projection π :
P(E) → C such that the fibre above c ∈ C is the projectivization of the dual of the vector
space E × κ(c).2

There is a natural line bundle O(1) on P(E), which arises as tautological quotient

π∗E −→ O(1) −→ 0.

This line bundle satisfies
π∗O(n) = SymnE.

Let now for simplicity k be algebraically closed.

Lemma 6.10. The Picard group Pic(P(E)) is freely generated by π∗ Pic(C) and O(1). That
is, there is a short exact sequence

0 −→ Pic(C)
π∗−→ Pic(P(E))

p−→ Z −→ 0

where p maps O(1) to a generator of Z.

Proof. Since the vector bundle E is Zariski-locally trivial, π : P(E) → C is a Zariski-locally
trivial P1-bundle. This implies that π admits a section, i.e. there is a smooth projective curve
C ′ ⊂ P(E) which maps isomorphically onto C via π. Using this we find that π∗ is injective
(because the composition of pullback via π and restriction to C ′ is an isomorphism). The
cokernel of π∗ surjects onto Z, as one sees by the restriction map Pic(P(E)) → Pic(F ) ∼= Z,
where F denotes a fibre of π and where we note that O(1) restricts to a generator of F .
It thus remains to proof that Pic(P(E)) is generated by O(1) and π∗ Pic(C). To see this,
note that there is a non-empty open subset U ⊂ C, such that π−1(U) ∼= U × P1. Since the
complement of U in C is a finite number of points, the complement of π−1(U) in P(E) is a
finite union of prime divisors that are contained in π∗ Pic(C).

Note that all our spaces are smooth, so that Picard groups coincide with class groups. By the
localization sequence for class groups (see e.g. [2, II.6.5]), we thus conclude that it suffices to
show that Cl(U × P1) is generated by Cl(U) and O(1). To see this,, note that U × P1 \ U ×
{pt.} ∼= U × A1 has the same class group as U , and so the claim follows once again from the
localization sequence for class groups, see e.g. [2, II.6.5].

2Caution: in the literature there is no common agreement whether P(E) denotes the projective bundle of
one-dimensional subspaces or one-dimensional quotients. We follow here the convention used in [4].
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By the above lemma, if f denotes a fibre F of π, then

N1(P(E)) = ξ · Z⊕ f · Z, where ξ = [O(1)].

The intersection form on N1(P(E))R is determined by

ξ2 = degE, ξ · f = 1 and f2 = 0.

(Here degE denotes the degree of the determinant line bundle detE of E and ξ2 = degE is
a basic fact.)

Since P(E) is a surface, curves and divisors coincide and so N1(P(E)) = N1(P(E)).

The main observation in order to understand the cone NE(P(E)) of effective curves is the
following lemma.

Lemma 6.11. If a class af + bξ with a, b ∈ Z is represented by an effective curve C ′ ⊂ P(E)
if and only if b ≥ 0 and there is a line bundle A of degree a such that

H0(C,SymbE ⊗A) 6= 0.

Proof. By the previous lemma, C ′ is lineary equivalent to

O(n)⊗ π∗A

for some n ∈ Z and some line bundle A on C. Since [C] = af + bξ, we finde a = degA and
b = n. Since C ′ is effective

H0(P(E),O(n)⊗ π∗A) 6= 0

and conversely, any nonzero section of the above bundle yields an effective curve C ′ as above.
By the projection formula,

H0(P(E),O(n)⊗ π∗A) = H0(C,SymnE ⊗A)

and so it is clear that n must be non-negative and the above space is nonzero if and only if
a curve C ′ as above exists.

The projectivization P(E) does not change if we twist E with a line bundle. We may thus
assume that degE ∈ {0, 1} and we may from now on for simplicity assume that degE = 0.
Hence,

ξ2 = 0.

Case 1. E is unstable, i.e. there is a quotient line bundle E � A, with degA = a < 0 =
degE.

In this case, C ′ := P(A) ⊂ P(E) is a section of π and so

[C ′] = bf + cξ.

for some b, c ∈ Z. Intersecting with f shows c = 1. Intersecting with ξ yields

b = deg(O(1)|C′).

Since O(1) is the universal quotient line bundle, we have O(1)|C′ = A and so b = a. Hence,

[C ′] = af + ξ and so [C ′]2 = 2a < 0.

Since C ′ is an effective curve with negative self-intersection on the surface P(E), it follows
that [C ′] spans an extremal ray of NE(P(E)). Indeed, any irreducible curve on P(E) which is
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not C ′ will meet C ′ in a non-negative number of points and so it intersects C ′ non-negatively,
which is to say that NE(P(E)) is spanned by C ′ and by all effective curves contained in the
half-space N1(P(E))C′≥0 of curve classes that have non-negative intersection with C ′.

Since f corresponds to the contraction π, it also spans an extremal ray of NE(P(E)). This
analysis describes NE(P(E)) completely, showing that it is the closed cone generated by the
effective curves F and C ′.

Case 2. E is semistable, i.e. there is no quotient sheaf of negative degree.

We need to use the fact that as E is semistable, so is SymnE for all n. That is, SymnE does
not admit quotient bundles of negative degree. This translates into:

Claim. H0(C,SymnE ⊗A) = 0 whenever A is a line bundle of negative degree on C.

Proof. Indeed, if H0(C,SymnE ⊗ A) 6= 0, then there is an injection of OC-modules OC ↪→
SymnE ⊗A and hence an injection

A−1 ↪→ SymnE

with quotient sheaf Q. Since E has degree zero, SymnE has degree zero as well and so Q
has negative degree because A−1 has positive degree – a contradiction. (Strictly speaking,
the above quotient sheaf Q might not be a vector bundle, as it might have torsion, but up to
tensoring A−1 with a line bundle that corresponds to the torsion part of Q, we may indeed
assume that Q is torsion-free and so it is locally free because C is a smooth curve and a
finitely generated module over a principal ideal domain (here the local rings of C) is free if
and only if it is torsion free.)

By the above claim and Lemma 6.11, we see that NE(P(E)) is a subcone of the cone

R≥0 · ξ + R≥0 · f

generated by ξ and f .

While f is clearly contained in NE(P(E)), ξ is the class of an effective curve if and only if
there is a degree zero line bundle A on C such that H0(C,SymnE ⊗ A) 6= 0. This implies
that E is semistable but not stable. A theorem of Narasimhan and Seshadri implies that such
bundles exist if g(C) ≥ 2 and k = C. (This uses an equivalence between such bundles with
certain representations of the fundamental group, which in turn explains the restriction on
the genus, as the fundamental group needs to be sufficiently complicated for this to work.)
So in this case, ξ is not the class of an effective curve.

On the other hand, ξ has positive intersection with any effective curve on P(E) – again
because any such curve C ′ corresponds to a section of SymnE ⊗ A for some line bundle A
of positive degree (because E is stable) and unless C ′ is a fibre of π (in which case we have
ξ · C ′ = deg(O(1)|C′) = 1), we have

C ′ · ξ = degA > 0.

Finally, since ξ is positive on any curve, it follows from the Nakai–Moishezon criterion, that
for any ample line bundle L on P(E), the line bundle L⊗O(n) is ample or all n ≥ 0 and so
some high multiple has a section, which implies that the class of L ⊗ O(n) is contained in
NE(P(E)) for all n ≥ 0. Letting n →∞, we find that ξ ∈ NE(P(E)), and so NE(P(E)) is a
cone with one ”open side”.

The above discussion verifies in particular the claim made in Remark 5.4.
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6.3.4 Self-product of curves of genus ≥ 2

Let C be a smooth projective curve over k = C, say. In general, the Picard rank of X = C×C
depends on C. But if C is very general, then ρ(X) = 3 and N1(X)R is generated by the classes

f1 := [C × {pt.}], f2 := [{pt.} × C] and δ := [∆C ],

where ∆C ⊂ X = C×C denotes the diagonal. Here we have f2
i = 0 and f1f2 = f1δ = f2δ = 1.

Moreover,
δ2 = deg(N∆C/X) = deg(TC) = −deg(ωC) = 2− 2g(C)

by Riemann–Roch, where we used the general fact that the normal bundle of the diagonal is
the tangent bundle. In particular, ∆C is an effective curve with negative self-intersection as
long as g(C) ≥ 2.

Somewhat surprisingly, the cones NE(X) or NE(X) are in general unknown even if C is very
general, see [4, I.1.5.B] for more details. (Even though it is reasonable to conjecture that
these cones are both spanned by the three effective classes, mentioned above.) In fact, even
the following conjecture of Kollár is open:

Conjecture 6.12. Let C be a very general complex projective curve of genus at least two.
Then the diagonal ∆C ⊂ C × C is the only integral curve on C × C with negative self-
intersection.

6.3.5 Self-product of elliptic curves

Let E and F be elliptic curves over C and let X := E × F . Hodge theory shows that
ρ(X) ∈ {2, 3, 4}. Moreover, if E and F are very general (and independent of each other),
then ρ = 2 and if E = F is very general, then ρ = 3.

Lemma 6.13. Let X be an abelian surface (over C, say), e.g. X = E ×F as above. A class
α ∈ N1(X) lies in the closed cone of curves NE(X) if and only if

α2 ≥ 0 and α · h ≥ 0

for some fixed ample class h on X.

Proof. Since X is a group, we can use the group structure to translate curves and this
translation does not change the numerical equivalence class. (Roughly speaking because
Euler characteristics are constant in flat families and flatness is more or less automatic for
families over curves, i.e. for one-parameter families.) In particular, any class α ∈ NE(X)
satisfies

α2 ≥ 0 and α · h ≥ 0

and so the same holds true by continuity for all α ∈ NE(X).

Conversely, assume that α satisfies the above inequalities. We then aim to show that α ∈
NE(X). By continuity, we may assume that α ∈ N1(X)Q is a rational class and that in fact

α2 > 0 and α · h > 0

holds. Multiplying α with some large integer, we may furthermore assume that α ∈ N1(X)
is an integral class. Since X is a smooth projective surface, there is a line bundle L on X
with [L] = α ∈ N1(X) = N1(X) and we need to show that some multiple of L is effective.
By Riemann–Roch:

χ(X,Lm) = χ(X,OX) +
1

2
Lm · (Lm −KX).
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Since X is an abelian surface, KX = OX is trivial and χ(X,OX) = 0. Hence,

χ(X,Lm) =
1

2
m2L2.

Since L2 = α2 > 0, we find that

χ(X,Lm) = h0(Lm) + h2(Lm)− h1(Lm)

goes to infinity for large m. But by Serre duality, h2(Lm) = h0((L∗)m) and so either a positive
multiple of L or L∗ has a section. But α ·h > 0 implies that no positive multiple of L∗ can be
effective, and so some positive multiple of L must be effective. This proves the lemma.

Remark 6.14. In the situation of the lemma, where X is an abelian surface, the closed cone
of effective curves is round, given by the conditions

α2 ≥ 0 and α · h ≥ 0

For instance, if X = E × E for a very general elliptic curve E, then ρ = 3 and N1(X) is
generated by the classes of the two factors f1, f2 and the class δ of the diagonal. Here we
have

f1f2 = f1δ = f2δ = 1 and f2
1 = f2

2 = δ2 = 0.

If we choose this as a basis, then an arbitrary class if of the form

α = xf1 + yf2 + zδ

and we find
α2 = xy + xz + yz.

By the Nakai-Moishezon cirterion, an ample class is for instance given by h = f1 + f2 + δ
and so α · h ≥ 0 turns into the condition

x+ y + z ≥ 0.

Hence, α2 ≥ 0 and α · h ≥ 0 define a round cone NE(X), given by

xy + xz + yz ≥ 0 and x+ y + z ≥ 0.

6.4 Blow-up of P2

Let X be the blow-up of P2 in the nine intersection points of two general cubic curves. You
prove on the Exercise sheet 4 that X contains an infinite sequence C1, C2, . . . of smooth
rational curves with C2

i = −1 and Ci 6= Cj for all i 6= j. By the adjunction formula,

KCi = KXCi + C2
i .

Since Cj ∼= P1, we find

−2 = degKCi = KXCi − 1 and hence KXCi = −1.

The classes αi = [Ci] ∈ N1(X) are all integral and so their distance to the origin goes to
infinity for i → ∞. The fact that KXαi = −1 remains constant means that the classes
αi accumulate towards the hyperplane {KX = −1} ⊂ N1(X)R. This is a very instructive
example for the cone theorem that we will prove later: it turns out to be a general fact that the
KX -negative part of NE(X) of a smooth complex projective variety X is locally polyhedrial,
i.e. locally generated by finitely many extremal rays, but there may be accumulation points
towards the hyperplane of KX -trivial curves.
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Remark 6.15. The cone of curves (and in particular its KX-positive part) of the blow-up of
P2 in more than nine points is in general unknown, see e.g. [4, I.1.5.D].

Remark 6.16. The bounded negativity conjecture says that on any smooth complex projective
surface X, there is a constant b(X) ∈ Z such that for any integral curve C ⊂ X, we have C2 ≥
b(X). This conjecture is wide open already in the example of blow-ups of P2 in sufficiently
many points.

7 Nef divisors and Kleiman’s criterion

7.1 Nef divisors

Definition 7.1. A Cartier divisor D on a proper scheme X over a field k is nef if for every
closed integral subscheme Y ⊂ X, we have

DdimY · Y ≥ 0.

Remark 7.2. By definition, the restriction of a nef divisor to any subscheme is again nef.

Remark 7.3. If D is nef then for any closed subscheme Y ⊂ X,

DdimY · Y ≥ 0.

To prove this, we need to show that the leading coefficient of χ(Y,OY (mD)) in front of mdimY

is non-negative. More generally, one can show that for any coherent sheaf F on X whose
support has dimension n, the coefficient in front of mn of χ(X,F⊗OX(mD)) is non-negative.
This statement can be proven by induction on the dimension of the support of F . Filtering
F as in the proof of Theorem 4.6, the claim reduces to the case where F is a torsion-free
sheaf on an integral subscheme Y of X. Using the fact that F is generically locally free, the
same argument as at the beginning of the proof of Theorem 5.1 then reduces to the case where
F = OY and Y ⊂ X is integral, which finally follows from our definition of nefness of D.

Lemma 7.4. Let X be a proper scheme of dimension n over a field and let H be an ample
divisor on X. Let D be a Cartier divisor on X such that Dr · Y ≥ 0 for any subscheme
Y ⊂ X of dimension r. Then Dr ·Hn−r ≥ 0.

Proof. We then prove the assertion by induction on n and we note that nothing has to be
proven if r = n, so that we may assume r < n. The same reduction step as outlined in the
above remark allows us to reduce to the case where X is integral. Up to replacing H by some
high multiple, we may assume that H is very ample and so it defines an embedding X ↪→ PN

for some N � 0. Let W ⊂ X be a general hyperplane section. Then by Proposition 4.11,

Dr ·Hn−r = D|rW ·Hn−r−1|W

and the latter is non-negative by induction, because dimW = n− 1.

Corollary 7.5. Let X be a proper scheme over a field. The sum D +H of a nef divisor D
and an ample divisor H is ample on X.

Proof. By the Nakai–Moishezon criterion, we need to prove

(D +H)dimY · Y ≥ 0
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for any integral subscheme Y ⊂ X. Since the restriction of D to Y is still nef and the
restriction of H to Y is ample, we may replace Y by X and reduce to the case where X = Y ,
so that the result follows from the above Lemma, which implies

(D +H)n = Hn +
∑
i≥1

(
n

i

)
DiHn−i ≥ Hn > 0.

Corollary 7.6. Let X be a projective scheme over a field. The sum D + D′ of two nef
divisors D and D′ is again nef.

Proof. Let H be an ample divisor on X. By the previous corollary, D′ + tH is an ample
Q-divisor for all t ∈ Q>0 (i.e. some multiple is an honest ample Cartier divisor). Hence, by
the lemma

DdimY−s(D′ + tH)s · Y ≥ 0

for all closed subschemes Y ⊂ X. Taking the limit t→ 0, we find

DdimY−s(D′)s · Y ≥ 0

and so
(D +D′)dimY · Y ≥ 0

by writing out the above power via the binomial formula. This concludes the corollary.

7.2 Nefness is a numerical condition

Theorem 7.7. Let X be a proper scheme over a field. A Cartier divisor D on X is nef if
and only if for any integral curve C ⊂ X,

D · C ≥ 0.

This theorem has for instance the following important consequences.

Corollary 7.8. Let D be a Cartier divisor on a proper scheme X over a field.

(a) The question whether D is nef depends only on the class of D in N1(X).

(b) If f : X ′ → X is a proper morphism and D is nef, then so is f∗D.

(c) If f : X ′ → X is a proper morphism and X ′ is projective, then D is nef if f∗D is nef.

Proof. Item (a) is an obvious consequence of the theorem and item (b) is a direct consequence
of the projection formula and the theorem. Finally, item (c) follows from the projection
formula and the fact that if X ′ is projective, then for any integral curve C ⊂ X, we can cut
f−1(C) with general hyperplanes, giving rise to a curve C ′ ⊂ X ′ with f∗C

′ = λC for some
λ ≥ 1.

Corollary 7.9. Let X be a proper scheme over a field. Let Nef(X) ⊂ N1(X) be the cone
generated by nef divisors on X. Then Nef(X) is a closed cone and any integral class in
Nef(X) is represented by a nef divisor.
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Proof. By the theorem

Nef(X) = {D ∈ N1(X)R | D · γ ≥ 0 | γ ∈ NE(X)}.

This is a closed set, because equality in the inequality is allowed. Hence,

Nef(X) = {D ∈ N1(X)R | D · γ ≥ 0 | γ ∈ NE(X)}.

This shows that Nef(X) is the dual cone of the closed cone of effective curves on X. Moreover,
the theorem implies that the sum of two nef divisors is again nef. More generally, any positive
linear combination of nef divisors is nef. Hence, any integral class in Nef(X) is nef. This
concludes the proof.

Proof of Theorem 7.7. One direction being trivial, it suffices to assume that D ·C ≥ 0 for any
integral curve C on X and we need to show that D is nef. Hence for an integral subscheme
Y ⊂ X we need to show

DdimY · Y ≥ 0.

Replacing X by Y , we reduce to the case where X is integral and we need to show Dn ≥ 0,
where dimX = n. By Chows Lemma, there is a projective variety X ′ and a proper birational
morphism π : X ′ → X. By the projection formula, π∗D has non-negative intersection with
any effective curve on X ′. Moreover, Dn = (π∗D)n. Hence, up to replacing X by X ′ we may
assume that X is projective.

Let H be an ample divisor on X and put Dt := D+tH for t ∈ R. Consider the real polynomial

p(t) := Dn
t = Dn +

n−1∑
i=1

(
n

i

)
(H i ·Dn−i) · ti +Hntn.

We need to show that p(0) ≥ 0. Since the leading coefficient Hn > 0 is positive, we know
p(t) → ∞ for t → ∞. If p(t) has no real root, then we are done. We may thus assume that
p(t) has at least one real root and we let t0 be the largest real root of p(t). Hence, p(t0) = 0
and p(t) ≥ 0 for all t ≥ t0. If t0 ≤ 0, we are done and so we may assume that t0 > 0.

To proceed, we claim that Dt is ample for all rational t > t0. By the Nakai–Moshezon
criterion, we need to compute the intersection

DdimY
t · Y

for a closed integral subscheme Y ⊂ X. Let r = dimY , then the above intersection number
computes as follows:

DdimY
t · Y = Dr · Y +

r−1∑
i=1

(
r

i

)
(H i ·Dr−i · Y ) · ti + (Hr · Y ) · tr.

By Proposition 4.11,

DdimY
t · Y = Dt|dimY

Y = D|rY +

r−1∑
i=1

(
r

i

)
(H|iY ·D|r−iY ) · ti + (H|rY ) · tr.

By Lemma 7.4, we have for t > 0 the inequality

DdimY
t · Y ≥ (H|rY ) · tr > 0.

Moreover,
DdimX
t = p(t) > 0 for t ≥ t0.
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Hence, by the Nakai–Moishezon criterion, we find that Dt is ample for all rational t > t0,
meaning that some positive multiple of Dt is an ample Cartier divisor.

We can write
p(t) = q(t) + r(t)

where
q(t) = Dn−1

t D and r(t) = tDn−1
t ·H = tDn−1

t |W
and where we assume wlog that H is very ample and W ⊂ X is a general section of OX(H).
Since t0 > 0, we know by induction that D|W is nef and so Dt|W is ample by Corollary 7.5.
Hence, r(t0) > 0. On the other hand, since Dt is ample for rational t > t0 and D has positive
degree on each curve, we find

q(t) ≥ 0

for all t ≥ t0. Hence,
0 = p(t0) = q(t0) + r(t0) ≥ r(t0) > 0.

This contradiction concludes the proof of the theorem.

7.3 Kleiman’s criterion

Lemma 7.10. Let X be a quasi-projective scheme and let H be an ample divisor on X. For
any Cartier divisor D on X, nH +D is ample for n� 0.

Proof. Since H is ample, there is some integer n0 so that OX(nH +D) is globally generated
for all n ≥ n0. We claim that this implies that nH + D is ample for n ≥ n0 + 1. In other
words, replacing D by n0H +D, we may assume that D is globally generated and we claim
that this implies that H + D is ample. One can deduce this directly from the definition of
ampleness. Indeed, let F be a coherent OX -module. Then

F ⊗OX(nH + nD) = F ⊗O(nH)⊗OX(nD).

for n� 0, F ⊗O(nH) is globally generated and so the above tensor product is globally gen-
erated, because the tensor product of globally generated OX -modules is globally generated.

If X is projective, one can argue alternatively that any globally generated line bundle is nef
(e.g. by Theorem 7.7) and ’ample+nef=ample’ by Corollary 7.5.

Theorem 7.11. Let X be a projective variety over a field.

(a) A Cartier divisor D on X is ample if and only if D · γ > 0 for all nonzero γ ∈ NE(X);

(b) For any ample divisor H on X and any integer N , the set

{γ ∈ NE(X) | H · γ ≤ N}

is compact, hence contains only finitely many classes of irreducible curves.

Proof. To prove (a), let us first assume that D is ample and let γ ∈ NE(X) be nonzeri. Then
there is a sequence of effective rational 1-cycles γi with γi → γ for i→∞. Hence, any ample
divisor A on X satisfies

A · γ = lim
i
A · γi ≥ 0.

In particular, Dγ ≥ 0 and we need to rule out equality in this inequality.

On the other hand, since the intersection pairing is non-degenerate and γ 6= 0, there is a
divisor E on X with E · γ < 0. Then (D + tE) · γ < 0 for all t ≥ 0 above observation then
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shows that D + tE cannot be ample for any t > 0. In other words, nD + E is not ample for
any n� 0. But this contradicts Lemma 7.10. Hence,

D · γ > 0.

Conversely, let us assume that D · γ > 0 for all nonzero γ ∈ NE(X). Choose a norm || · || on
N1(X) and consider the compact set

K := {γ ∈ NE(X) | ||γ|| = 1}.

The divisor D viewed as a functional on N1(X)R is positive on K, hence bounded from below
by a rational number ε > 0. For an ample divisor H on X, the corresponding functional on
K will also be bunded, hence be bounded from above by an integer N � 0. But then the
Q-divisor

D − ε

N
H

is non-negative on K, hence nef by Theorem 7.7. It follows that

D =
ε

N
H + (D − ε

N
H)

is ample, because ’nef+ample=ample’ by Corollary 7.5. This proves (a).

To prove (b), let D1, . . . , Dρ be Cartier divisors on X that form a basis of N1(X)Q. By Lemma
7.10, there is an integer m� 0, so that mH ±Di is ample for all i. Let γ1, . . . , γρ ∈ N1(X)
be the dual basis of D1, . . . , Dρ. Then there is a norm | · | on N1(X), given by

|
∑

aiγi| =
∑
|ai|.

On the other hand, if γ =
∑
aiγi ∈ NE(X), then

0 < γ · (mH ±Di) = mγ ·H ± ai

for all i and so
m · ρ · (H · γ) > |γ|.

But this implies that the closed set

{γ ∈ NE(X) | H · γ ≤ N}

is bounded, hence compact, as it is contained in the intersection of NE(X) with a closed ball
with respect to | · |. This proves part (b), because a compact subset of N1(X)R contains only
finitely many integral points, as those are discrete in N1(X)R. This concludes the proof of
the theorem.

Remark 7.12. By Theorems 7.7 and 7.11, a Cartier divisor is nef (resp. ample) if and onyl
if it is non-negative, (resp. positive) on NE(X) \ {0}. For this reason, it makes sense to talk
about nefness and ampleness of R-linear combinations of Cartier divisors, by asking the same
condition on the image of such a linear combination in N1(X)R. The set of all nef, resp.
ample, classes generate cones

Nef(X) ⊂ N1(X) and Amp(X) ⊂ N1(X).

By Theorems 7.7 and 7.11, Nef(X) is the dual of the closed cone of effective curves NE(X)
and Amp(X) is the interior of Nef(X). In particular, Nef(X) is a closed cone and Amp(X)
is an open cone.
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8 Morphism spaces

8.1 Parametrizing rational curves

Let X ⊂ PNk be a projective variety over a field k. We aim to construct a space Mor(P1, X)

which parametrizes all morphisms f : P1 → X. To begin with, we study the case X = PNk
with N ≥ 1. A morphism f : P1 → PNk is given by a set of homogeneous polynomials
f0, . . . , fN of the same degree d with

f = [f0 : f1 : · · · : fN ]

and where we may assume that f0, . . . , fN have no common zero (in any algebraic closure of
k). Here, two sets of polynomials f0, . . . , fN and f ′0, . . . , f

′
N without common zero define the

same morphism if and only if they differ by a constant factor. Since each degree d polynomial
fi has d+ 1-coefficients, we see that f is uniquely determined by a point

[f ] ∈ P(N+1)(d+1)−1
k .

Moreover,

Mord(P
1
k,P

N
k ) ⊂ P(d+1)(N+1)−1

k

consists of all ordered tuples (f0, . . . , fN ) of polynomials of degree d that have no common
zero in some algebraic closure of k.

Lemma 8.1. The subset
Mord(P

1
k,P

N
k ) ⊂ P(d+1)(N+1)−1

k

is Zariski-open and so it carries a natural structure of a quasi-projective variety. Moreover,
this Zariski open subset can be defined over Z, meaning that its complement can be defined
by polynomials with integral coefficients and so there is a morphism space

Mord(P
1,PN ) ⊂ P(d+1)(N+1)−1

Z

over Z with
Mord(P

1
k,P

N
k ) = Mord(P

1,PN )×Spec Z Spec k.

Proof. By the Nullstellensatz the fi have a common zero in some algebraic closure k of k if
and only if

(u, v)r ⊂ I
for some r ≥ 1. This means that the map

(k[u, v]r−d)
N+1 −→ k[u, v]r, (g0, . . . , gN ) 7→

∑
gifi

is surjective, i.e. has rank r+ 1. This map is linear and defined over k, hence corresponds to
a matrix Ar whose coefficients are linear combinations of the coefficients of the fi. We thus
conclude that f0, . . . , fN have a common zero in k if and only if for all r, all (r + 1)-minors
of Ar vanish. This is a Zariski closed condition and so

Mord(P
1
k,P

N
k ) ⊂ P(d+1)(N+1)−1

k

is Zariski-open, as claimed. Since Uk is the complement of the vanishing locus of universal
polynomials in the coefficients of fi, it follows that

Mord(P
1
k,P

N
k ) ⊂ P(d+1)(N+1)−1

k

is in fact defined over Z, as claimed in the lemma.
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By the above lemma,

Mor(P1
k,P

N
k ) =

⋃
d

Mord(P
1
k,P

N
k )

is an infinite union of quasi-projective varieties, labeled by the degree of the morphism. Here,

Mord(P
1
k,P

N
k ) ⊂ P(d+1)(N+1)−1

k

is a Zariski open subset which can in fact be defined over the integers. Note also that there
is a universal evaluation morphism

ev : P1 ×Mord(P
1,PN ) −→ PN , ([u : v], [f0 : · · · : fN ]) 7→ [f0(u : v) : . . . fN (u : v)].

If X ⊂ PNk is a closed subscheme, cut out by h1, . . . , hm, then

Mord(P
1
k, X) ⊂ Mord(P

1
k,P

N
k )

is cut out by the equations

hj(f0, . . . , fN ) = 0 for all j = 1, . . . ,m.

Hence,

Mor(P1
k, X) =

⋃
d

Mord(P
1
k, X)

is also an infinite union of quasi-projective varieties, labeled by the degree of the morphism.

Since Mord(P1
k,P

N
k ) can be defined over Z, the morphism spaces Mord(P1

k, X) have the fol-
lowing property. If X is defined by equations with coefficients in a subring R of X, then
these equations define a subscheme X ⊂ PNR over R with X ×R Spec k = X. By the above
construction, Mord(P1

k, X) will also be defined over R, meaning that there is a scheme

Mord(P
1,X ) −→ SpecR

over R so that for any morphism Specκ→ SpecR, where κ denotes a field, we have

Mord(P
1, X)×R Specκ ∼= Mord(P

1
κ,X ×R Specκ).

8.2 The general case: Grothendieck’s theorem

Theorem 8.2 (Grothendieck). Let X and Y be varieties over a field k. If X is quasi-
projective and Y is projective, then there is a locally noetherian scheme

Mor(Y,X)

over k which parametrizes morphisms Y → X in the following sense:

(a) there is a universal evaluation morphism

ev : Y ×Mor(Y,X) −→ X.

(b) For any k-scheme T and any morphism of k-schemes

F : T × Y → X,

(which we think of as a family of morphisms Ft : {t} × Y → X parametrized by t ∈
T ), there is a unique k-morphism φ : T → Mor(Y,X) such that the following diagram
commutes

Y × T

id×φ
��

F

&&
Y ×Mor(Y,X) ev

// X.
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Moreover, even though Mor(Y,X) is in general not of finite type over k, the subscheme

MorP (X,Y ) ⊂ Mor(X,Y )

which parametrizes those morphisms f : X → Y whose Hilbert polynomial χ(X, f∗OY (m))
coincides with a given polynomial P (m) is quasi-projective over k (and hence of finite type
over k) and we have Mor(Y,X) =

⋃
P MorP (Y,X) where the union runs through all possible

Hilbert polynomials.

In the language of category theory, the above theorem says that the functor

Mor(Y,X) : {schemes} −→ {sets}

which maps a k-scheme T to the set Homk(T×kY,X) of morphisms of k-schemes T×Y → X,
is representable by a locally noetherian k-scheme Mor(Y,X), meaning that the above functor
is naturally isomorphic to the functor of points Hom(−,Mor(Y,X)) of the scheme Mor(Y,X),
given by

T 7→ Hom(T,Mor(Y,X)).

This means that the above moduli problem has a fine moduli space, which roughly speaking
means that the present situation is as nice as one could possibly hope for.

Example 8.3. If Y = Spec k, then Mor(Y,X) ∼= X and the evaluation morphism Y ×
Mor(Y,X)→ X is the identity.

Example 8.4. If Y = Spec k[x]/x2, then a morphism Y → X is uniquely determined by a
point plus a tangent direction and so at least if X is smooth, Mor(Y,X) is the total space of
the tangent bundle of X.

Example 8.5. Even if X and Y are smooth, the space Mor(Y,X) might be singular and in
fact non-reduced. For instance, if X ⊂ P4

k is the Fermat hypersurface
∑
xdi = 0 of degree

d with k = k of characteristic zero or p > d, then the morphism space Mor1(P1, X) that
parametrizes morphisms P1 → X of degree one (so the image is a line) is nowhere reduced,
see [1, Section 2.16].

8.3 The tangent space to Mor(Y,X)

Note that Theorem 8.2 implies in particular that there is a bijection between the k-rational
points of Mor(Y,X) and the k-morphisms Y → X. In particular, for any morphisms f : Y →
X of k-varieties, we may try to describe the tangent space of Mor(X,Y ) at the k-rational
point [f ] ∈ Mor(Y,X). By definition

TMor(Y,X),[f ] ⊂ Hom(Spec k[x]/x2,Mor(Y,X))

is the k-vector space of homomorphisms Spec(k[ε]/ε2) → Mor(Y,X) that maps the closed
point to [f ]. By Theorem 8.2 the space of such morphisms is in bijection to the set of
morphisms

Y × Spec(k[ε]/ε2) −→ X,

that restrict to f on Y .

Proposition 8.6. Let X and Y be varieties over a field k, with X quasi-projective and Y
projective, and let f : Y → X be a morphism over k. Then there is a natural isomorphism

TMor(Y,X),[f ]
∼= H0(Y,Hom(f∗Ω1

X ,OY )).
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Proof. Assume first that X = SpecA and Y = SpecB are both affine and let f ] : A→ B be
the ring homomorphism that corresponds to f : X → Y . By what we have said above, we
are looking for morphisms

f ]ε : A −→ B[ε]/ε2

of k-algebras that restrict to f ] modulo ε. Hence, for a ∈ A we get

f ]ε (a) = f ](a) + ε · g(a)

and this determines f ]ε uniquely. The equality

f ]ε (aa
′) = f ]ε (a)f ]ε (a

′)

is equivalent to
g(aa′) = f ](a)g(a′) + f ](a′)g(a).

This is saying that g : A→ B is a k-derivative of the A-module f ] : A→ B. Hence, g factors
uniquely through ΩA:

g : A −→ ΩA −→ B.

Altogether, this analysis shows that there is a natural isomorphism

TMor(SpecB,SpecA),[f ]
∼= HomA(ΩA, B) ∼= HomB(ΩA ⊗A B,B).

In general, cover X by affine open subsets Ui = SpecAi and Y by affine open subsets Vi =
SpecBi with f(Vi) ⊂ Ui. As explained above, the tangent space TMor(Y,X),[f ] is naturally
isomorphic to extensions of f to morphisms

fε : Y × Spec(k[ε]/ε2) −→ X.

Such a morphism is determined by its restrictions

fε,i : Vi × Spec k[ε]/ε2 −→ Ui.

As shown above, each fε,i corresponds to a section of

HomBi(ΩAi ⊗Ai Bi, Bi).

These sections need to be compatible on overlaps, and so we conclude that there is a natural
isomorphism

TMor(Y,X),[f ]
∼= H0(Y,Hom(f∗Ω1

X ,OY ))

as claimed. This proves the proposition.

As an immediate consequence, we find the following.

Corollary 8.7. When X is smooth along the image f(Y ), then

TMor(Y,X),[f ]
∼= H0(Y, f∗TX).

Proof. Since X is smooth along f(Y ), we may up to shrinking X assume that X is smooth.
But then

Hom(f∗Ω1
X ,OY )

is isomorphic to the pullback of the tangent bundle of X to Y , and so the corollary follows
from Proposition 8.6.

The above corollary say as a special case that for a smooth projective variety X, the tangent
space to an automorphism f ∈ Aut(X) is given by H0(X, f∗TX). In particular, if the
latter group vanishes (i.e. if there are no global vector fields on X), then X has discrete
automorphism group.
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8.4 Local structure of Mor(Y,X)

We prove now the main result of this section, which allows us to bound the local dimension
of Mor(Y,X) in certain situations.

Theorem 8.8. Let X and Y be projective varieties and let f : Y → X be a morphism so that
X is smooth along f(Y ). Then locally around [f ] ∈ Mor(Y,X), Mor(Y,X) can be defined by
h1(X, f∗TX) equations in a non-singular variety of dimension h0(Y, f∗TX).

The theorem has the following immediate consequence.

Corollary 8.9. In the above situation, any irreducible component of Mor(Y,X) that passes
through the point [f ] has dimension at least h0(Y, f∗TX)− h1(Y, f∗TX).

Before we can prove the above theorem, we need two technical lemmas.

Lemma 8.10. Let k be a field and let R be a finitely generated local k-algebra with maximal
ideal m and residue field k. Let I ⊂ m be an ideal with mI = 0. Let f : Y → X be a morphism
so that X is smooth along f(Y ) and let

fR/I : Y × Spec(R/I) −→ X

be an extension of f . Then the obstruction to extending fR/I to a morphism

fR : Y × SpecR −→ X

lies in H1(Y, f∗TX)⊗k I.

Remark 8.11. An important special case of the above lemma is the case where R = k[ε]/εm

for some m ≥ 2, I = (εm−1) and m = (ε). In this case the lemma says that the obstructions
from extending a deformation of f from Spec k[ε]/εm−1 to Spec k[ε]/εm lies in H1(Y, f∗TX).

Proof of Lemma 8.10. We only sketch the argument, see [1, Lemma 2.7] for more details.

Assume first that X = SpecA and Y = SpecB are affine. Then fR/I is determined by a
k-algebra homomorphism

f ]R/I : A −→ B ⊗k R/I

and the extension fR corresponds to a lift of f ]R/I to a k-algebra homomorphism

f ]R : A −→ B ⊗k R.

Because X is smooth along f and I2 = 0 (because mI = 0), such a lifting exists by the
infinitesimal lifting property, see [2, Exercise II.8.6]. Moreover, by a similar argument as in
the previous proposition, one sees that any two such liftings differ by a k-derivation

g : A −→ B ⊗k I,

hence by an element of HomA(ΩA/k, B ⊗k I). This simplifies to

HomA(ΩA/k, B ⊗k I) ∼= HomB(ΩA/k ⊗A B,B ⊗k I)

∼= H0(Y,Hom(f∗Ω1
X ,OY ))⊗k I

∼= H0(Y, f∗TX)⊗k I.

If X and Y are not affine, then we cover them by affine opens Ui ⊂ X and Vi ⊂ Y with
f(Vi) ⊂ Ui. A global extension of f will be given by a collection of local extensions that agree
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on overlaps. Two different extensions on Vij = Vi ∩ Vj differ by the above argument by an
element of

H0(Vij , f
∗TX |Vij )⊗k I.

From this it follows that a given collection of local extensions gives rise to a Cech 1-cycle and
hence to an element of

H1(Y, f∗TX)⊗k I
which vanishes if and only if the local choices can be made in a compatible way. This proves
the lemma.

Remark 8.12. It seems to me that one does not need all assumptions of the lemma in the
proof. For instance, instead of Im = 0, I2 = 0 seems enough.

Lemma 8.13. Let R be a noetherian local ring with maximal ideal m and let I ⊂ m2 be an
ideal in R. If the canonical projection π : R→ R/I has a section, i.e. a ring homomorphism
s : R/I → R with π ◦ s = id, then I = 0.

Proof. If a, b ∈ R, then π(s(π(a))) = π(a) and π(s(π(b))) = π(b). This implies

s(π(a)) = a+ a′ and s(π(b)) = b+ b′

for some a′, b′ ∈ I. Let us from now on assume that a, b ∈ m. Then

s(π(ab)) = s(π(a)) · s(π(b)) = ab+ a′b+ ab′ + a′b′ ∈ ab+ mI + I2.

Since I ⊂ m2, this implies that we have for any x ∈ I,

0 = s(π(x)) ∈ x+ mI.

Hence, x ∈ mI and so I ⊂ mI, which implies I = 0 by Nakayama’s lemma. This concludes
the proof.

Proof of Theorem 8.8. Locally around [f ], Mor(Y,X) is defined by finitely many polynomials
g1, . . . , gr in some affine space ANk over k, so that [f ] correponds to the origin in ANk . The tan-

gent space of Mor(Y,X) at [f ] is then cut out by the partial derivatives ∂gi
∂xj

. By Theorem 8.2,

this tangent space has dimension h0(Y, f∗TX). This implies that r ≥ r′ := N − h0(Y, f∗TX)
and up to renumeration, we may assume that the Jacobi matrix of g1, . . . , gr′ has full rank.
Hence, Mor(Y,X) is locally cut out from V := {g1 = · · · = gr′}, which is locally around the
origin smooth of dimension h0(Y, f∗TX) by r − r′ polynomials. Up to shrinking V , we may
assume that V is smooth of dimension h0(Y, f∗TX) and we know that Mor(Y,X) is locally
around [f ] a subscheme of V . We need to show that this subscheme is cut out by at most
h1(X, f∗TX) equations. For this it is enough to show that in the regular local

R := OV,[f ],

the ideal I that locally defines Mor(Y,X) can be generated by h1(X, f∗TX) elements. Let
m ⊂ R be the maximal ideal. Since the Zariski tangent spaces of V and Mor(Y,X) at [f ]
coincide, we have

m/m2 = m/m2 ⊗R/I
and so

I ⊂ m2.

Moreover, by Nakayama’s lemma, it is enough to show that the k-vector space

I/mI
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has dimension at most h1(X, f∗TX).

The canonical morphism
Spec(R/I) −→ Mor(Y,X)

corresponds to a morphism
fR/I : Y × Spec(R/I) −→ X

that extends f : Y → X.

Since I ⊂ m2, the obstruction to extend fR/I to a morphism

fR/mI : Y × Spec(R/mI) −→ X

is by Lemma 8.10 given by an element in

H1(Y, f∗TX)⊗k (I/mI),

and so we can write this element as
h1∑
i=1

ai ⊗ bi

where a1, . . . , ah1 form a basis of H1(Y, f∗TX) and b1, . . . , bh1 are elements in I. Hence, up
to moding out the elements b1, . . . , bh1 , the above extension problem is solvable and so

Spec(R/I) −→ Mor(Y,X)

lifts to a morphism

Spec(R/(mI + (b1, . . . , bh1))) −→ Mor(Y,X).

Since Spec(R/I) −→ Mor(Y,X) is a local isomorphism, we find that the identity R/I → R/I
factors as

R/I −→ R/(mI + (b1, . . . , bh1))
π−→ R/I,

where π is the canonical projection. By Lemma 8.13,

I = mI + (b1, . . . , bh1)

and so I/mI can be generated by b1, . . . , bh1 , as we want. This concludes the proof.

8.5 Morphisms with fixed points

Fix a subscheme B of Y and a morphism g : B −→ X. To study those morphisms Y → X
that agree with g on B, we need to consider the restriction morphism

ρ : Mor(Y,X) −→ Mor(B,X)

and we denote by
Mor(Y,X; g)

the fibre of this morphism above the point [g]. If f : Y → X is such that X is smooth along
f(Y ), the tangent map of ρ is given by

dρ : H0(Y, f∗TX) −→ H0(B, g∗TX)

and so the tangent space of Mor(Y,X; g) at [f ] is the kernel of the above map, which is
nothing but

H0(Y, f∗TX ⊗ IB).

More generally, we have the following extension of Theorem 8.8.

Theorem 8.14. Let X and Y be projective varieties, let B ⊂ Y be a closed subscheme and
let g : B → X be a morphism. Let further f : Y → X be a morphism with f |B = g and so that
X is smooth along f(Y ). Then locally around [f ] ∈ Mor(Y,X; g), Mor(Y,X; g) can be defined
by h1(X, f∗TX ⊗ IB) equations in a non-singular variety of dimension h0(Y, f∗TX ⊗ IB).
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8.6 Morphisms from a curve

If Y = C is a smooth projective curve and B is finite, then for any f : C → X, we have by
Riemann–Roch:

dim[f ] Mor(C,X) ≥ χ(C, f∗TX) = −KX · f∗C + (1− g(C)) dimX

and

dim[f ] Mor(C,X; f |B) ≥ χ(C, f∗TX)− length(B) dimX

≥ −KX · C + (1− g(C)− length(B)) · dimX.

If B = {c} is a single reduced k-rational point of C, then this simplifies to:

dim[f ] Mor(C,X; f |{c}) ≥ −KX · C − g(C) · dimX. (3)

9 Bend and break lemmas

From now on, the ground field k will always be algebraically closed and our main reference
for the rest of the class will be [3].

Lemma 9.1 (Bend & Break I). Let X be a projective variety, C a smooth projective curve,
c0 ∈ C a point and f : C → X a morphism. Assume that there is an affine curve T , t0 ∈ T
a point and a morphism

F : C × T −→ X

with

• F ({c0} × T ) is a point on X;

• F |C×{t0} = f ;

• for t ∈ T general, F |C×{t} is different from f .

Then there is a morphism f ′ : C → X and an effective nontrivial cycle Z =
∑
aiRi of

rational curves Ri on X with f(c) ∈ Z and such that

f∗C ∼num f ′∗C + Z.

In particular, X contains a rational curve through the point f(c) ∈ X.

Remark 9.2. The assumptions of the lemma are satisfied if

dim[f ] Mor(C,X; f |{c}) ≥ 1.

If X is smooth along f(C), then, by (3), this holds if

−KX · f∗C > g(C) · dimX.

Proof of Lemma 9.1. Replacing T by its normalization, we may w.l.o.g. assume that T is
smooth. Let T ′ be a smooth projective compactification of T . Then the morphism F induces
a rational map

F ′ : C × T ′ 99K X.
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Note that S := C × T ′ is a smooth surface and so F ′ is defined away from possibly finitely
many points.

We claim that F ′ is undefined somewhere along {c}×T ′. If not, then there is a neighbourhood
U ⊂ C of c such that F ′ is defined on U × T ′. By assumption, F ′ contracts one fibre of

pr1 : U × T ′ → U

and so it contracts any fibre of pr1 by the rigidity lemma. Hence, for all c ∈ U :

F ′(c, t) = F ′(c, t0) = f(c),

which contradicts the assumption that for t ∈ T general, F |C×{t} is different from f .

We have thus shown that if τ : S′ → S = C × T ′ is a sequence of blow-ups along points so
that F induces a morphism

F ′ : S′ → X,

then τ is not an isomorphism locally around {c}×{t} for at least one t ∈ T ′. Hence the fibre
of π : S′ → T ′ above t is given by the union of C and a cycle of rational curves R.

Let f ′ : C → X be the morphism induced by the restriction of F ′ to C × {t}. Since
algebraically equivalent 1-cycles are numerically equivalent (or more precisely because Euler
characteristics are constant in flat families and S′ → T ′ is automatically flat),

f∗C ∼num f ′∗C + F ′∗R

where Z = F ′∗R is a cycle of rational curves on X which passes through f(c) (because if it
would not pass through f(c), then by the rigidity lemma, F ′ would be defined locally around
{c} × {t}). This proves the lemma.

The above bend and break Lemma allows us to produce rational curves, but a priori the
degree of these curves cannot be controlled. The following lemma allows to break up also
rational curves into cycles of rational curves with lower degree.

Lemma 9.3 (Bend & Break II). Let X be a projective variety and let f : P1 → X be
a nonconstant morphism. Assume that there is an affine curve T , a point t0 ∈ T and a
morphism F : P1 × T −→ X such that

• F contracts {0} × T and {∞} × T to points on X;

• F |P1×{t0} = f ;

• F is generically finite, i.e. F (P1 × T ) is a surface.

Then the 1-cycle f∗R is algebraically (hence numerically) equivalent to a 1-cycle Z that passes
through f(0) and f(∞) and such that either Z is a reducible 1-cycle of rational curves or a
multiple rational curve (i.e. one of the form aZ ′ with a ≥ 2).

Remark 9.4. Since the automorphism group of P1 that fixes two points is one-dimensional,
the assumptions of the lemma are satisfied if

dim[f ](Mor(P1, X; f |{0,∞})) ≥ 2.

If X is smooth along f(C), then by Section 8.6 the assumptions of the lemma are satisfied if

−KX · f∗P1 ≥ dimX + 2.
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Proof of Lemma 9.3. Replacing T by its normalization, we may w.l.o.g. assume that T is
smooth. Let T ′ be a smooth projective compactification of T . Let S → T ′ be a P1-bundle
which compactifies P1 × T and consider the rational map

F ′ : S 99K X

that is induced by F . Let τ : S′ → S be a sequence of blow-ups along points so that F ′

induces a morphism
F ′′ : S′ −→ X.

We may assume that the compactification S is chosen in such a way that the number r of
blow-ups of τ is minimal with the property that F ′′ is a morphism.

The fibres of the morphism
π : S′ −→ T ′

induced by pr2 : S → T ′ are trees of rational curves and so there pushforwards to X are
algebraically (hence numerically) equivalent 1-cycles whose components are rational curves.
Note that π admits two sections T ′0 and T ′∞, given by the closure of {0} × T and {∞} × T ,
respectively. These sections are contracted via F ′ to f(0) and f(∞), respectively. Hence, we
conclude that

F ′∗π
−1(t)

is a 1-cycle on X that passes through f(0) and f(∞) and such that each of its components is
rational. To prove the lemma, we need to show that for some t ∈ T ′, F ′∗π−1(t) is not integral.

For a contradiction, we assume that this is false, i.e. F ′∗π
−1(t) is integral for all t ∈ T ′. This

implies that for any t ∈ T ′, exactly one component R of π−1(t) is not contracted by F ′′.
Moreover, this component R must be a reduced component of π−1(t). We aim to arrive at a
contradiction from this assumption. We will do so by induction on the number r of blow-ups
in τ needed to resolve F ′.

If r = 0, then F ′ : S → X is a morphism which contracts two different sections T ′0, T
′
∞ ⊂ S

of the P1-bundle S → T ′, given as extensions of {0} × T and {∞} × T , respectively. This
implies that the pushforward map

F ′∗ : N1(S) −→ N1(X)

contracts the two sections T ′0, T
′
∞ ⊂ S. Since ρ(S′) = 2 and F ′ is generically finite, it follows

that T ′0 and T ′∞ must be numerically proportional to each other:

T ′0 ∼num λT ′∞

for some λ ≥ 0 (λ cannot be negative, because S is ample and we can intersect with an ample
divisor). Hence,

T ′0 · T ′0 = λT ′0 · T ′∞ ≥ 0.

On the other hand, since F ′ : S → X is generically finite onto its image, the Stein factorization
induces a birational map that contracts C0 and so one of our exercises implies that C2

0 < 0,
which is a contradiction, as we want.

Let now r > 0 and let
S′ = Sr → Sr−1 → · · · → S1 → S0 = S

be the sequence of blow-ups given by τ . Then S1 is the blow-up of S = P1timesT ′ in a single
point (c, t). This implies that the fibre of π1 : S1 → T ′ above t has two components

π−1
1 (t) = R0 ∪R1
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where Ri ∼= P1 has self-intersection −1 for each i = 0, 1 and where R0 and R1 meet in a
single point Q. Here R0 denotes the proper transform of P1 × {t} ⊂ S and R1 denotes the
exceptional divisor of the blow-up S1 → S.

Consider the natural map τ1 : S′ → S1. Since the number of blow-ups r is minimal, the
rigidity lemma implies that at least one component of τ−1

1 (R1) is not contracted by F ′. Since

F ′ contracts all but one components of π−1(t) = τ−1
1 (R0∪R1), it follows by the same argument

that the rational map S1 99K X is defined along R0 \ {Q} and so τ1 is an isomorphism above
R0 \ {Q}. We claim that S1 99K X is also defined at Q. If not, then τ : S → S1 blows up
Q and the unique component of π−1(t) = τ−1

1 (R0 ∪ R1) that is not contracted by F ′′ lies in
τ−1(Q). But Q is a point of multiplicity two in R0 ∪ R1 and so any component of τ−1(Q)
has multiplicity at least two, which contradicts our assumptions.

Hence, S1 99K X is defined locally at the −1-curve R0. Since r ≥ 1 and r is minimal, at
least one component of τ−1

1 (R1) is not contracted by F ′′ and so R0 must be contracted by
F ′′. Since S1 99K X is defined locally at the −1-curve R0, τ1 : S → S1 is an isomorphism
locally around R0 and it follows that F ′′ descends to a morphism on the blow-down of the
(−1)-curve R0 ⊂ S. This concludes the proof by the number of blow-ups r.

10 Fano varieties are uniruled

Definition 10.1. A smooth projective variety X is Fano if −KX is ample.

Example 10.2. By the adjunction formula, a smooth projective hypersurface Xd ⊂ Pn+1 of
degree d satisfies

KXd
= OPn+1(−n− 2 + d)|X .

Hence, Xd is Fano if d ≤ n+ 1.

Theorem 10.3. Let X be a smooth projective variety that is Fano, i.e. −KX is ample. Then
X contains a rational curve. In fact, through every point x ∈ X there is a rational curve
C ⊂ X with

0 < C · (−KX) ≤ dimX + 1.

Remark 10.4. In the example of X = Pn, the above theorem produces a line through each
point, because −KX = O(n+1). This shows in particular that the upper bound on C · (−KX)
in the theorem is sharp.

Remark 10.5. Th above theorem can be sharpened significantly, showing that in fact through
any two general points x, y ∈ X, there is a chain of rational curves that joins x with y.

The space of morphisms from P1 to X of bounded degree is quasi-projective. The above
theorem therefore shows that there must be a morphism f : P1 → X whose deformations
sweep out an open subset of X. In other words, there is a quasi-projective variety T of
dimension dimX − 1 and a dominant rational map P1 × T 99K X. This proves:

Corollary 10.6. Smooth porjective Fano varieties are uniruled.

Before we prove the theorem, we need the following auxiliary result.

Lemma 10.7. Let R be a finitely generated integral Z-algebra. Then

(a) for any maximal ideal m ⊂ R, R/m is a finite field;

(b) the closed points of SpecR are dense.
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Proof. For (a), note that Z∩m must be a prime ideal of Z. We claim that it must in fact be
maximal. To see this, assume for a contradiction that Z ∩ m = 0. Then the field R/m is a
finitely generated Q-algebra, hence a finite field extension of Q. Let e1, . . . , en be a Q-basis of
R/m and let x1, . . . , xm ∈ R/m be elements that generate R/m as a Z-algebra. Then there
is an integer N � 0 such that Nxj ∈

⊕
Z · ei. Hence,⊕

Q · ei = R/m ⊂
⊕

Z[1/N ] · ei,

which is absurd. Hence, R/m is a field extension of the finite field F = Z/(m∩Z). Since R/m
is finitely generated over Z, this implies that it must be a finite extension of F, hence a finite
field. (This follows from the general fact that if k ⊂ K is a field extension such that K is
a finitely generated k-algebra, then K/k is algebraic, hence a finite extension.) This proves
(a).

To prove (b), we need to show that for any nonzero element a ∈ R the open subset SpecRa ⊂
SpecR contains a closed point of SpecR. In other words, there is a maximal ideal of R that
does not contain a. To see this, let n be a maximal ideal of the localization Ra. Since Ra is
still integral and finitely generated over R, we know by part (a) that Ra/n is finite. Consider
the natural ring map φ : R→ Ra and consider the prime ideal

m := φ−1(n) ⊂ R.

Then R/m is a subring of Ra/n. Hence, R/m is finite and so it must be a field. That is,
m ⊂ R is a maximal ideal that does not contain a, as we want. This proves the lemma.

Proof of Theorem 10.3. Let x ∈ X. We aim to find a rational curve on X through x. The
idea is to start with a smooth projective curve C of possible large genus and with a morphism
f : C → X with x ∈ f(C). By the first bend and break lemma, in order to find a rational
curve through x we need to ensure that

−KX · f∗C > g(C) · dimX.

Our assumption implies that −KX is ample and so the rleft hand side will be positive, but
in general it seems hard to make that intersection number large compared to the genus of C.
For instance, if we let C be a general complete intersection curve, then −KX · f∗C becomes
bigger if we intersect more positive hyperplanes, but this will also make the genus of the
resulting curve much larger, and so this strategy does not work.

Main Idea. If C admits an endomorphism φ : C → C of degree at least two, then replacing
f by f ◦ φm the right hand side of the above inequality is independent of m, while the left
hand side satisfies

−KX · (f ◦ φm)∗C = −KX · (deg(φm)) · f∗C = (deg φ)m · (−KX) · f∗C.

Since (−KX) · f∗C is positive, as X is Fano, the above quantity becomes arbitrary positive
for m� 0, as long as deg φ ≥ 2.

The above approach works for instance if C is an elliptic curve. But if g(C) ≥ 2 and k is of
characteristic zero, then the Hurwitz formula shows that C cannot admit any endomorphism
of degree at least two.

However, there is a situation where such endomorphisms always exist: over (algebraic closures
of) finite fields.

Case 1. k = Fp is the algebraic closure of Fp for some prime p.

In this case f : C → X is defined over a finite field with q = pm elements. Explicitly, this
means that C ⊂ PNk , X ⊂ PN

′
k and f are all defined over Fq. Since the Frobenius morphism

k −→ k, x 7→ xq
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fixes the subfield Fq ⊂ k, it thus defines an endomorphism

φ : C −→ C

of degree q, which is given by restriction of the endomorphism of PN given by

[x0 : x1 : · · · : xN ] 7→ [xq0 : xq1 : · · · : xqN ].

(Note that this is an endomorphism of PN over Fq and not over k, as it does not commute
with the identity on Spec k.) Replacing f : C → X by f ◦ φm for some m � 0, we may
assume that

−KX · f∗C > g(C) · dimX

and so there is a rational curve on X through x by Lemma 9.1 and Remark 9.2.

To prove the theorem, we need to bound the degree of the rational curve. To this end, we
may to begin with assume that f : C = P1 −→ X is a non-constant morphism with x ∈ f(C).
Assume that −KX · f∗C is minimal among all such morphisms. We need to show that

−KX · f∗C ≤ dimX + 1.

For a contradiction, assume that −KX · f∗C ≥ dimX + 2. Then Lemma 9.3 and Remark
9.4 show that f∗C can be replaced by a rational curve through x whose intersection number
with the ample divisor −KX must be smaller than −KX ·f∗C, which is a contradiction. This
concludes the Theorem in the case where k is the algebraic closure of a finite field.

Case 2. k is an arbitrary algebraically closed field.

The general case of arbitrary ground field k (possibly of characteristic zero or not algebraic
over its prime field) follows by a reduction to finite fields, as follows.

Since −KX is ample, there is some positive integer m such that | − mKX | is very ample
and induces an embedding X ⊂ PNk There is a finitely generated Z-algebra R such that the

polynomials that cut out X ⊂ PNk as well as the k-point x ∈ X are all defined over R. That

is, there is a projective scheme X ⊂ PNT over T = SpecR with structure morphism

π : X → T := SpecR

such that the generic fibre X × FracR becomes isomorphic to X after extension of scalars
from FracR to k. Up to shrinking the affine scheme T = SpecR, we may assume that π is
flat, and in fact smooth because X is smooth. Since ampleness is an open condition, we may
also assume that

−KXt = −KX |Xt

restricts to an ample line bundle on Xt for all t ∈ T . That is, all fibres of π are smooth
projective Fano varieties.

For any maximal ideal m ⊂ R, the residue field R/m is a finite field by Lemma 10.7. Hence,
for any closed point t ∈ T , the fibre Xt is a smooth Fano variety with a distinguished point xt
over a finite field F. By what we have proven in Case 1, Xt contains a raitonal curve through
xt whose degree with respect to H = −mKX is bounded from above by the constant

d := m(dimX + 1)

which does not depend on the point t ∈ T . Let Mor≤d(P1,X ) be the space of morphisms
P1
R → X over R of degree at most d. By construction of this space in Section 8.1, we know

that Mor≤d(P1,X ) is a quasi-projective scheme over T = SpecR and for any maximal ideal
m,

Mor≤d(P
1,X )× SpecR/m ∼= Mor≤d(P

1,X ×R/m).
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The same compatibility holds for morphisms from P1 to X that pass through the given
R-point x of X :

Mor≤d(P
1,X ; 0 7→ x)× SpecR/m ∼= Mor≤d(P

1,X ×R/m; 0 7→ x).

By Case 1, the image of the structure morphism

π : Mor≤d(P
1,X ; 0 7→ x) −→ T = SpecR

contains all closed points. Since R is finitely generated over Z, all closed points of the affine
scheme R are dense in T , see Lemma 10.7. Since Mor≤d(P1,X ; 0 7→ x) is quasi-projective over
T = SpecR, the image of the structure morphism π is constructible (see [2, Exercise II.3.19]).
As it contains all closed points, it is in fact dense and so it contains the generic poiont (see [2,
Exercise II.3.18(b)]). This shows that X admits a rational curve R ⊂ X through x of degree

R · (−mKX) ≤ d = m(dimX + 1).

Hence, −R ·KX ≤ dimX + 1, as we want. This concludes the proof of the theorem.

11 Rational curves on varieties whose canonical class is not
nef

The goal of this section is to weaken the assumptions in Theorem 10.3, by asking only that
KX · f∗C is negative, and not that −KX is ample. The result (again due to Mori), is as
follows.

Theorem 11.1. Let X be a smooth projective variety and let H be an ample divisor on X.
Assume that there is an irreducible curve C ′ ⊂ X such that −C ′ ·KX > 0. Then there is a
rational curve E ⊂ X such that

dimX + 1 ≥ −(E ·KX) > 0 and
−E ·KX

E ·H
≥ −C

′ ·KX

C ′ ·H
.

Proof of Theorem 11.1.

Step 1. Reduction to the case where k = Fp is the algebraic closure of Fp.

Assume in this step that the theorem is proven over Fp and let k be an arbitrary algebraically
closed field. Let R ⊂ k be a finitely generated Z-algebra such that X and C admit models
X → T := SpecR and C′ ⊂ X over R (that is, X ∼= X×Rk and C ′ = C′×Rk). Up to localizing
R, we may assume that X is smooth over T = SpecR, C′ is flat over T . Up to shrinking
T further, we may also assume that H extends to a Cartier divisor H on X . Replacing H
by some multiple, we may assume that H is very ample. Shrinking T if necessary, we may
assume that a basis of H0(X,OX(H)) extends to H0(X ,H). Since H is very ample, the full
linear system |H| yields an embedding X ↪→ PNk . Since the linear series |H| extends over T ,
we get a rational map

φ : X 99K PNR
over T = SpecR which is a morphism and in fact an embedding on the generic fibre. The
locus where φ is not defined is Zariski closed and so it maps to a proper closed subset of T .
hence, up to shrinking T we may assume that φ is a morphism over R:

φ : X −→ PNR .

Since φ is an embedding when restricted to the generic point of T = SpecR, it must be an
embedding when restricted to an open subset of T . Hence, up to shrinking T , we may assume
that Ht is very ample for all t ∈ T .

50



Since intersection numbers are constant in flat families (because Euler characteristics are),
we find that KXt = KX |Xt satisfies

−KXt · C ′t = −KX · C ′

for all t ∈ T . For the same reason,

Ht · C ′t = H · C ′

for all t ∈ T .

By Lemma 10.7, the residue field of any closed point of T is a finite field. By assumptions,
we thus know that for each closed point t ∈ T , there is a rational curve Et ⊂ Xt with

Et ·Ht ≤
−(Et ·KXt) · (C ′t ·Ht)

−C ′t ·KXt

= −(Et ·KXt) ·
C ′ ·H
−C ′ ·KX

and
dimX + 1 = dimXt + 1 ≥ −(Et ·KXt) > 0.

Hence, the degree of Et with respect to the very ample divisor Ht:

Et ·Ht ≤ (dimX + 1) · C ′ ·H
−C ′ ·KX

is bounded from above and this upper bound does not depend on t. As in the proof of
Theorem 10.3, this implies that there must be a component of

Mor≤d(P
1
R,X )

such that the universal evaluation map

ev : P1 × T −→ X

has the property that for infinitely many closed points t ∈ T , the restriction

evt : P1 × {t} −→ Xt

of ev to the fibre above t ∈ T is nothing but the normalization of the rational curve Et ⊂ Xt.

Let
E ⊂ X

be the image of the base change of ev to Spec k:

ev × Spec k : P1 × Spec k −→ X.

Then
E ·H = Et ·Ht and E ·KX = Et ·KXt

for a Zariski dense set of t ∈ T and so

dimX + 1 ≥ −(E ·KX) > 0 and
−E ·KX

E ·H
≥ −C

′ ·KX

C ′ ·H
,

because the assumption in Step 1 implies that the corresponding result holds for the fibres
above a dense set of closed points t ∈ T . This concludes step 1.

Step 2. The case where k = Fp.
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Let f : C → X be the composition of the normalization C → C ′ and the inclusion C ′ ↪→ X.
Since k = Fp, C is defined over some finite field Fq with q = ps. That is, there is a smooth
projective curve CFq over Fq with CFq ×Fq k = C. Let F : CFq → CFq be the Frobenius
morphism, which is an endomorphism of degree q over Fq and let

φ := F × id : C = CFq ×Fq k −→ C = CFq ×Fq k

be the base change of F , which is an endomorphism over k of degree q. Let further

f0
m := f ◦ φm : C −→ X.

Then
(f0
m)∗C = qm · f∗C

and so
−(f0

m)∗C ·KX − g(C) · dimX > 0

for large m. By Bend and Break I, we conclude that

qm · f∗C = (f0
m)∗C ∼num (f1

m)∗C + Z1
m,

where Z1
m is a nontrivial sum of rational curves and f1

m : C → X is some morphism. If

−(f1
m)∗C ·KX − g(C) · dimX > 0

then we can apply Bend and Break I again (without composing with the Frobenius) and
decompose (f1

m)∗C further. We do this and repeat the process. In each step, the intersection
number (f1

m)∗C ·H goes down and so the process must terminate. This implies that in the
above decomposition, we may assume that

−(f1
m)∗C ·KX ≤ g(C) · dimX.

Applying Bend and Break II to each irreducible component of Z1
m, we may also assume that

each irreducible component E of Z1
m satisfies

−E ·KX ≤ dimX + 1. (4)

For simplicity of notation, let

a := −(f1
m)∗C ·KX , b := −Z1

m ·KX , c := (f1
m)∗C ·H and d := Z1

m ·H.

We also write

M :=
−C ′ ·KX

C ′ ·H
and get

M =
−(f0

m)∗C ·KX

(f0
m)∗C ·H

=
a+ b

c+ d
,

because the factor qm cancels in the fraction.

For large m, a+ b = −qm · f∗C ·KX and c+ d = qm · f∗C ·H are large. On the other hand,
a ≤ g(C) · dimX is bounded, so that b must be large.

We will use the following lemma.

Lemma 11.2. Let a, b, c and d be integers such that c, d > 0. Then

a+ b

c+ d
≤ max

(a
b
,
c

d

)
.
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Proof. Exercise.

With the above lemma, we can prove the following.

Claim. For any ε > 0, if m� 0, then there is an irreducible component E of Z1
m such that

−E ·KX

E ·H
> M − ε.

Proof. If a/c < M , then b/d ≥M by Lemma 11.2 and so E exists by another application of
Lemma 11.2. For large m, a ≤ g(C) · dimX is bounded, hence if c gets large, we are done
by the above case. We may thus assume that c remains bounded and we deduce that d gets
large because c + d = qm · f∗C ·H is large for large m. Hence, for large m, a and c remain
bounded, while b and d get large. For m� 0, this implies that

b

d
≈ b

d+ d
≈ a+ b

c+ d
= M.

Hence, for large m,
b

d
>
a+ b

c+ d
− ε = M − ε.

The claim then follows from Lemma 11.2.

For sufficiently small ε, let E be the rational curve on X from the above claim. By (4), we
know that −E ·KX ≤ dimX + 1. On the other hand, M is positive and so for small ε, M − ε
is also positive. This implies that −E ·KX is positive and so

0 < −E ·KX ≤ dimX + 1.

Since
−E ·KX

E ·H
> M − ε,

while −E ·KX is bounded, E ·H must also be bounded. But then for sufficiently small ε, it
follows that we can actually omit ε in the above estimate and deduce

−E ·KX

E ·H
≥M =

−C ′ ·KX

C ′ ·H
.

This concludes the proof of Theorem 11.1.

12 Mori’s cone theorem

Theorem 12.1. Let X be a smooth projective variety over an algebraically closed field k.
Then:

(a) There are countably many rational curves Ci ⊂ X, i ∈ I such that 0 < −KX · Ci ≤
dimX + 1 and

NE(X) = NE(X)KX≥0 +
∑
i∈I

[Ci] · R≥0.

(b) For any ε > 0 and any ample divisor H,

NE(X) = NE(X)KX+εH≥0 +
∑
i∈I′

[Ci] · R≥0,

where the sum runs over a finite subset I ′ ⊂ I.
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Proof. Let us first prove part (a). For this, note that Mor(P1, X) contains only countably
many irreducible components and raitonal curves parametrized by the same component are
numerically equivalent. Hence, X contains only finitely many rational curves up to numerical
equivalence. In each numerical equivalence class γ ∈ N1(X) with 0 < −KXα ≤ dimX + 1
we then pick (if possible) a rational curve Ci. This leads to a countable index set i ∈ I and
we define W ⊂ N1(X)R to be the closure of

NE(X)KX≥0 +
∑
i∈I

[Ci]R≥0.

Step 1. Here we prove that W = NE(X).

For the contrary, assume that the natural inclusion W ⊂ NE(X) is strict. Then there is
a divisor D on X whose associated linear funcitonal on N1(X)R is positive in W \ {0} but
negative somewhere on NE(X). Let H be an ample divisor on X and let µ > 0 be the
largest (real) number such that H + µD is nef. Choose a nonzero element z ∈ NE(X) with
(H + µD) · z = 0. Then D · z < 0, because H · z > 0 by Kleiman’s criterion. Moreover,
KX · z < 0 because NE(X)KX≥0 ⊂W .

By definition, there is a sequence of effective 1-cycles Zk =
∑
akjZkj with

Zk
k→∞−→ z,

where the limit happens inside N1(X)R.

For any rational number µ′ < µ, the Q-divisor H + µ′D is ample on X. By Lemma 11.2, we
may up to relabelling assume that

−KX · Zk0

(H + µ′D) · Zk0
≥ −KX · Zk

(H + µ′D) · Zk
.

Applying Theorem 11.1 to the curve Zk0 and the ample divisor H + µ′D, we find that there
is a rational curve Ek ⊂ X with

0 < −KX · Ek ≤ dimX + 1

and
−KX · Ek

(H + µ′D) · Ek
≥ −KX · Zk0

(H + µ′D) · Zk0
≥ −KX · Zk

(H + µ′D) · Zk
.

Since Ek is a rational curve with 0 < −KX ·Ek ≤ dimX+1, it must be numerically equivalent
to one of the Ci’s and so D · Ek > 0. Hence, for all 0 < µ′ < µ, we have

−KX · Ek
H · Ek

≥ −KX · Ek
(H + µ′D) · Ek

≥ −KX · Zk
(H + µ′D) · Zk

.

For k →∞, we thus find

lim inf
k→∞

−KX · Ek
H · Ek

≥ −KX · z
(H + µ′D) · z

Note that
−KX · Zk −→ −KX · z > 0

and
(H + µD) · Zk −→ (H + µD) · z = 0.
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Hence, for µ′ sufficiently close to µ, the fraction

−KX · z
(H + µ′D) · z

becomes arbitrary large and so the limit

lim inf
k→∞

−KX · Ek
H · Ek

becomes arbitrarily large. On the other hand, there is a positive constant c � 0 such that
KX + cH is ample on X. Then

(KX + cH) · Ek > 0

and so

c >
−KX · Ek
H · Ek

for all k, which contradicts the above observation that for µ′ very close to µ, the above right
hand side gets arbitrarily large for k →∞. This concludes Step 1.

Step 2. Part (b) of the theorem holds.

Let ε > 0. If (KX + εH)Ci < 0, then

H · Ci ≤
−KX · Ci

ε
≤ dimX + 1

ε
.

By Theorem 7.11, there are only finitely many such curves Ci up to numerical equivalence,
and so part (b) of the theorem follows from Step 1.

Step 3. Part (a) of the theorem holds.

The only missing ingredient is that

NE(X)KX≥0 +
∑
i∈I

[Ci]R≥0.

is closed. This is clear if I is finite (e.g. it was clear in the proof of part (b) above), but in
general one has to argue a bit. However, by (b) we know that the accumulation points of the
rays [Ci]R≥0 with i ∈ I are only at KX = 0 and it is a formal consequence of this that the
above expression is indeed closed.

Let C ⊂ Rn be a closed cone. Recall from Definition 6.7 that an extremal face F ⊂ C is a
subcone of C that lies in the boundary of C and that is obtained from C by intersecting it
with a hyperplane in Rn. An extremal face is called a ray if it is one-dimensional.

The cone theorem gives us control on the KX -negative part of NE(X). In particular, it
shows that any KX -negative ray R ⊂ NE(X) is generated by an actual curve, and in fact by
a rational curve. The key observation will be that these rays correspond to contractions of
X in the following sense.

Definition 12.2. Let X be a projective variety and let F ⊂ NE(X) be an extremal face.
A morphism contF : X → Z to a projective variety Z is called the contraction of F if the
following holds:

• contF has connected fibres, i.e. (contF )∗OX = OZ ;

• a curve C ⊂ X is contracted by contF , i.e. (contF )∗C = 0, if and only if [C] ∈ F .
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Recall from Theorem 6.9 that the contraction of F is unique up to isomorphism if it exists.
Moreover, any morphism with connected fibres π : X → Z is the contraction of some extremal
face, denoted by NE(π) in Theorem 6.9.

Lemma 12.3. Let X be a normal projective variety and let R ⊂ NE(X) be an extremal
ray. Assume that X is Q-factorial, i.e. some positive multiple of any Weil divisor is Cartier.
Assume that the contraction of R exists: f := contR : X → Z. Then one of the following
holds:

• f is birational and Exc(f) is an irreducible divisor (we say that f is divisorial contrac-
tion);

• f is birational and Exc(f) is of codimension at least two (we say that f is a small
contraction);

• dimZ < dimX (we say that f is of fibre type).

Proof. The only assertion that has to be proven is the claim that Exc(f) is irreducible in the
case where it contains a divisor. Assume that Exc(f) contains a divisor E ⊂ Exc(f). Let
H ⊂ Y be a general hyperplane section that contains π(E). Since π(E) ⊂ Y is irreducible
of codimension at least two, the hyperplane H exists and is irreducible. Let H ′ ⊂ X be the
proper transform of H. Then H ′ meets the fibre π−1(y) over any point y ∈ π(E) nontrivially.
On the other hand, H ′ cannot contain the fibre π−1(y) completely for all y ∈ π(E) because
this would imply E ⊂ π−1π(E) ⊂ H ′ which is impossible because E is a divisor and H ′

is irreducible and different from E (as it maps to H via π). We have thus seen that for
y ∈ π(E) general, the fibre π−1(y) meets H ′ but is not contained in H ′. Since π−1(y) is
connected and X is projective, we can find a curve C ⊂ π−1(y) that meets H ′ nontrivially
but is not contained completely in H ′. Note that C is contracted via π to the point y and so
R = [C]R≥0. Since H is a hyperplane section of Y , it is Cartier and so we may consider the
pullback

π∗H = H ′ +
∑

aiEi

where Ei ⊂ Exc(π) are some divisors on X that are contracted by π and where the ai are
non-negative. By assumption, each Ei is Q-Cartier. Moreover, π∗H ·C = 0 by the projection
formula and so

−H ′ · C =
∑

aiEi · C.

Since ai ≥ 0 and H ′ · C > 0 (because H meets C in finitely many points), we conclude that
there must be a divisor E′ ⊂ Exc(f) with E′ · C < 0.

Since f has connected fibres, through any point x ∈ Exc(f) there is a curve C ′ ⊂ X with
f∗C

′ = 0. Since f is the contraction of an extremal ray, C ′ is numerically proportional to C
and so E′C ′ < 0. This implies C ′ ⊂ E′ and so x ∈ E′. Hence, E′ = Exc(f), as we want.

We will see later that any KX -negative face can be contracted. It is however important to
keep in mind that not every extremal face can be contracted, as we see by the following
example.

Example 12.4. Let τ : X → P2 be the blow-up of 12 points p1, . . . , p12 on a cubic curve
D ⊂ P2. Let C ⊂ X be the proper transform of D. Then

KX · C = τ∗O(−3)C +
12∑
i=1

EiC = −9 + 12 = 3
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and

C2 = (τ∗O(3) +

12∑
i=1

Ei) = 9− 12 = −3.

Since C2 < 0, the curve C spans an extremal ray R of NE(X) (as we have seen on one of
the exercise sheets). On the other hand, we claim that R can in general not be contracted.
Indeed, assume that the contraction of R exists: contR : X → Z. Then X must carry a
non-trivial line bundle

L = τ∗O(m) +
12∑
i=1

aiEi

whose restriction to C is trivial. But this implies that the line bundle

O(m)|D +
12∑
i=1

aipi

is trivial on the elliptic curve C, which is impossible for general choices of p1, . . . , p12 (unless
m = a1 = · · · = a12 = 0). Hence, contF does not exist, as claimed.

13 Introduction to the minimal model program

We start this section by illustrating Mori’s cone theorem in the case of surfaces. For this we
will use Castelnuovo’s contraction theorem.

Theorem 13.1 (Castelnuovo’s contraction theorem). Let X be a smooth projective surface
over an algebraically closed field k with a (−1)-curve E ⊂ X, i.e. a smooth rational curve with
E2 = −1. Then there is a smooth projective surface Y and a point y ∈ Y so that X ∼= BlyY
and E corresponds to the exceptional divisor of the blow-up BlyY . In other words, there is a
blow-down map τ : X → Y which contracts exactly E and such that Y is smooth.

With this at hand, we obtain the following illustration of Mori’s cone theorem.

Theorem 13.2. Let X be a smooth projective surface over an algebraically closed field and
let R ⊂ NE(X) be an extremal ray with R · KX < 0 (i.e. R is generated by a KX-negative
curve). Then the contraction contR : X → Z of R exists and one of the following holds:

(a) Z is a smooth projective surface and X is obtained from Z by blowing up a point;

(b) Z is a smooth curve and X is a minimal ruled surface over Z, i.e. all fibres of contR are
smooth P1’s.

(c) Z is a point and X is Fano, i.e. −KX is ample. (In fact, X ∼= P2 but this is harder to
prove.)

Proof. By Mori’s cone theorem, there is a rational curve C ∈ R with 0 < −KXC ≤ dimX +
1 = 3. Hence, KXC ∈ {−1,−2,−3}. Recall the arithmetic genus

pa(C) := 1− χ(C,OC) = 1− h0(C,OC) + h1(C,OC) = h1(C,OC),

where we used that C is integral and so h0(C,OC) = 1. As a consequence of the Riemann-
Roch formula for surfaces, there is the following formula (see [2, Exercise V.1.3]):

2pa(C)− 2 = (KX + C) · C = KXC + C2.
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Since pa(C) ≥ 0, this implies
C2 ≥ −2−KX · C.

Since KXC ∈ {−1,−2,−3}, we find that C2 ≥ −1 with equality if and only if KXC = −1,
in which case pa(C) = 0 and this implies C ∼= P1 (by a standard argument involving the
normalization τ : C ′ → C and considering the short exact sequence 0 → OC → τ∗OC′ −→
δ → 0, where δ is a skyscraper sheaf that is supported on the singular points of C and which
vanishes if and only if C is smooth). That is, C is a (−1)-curve and we are in case (a) by
Castelnuovo’s theorem. It remains to deal with the cases C2 = 0 and C2 > 0. In the latter
case, a small perturbation of the class [C] ∈ N1(X) has still positive self-intersection and so
some multiple will be effective by the Riemann–Roch theorem for surfaces. This implies that
[C] ∈ NE(X) is an interior point. Since [C] also spans an extremal ray by assumptions, we
find that ρ(X) = 1. Since KX ·C < 0, we conclude that −KX is ample by Kleiman’s criterion
(bec. NE(X) = [C] · R) and so we are in case (c).

It remains to deal with the case C2 = 0, in which case

2pa(C)− 2 = KX · C ∈ {−1,−2,−3}

and so pa(C) = 0 and KX · C = −2, which implies as above that C is smooth and in fact
C ∼= P1. We aim to prove that |mC| gives the contraction morphism contR for m� 0. Since
C is effective,

H0(X,OX(mC)) ∼= H0(X,OX(KX −mC))∨ = 0

for m� 0. Hence, for large m, we find that

h0(X,OX(mC)) ≥ χ(X,OX(mC)) =
−KX · C

2
m+ χ(X,OX)

which grows linearly, because −KX · C is positive. In particular, for large m, we find that
h0(X,OX(mC)) ≥ 2 and so there is a curve D ⊂ X with D ∼ mC with D 6= mC. Up to
cancelling common components, we may assume that D meets C in finitely many points.
Since C2 = 0, it follows that D is in fact disjoint from C. Hence, |O(mC)| is base point
free for m � 0 and so it defines a morphism f : X → Z with f∗H ∼ OX(mC) for some
ample divisor H on Z. Up to replacing f with its Stein factorization, we may assume that
f has connected fibres. Note that f contracts C, as it contracts a curve if and only if the
curve has trivial intersection with f∗H ∼ OX(mC). It remains to show that any fibre of f
is isomorphic to P1. For this, let F =

∑
aiCi be a fibre of f . Then

∑
aiCi is numerically

equivalent to any other fibre and hence to (a multiple of) C. Hence,
∑
aiCi ∈ R. Since R

is an extremal ray, Ci ∈ R for all i. Since C2 = 0, we find that C2
i = 0. Since in addition

(
∑
aiCi)

2 = 0, ai > 0, we conclude that F is irreducible (as we know that it is connected).
Hence, F = aC ′ for some integral curve C ′ with (C ′)2 = 0 and KXC

′ < 0. This implies

2pa(C
′)− 2 = KXC

′ < 0

and so pa(C
′) = 0, because pa(C

′) ≥ 0, since C ′ is integral. As before, we conclude C ′ ∼= P1.
This shows that all fibres of f are irreducible and the reduction of any fibre is P1. Since X
is smooth, there can only be finitely many multiple fibres. So if F = aC ′ is such a multiple
fibre and F ′ is a general (hence non-multiple) fibre, then F and F ′ are numerically equivalent
and so

KXF
′ = aKXC

′

is a multiple of a. On the other hand, the above computations showed that F ′ and C ′ are
smooth rational curves with trivial self-intersection and with KXF

′ = −2 and KXC
′ = −2.

Hence, a = 1, as we want. This shows that f : X → Z is a ruled surface. Note also that Z is
smooth, because it is normal (as it comes from the Stein factorization) of dimension one.
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Note that in the above theorem if we are in case (a), then the Picard number of Z satisfies
ρ(Z) = ρ(X)−1. Since the Picard number of a projective variety is always positive, it follows
that there cannot be an infinite sequence of such blow-downs. Hence, the above theorem shows
that if we start with any smooth projective surface X, there is a finite sequence of birational
morphisms

X = Xr → Xr−1 → · · · → X1 → X0 = X ′

such that Xi → Xi−1 is the blow-up of a point and Xi is smooth for all i and such that X ′

is one of the following:

(a) KX′ is nef;

(b) X ′ is a ruled surface over a smooth curve;

(c) X ′ is Fano of Picard rank one.

This is the minimal model program for surfaces!

Remark 13.3. Classically, a smooth projective surface X is called minimal if it does not
contain any (−1)-curve, which by Castelnuovo’s theorem is equivalent to saying that X is not
the blow-up of another smooth projective surface in a point. In view of the above theorem,
such a surface has either nef canonical class or it is Fano or it is a fibration into Fano
varieties of lower dimensinos (here P1’s – the unique Fano variety of dimension one). From
a modern point of view, it is thus more natural to distinguish among these cases in our
terminology by reserving the term ’minimal model’ to the case where KX is nef (in which
case it is automatic that there is no (−1)-curve, because such curves are KX-negative). The
other two cases that appear above are called Mori fibre spaces. The general definition is that
it is a projective contraction π : X → Z with connected fibres and of relative Picard number
one (i.e. ρ(X) = ρ(Z) + 1), such that the general fibre of π is Fano. (Here also the trivial
fibre space X → Spec k is allowed but it can only appear if ρ(X) = 1.)

It is natural to try to generalize the above approach to higher dimensions. In view of Mori’s
cone theorem, what we have to understand is the following:

• Can we contract a KX -negative extremal ray R on a threefold?

• How does the contraction contR : X → Z of R look like?

Mori solved the second problem above in the case of smooth projective threefolds in charac-
teristic zero. The result is as follows:

Theorem 13.4 (Mori). Let X be a smooth projective threefold over an algebraically closed
field k of characteristic zero. Let R be a KX-negative extremal ray of NE(X). Assume that
the contraction f := contR : X → Z of R exists. The following is a list of all possible cases.

(a) f is birational and contracts an irreducible surface to a point or a curve. More precisely,
the following cases may occur:

(i) f is the blow-up of a smooth curve in a smooth threefold Z;

(ii) f is the blow-up of a smooth point of a smooth threefold Z;

(iii) f is the blow-up of an ordinary double point of Z, given locally analytically by the
equation

∑
x2
i = 0;

(iv) f is the blow-up of a singular point that is locally analytically of the form x2
1 +x2

2 +
x2

3 + x3
4 = 0;
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(v) f contracts a P2 with normal bundle O(−2) to a point, which locally analytically is
isomorphic to the quotient of A3 by the involution x 7→ −x.

(b) dimZ = 2 and f : X → Z is a conic bundle (in particular, general fibres are isomorphic
to P1);

(c) dimZ = 1 and the general fibre of f : X → Z is a Fano surface;

(d) dimZ = 0 and X is Fano of Picard rank one.

The above theorem gives a clear hint that the structure that we have seen for surfaces remains
true in dimension three. However, the theorem is not enough to prove the minimal model
program for threefolds for at least three reasons:

(1) We are missing a statement that each extremal ray can be contracted;

(2) In cases (aiii)-(av), the base of the divisorial contraction f : X → Z is no longer smooth
and so we cannot repeat the process, as we have only dealt with smooth projective
varieties so far.

(3) If X is a threefold that is produced from a smooth projective threefold by a contraction as
in cases (aiii)-(av), then it may happen thatX has aKX -negative rayR whose contraction
exists and is small: π = contR : X → Z. In this case KZ cannot be Q-Cartier, as it
would imply that π∗KZ = KX has trivial intersection with R, which is false. Hence, our
program rapidly stops on Z (because we cannot talk about KZ-negative rays anymore).

The solution to problems (1) and (2) will be to generalize Mori’s cone theorem to an appropri-
ate singular setting and to prove a contraction theorem for KX -negative rays in this context.
The solution to problem (3) is in some sense more subtle. It relies on the observation that
if π : contR : X → Z is a small contraction of a KX -negative ray, then one can in practise
often find another variety X+ with a small contraction π+ : X+ → Z so that X and X+ are
birational over Z and π+ : X+ → Z is a small contraction of a KX+-positive ray. In other
words, X+ is obtained from X by somehow replacing the KX -negative curves contracted by
π by K-positive curves. This process is called a flip and we can think about it as a sort
of surgery operation in codimension two. Note however that at this point it is completely
unclear that such a ’surgery operation’ should exist.

Definition 13.5. Let X be a normal projective variety with mild singularities3 (in particular,
KX should be Q-Cartier). Let π : X → Z be the contraction of a KX-negative extremal ray
R of X and assume that this is a small contraction, i.e. codim(Exc(π)) ≥ 2. A projective
variety X+ together with a birational morphism π+ : X+ → Z is called flip of π if

(a) X+ has mild singularities (in particular, KX+ is Q-Cartier);

(b) KX+ is π+-ample, i.e. the curves contracted by π+ have positive intersection with KX+;

(c) the exceptional set Exc(π+) has codimension at least two in X+.

By slight abuse of notation, the rational map X 99K X+ is also called flip.

With this definition at hand, we can formulate the following central conjecture, which gen-
eralizes the picture we have seen for surfaces to arbitrary dimensions.

3We will specify later what that should mean precisely.
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Conjecture 13.6. Let X be a smooth projective variety over an algebraically closed field of
characteristic zero. Then there is a sequence of birational maps

X = Xr 99K Xr−1 99K Xr−2 99K · · · 99K X1 99K X0 := X ′,

where Xi 99K Xi−1 is either a divisorial contraction of a KXi-negative extremal ray of Xi or
it is the flip of KXi-negative extremal ray of Xi, and such that X ′ is one of the following:

(a) KX′ is nef, in which case X ′ is called minimal model;

(b) X ′ admits a KX′-negative extremal ray R whose contraction π = contR : X → Z is of
fibre type; in particular, the general fibre of π is a Fano variety. In this case X ′ is called
a Mori fibre space.

The main problems we face to solve the above conjecture and to run the outlined program
are as follows:

(1) identify the sort of singularities we should allow in the process (i.e. answer the question
what ’mild singularities’ should be);

(2) prove a cone and contraction theorem for this class of singularities;

(3) prove the existence of flips;

(4) prove that any sequence of divisorial contractions and flips has to stop at some point.
Since the Picard rank drops by one in each divisorial contraction, this boils down to
proving that there are no infinite sequences of flips.

The above conjecture is not fully known yet, even though it is known in dimension three
and for large classes of varieties of arbitrary dimensions (e.g. those of general type). While
problems (1)–(3) are completely solved by now (due to work of a lot of people over the last
40 years), termination of flips is still open in general.

Finally, it is natural to wonder why the condition that KX′ is nef is a natural and desirable
condition. To see this, note that a line bundle that is base point free is automatically nef, and
so nefness is a necessary condition for being base point free. The example of torsion bundles
(e.g. the canonical bundle of an Enriques surface) shows that nefness of a line bundle can at
most imply that some multiple is base point free. THis is wrong for arbitrary line bundles,
but it is conjectured to be true for the canonical bundle.

Conjecture 13.7 (Abundance conjecture). Let X be a projective variety with mild singu-
larities (e.g. smooth). If KX is nef, then some multiple mKX for m � 0 is base point
free.

Assume that the abundance conjecture holds for X and let f : X → Z be the morphism
induced by the sections of mKX . Then mKX = f∗L for some ample line bundle L on
Z. Taking the Stein factorization, we may assume that f has connected fibres (this will be
automatic if m� 0 but we don’t need this here). Let F be a general fibre of f . Then F has
trivial canonical bundle and so

KF = KX |F
by the adjunction formula. This implies

mKF = mKX |F = f∗L|F = OF

and so the canonical bundle of F is torsion. In this case F is called a Calabi-Yau variety
(in a weak sense). For instance, F must be an elliptic curve if it is a curve and there are
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finitely many deformation types if F is a surface. It is conjectured (but unknown) that the
deformation types of such varieties (with mild singularities) are finite in any dimension. In
any case, the above discussion shows that the morphism f : X → Z realizes X either as
the total space of a fibration with Calabi-Yau varieties as general fibres or f is birational, in
which case L must be mKZ and so Z has ample canonical class and is birational to X. This
shows that the minimal model conjecture (Conjecture 13.6) together with the Abundance
conjecture would imply that up to birational equivalence, every variety is made up from the
following three building blocks:

• varieties with ample canonical class;

• varieties whose canonical class is torsion (Calabi-Yau varieties);

• varieties whose canonical class is antiample (Fano varieties).

14 Singularities in the minimal model program

14.1 Motivation and provisional definition of terminal singularities

From now on it will be important to be able to talk about the canonical divisor KX of any
normal (projective) variety X. If X is smooth, then KX is a divisor such that OX(KX) ∼=
ΛdimXΩ1

X . If X is not smooth, we use the following definition.

Definition 14.1. Let X be a normal variety. Then KX is the divisor given by taking the
closure of a canonical divisor on the smooth locus of X. Since Xsing ⊂ X has codimension
at least two, the divisor KX is unique up to linear equivalence on X.

To get a feeling which kind of singularities we need to allow to be able to run the minimal
model program outlined in Conjecture 13.6, we consider the following toy example. Let X
be a normal projective variety that is Q-factorial, i.e. any Weil divisor has a positive multiple
that is Cartier. Assume that X has a unique singular point x ∈ X such that

X ′ = BlxX

is smooth and such that the exceptional divisor E ⊂ X ′ is irreducible. This implies that
for any divisor D on X ′, τ∗τ∗D − D is a (rational) multiple of E, where we use that X is
Q-factorial and where τ : X ′ → X denotes the blow-down map. We have thus seen that

ρ(X ′) = ρ(X) + 1.

This implies that the curves contracted by τ : X ′ → X are all numerically proportional and
so τ is the contraction of an extremal ray R of NE(X ′). Moreover,

KX′ ∼ τ∗KX + aE

for some a ∈ Q, because KX is Q-Cartier.4 If C is a curve that is contracted by τ , then
E · C < 0 (e.g. by Exercise 2b on sheet 3) and so

KX′ · C = (τ∗KX + aE) · C = aE · C

is negative as long as a > 0. In other words, if a > 0, then X ′ is a smooth projective variety
with an extremal KX′-negative ray R whose contraction contR : X ′ → X is divisorial. But

4More precisely, there is some integer m > 0 such that mKX is Cartier and so τ∗mKX is a Cartier divisor
on X ′ that is linearly equivalent to mKX′ outside of E and so mKX′ = τ∗mKX + bE for some integer b. In
the above formula, we divided by slight abuse of notation by m and got a = b/m ∈ Q.
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then our program outlined in Conjecture 13.6 forces us to replace X ′ by X and so we need
to allow the singularities of X. However, the only thing we know is that X has a resolution
X ′ with

KX′ = τ∗KX + aE

where a > 0. This leads to the following definition.

Definition 14.2. Let X be a normal projective variety such that mKX is Cartier for some
positive integer m. Let f : Y → X be a proper birational morphism from a normal variety
Y and let Ei ⊂ Y denote the prime divisors contracted by f . Assume that mKY is Cartier
(e.g. Y is smooth). Then

mKY ∼ f∗mKX +
∑

(m · ai(Ei, X))Ei

for some rational numbers ai(Ei, X) that are called the discrepancies of Ei with respect to X.

Definition 14.3 (Preliminary Definition (works if characteristic is zero)). Let X be a normal
projective variety such that KX is Q-Cartier and such that there is a resolution τ : Y → X of
singularities (e.g. char(k) = 0). We say that X has terminal (resp. canonical) singularities
if the discrepancy ai(Ei, X) of any τ -exceptional divisor Ei is positive (resp. non-negative).
In other words,

KY = τ∗KX +
∑

aiEi

for some rational numbers ai > 0 (resp. ai ≥ 0) where the Ei ⊂ Y run through all τ -
exceptional divisors.

Remark 14.4. We will see later that if one resolution τ as in the above definition exists,
then any resolution has that property. Moreover, in positive characteristic where resolutions
of singularities are unknown, we may ask that the discrepancies are positive for all exceptional
divisors of any proper birational morphisms Y → X from a normal variety Y .

14.2 Divisors over X and their discrepancies

To formalize the above discussion and to generalize the above definition to the case where reso-
lutions of singularities might not exist, it is useful to use the following terminology/definition.

Definition 14.5. Let X be a quasi-projective variety over a field k. A divisor over X is a
divisor E on a normal variety Y that admits a birational morphism f : Y → X (not neces-
sarily proper). The closure of f(E) is called the center of E over X, denoted by centerXE.
A divisor over X is exceptional if centerXE has codimension at least two on X.

Lemma 14.6. Any divisor E over X induces a unique valuation ν(E) on the function field
k(X) that is given by measuring poles and zeros of rational functions on X (hence on Y ) along
E. In other words, ν(E) is the unique valuation on k(X) that corresponds to the discrete
valuation ring

OY,E ⊂ k(Y ) = k(X).

Proof. Clear.

Lemma 14.7. Let X be a quasi-projective variety over an algebraically closed field. Two
divisors E and E′ over X, that lie on normal birational models Y → X and Y ′ → X,
induce the same valuations on k(X) if and only if the composition Y → X 99K Y ′ induces an
isomorphism between the generic points of E and E′, respectively.
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Proof. This follows directly from the fact that the valuation ν(E,X) determines uniquely
(and is determined uniquely) by the local ring OX,E . In particular, ν(E) = ν(E′) implies

OX,E = OX,E′ ⊂ k(X)

and this is equivalent to saying that the composition Y → X 99K Y ′ induces an isomoprhism
between a neighbourhood of the generic point of E with a neighbourhood of the generic point
of E′. This proves the lemma.

Let X be a normal variety over a field and assume that mKX is Cartier for some positive
integer m. Let E be a divisor over X, i.e. E ⊂ Y where f : Y → X is birational but
necessarily proper and Y is normal. Let e ∈ E be a general point. Since Y is normal, e is
a smooth point of Y and we may pick a coordinate system y1, . . . , yn around e (i.e. the yi
are regular functions that vanish at e and generate the maximal ideal me ⊂ OX,e) such that
E = {y1 = 0}. Then the canonical bundle on Y is locally generated by dy1 ∧ · · · ∧ dyn. If s
is a local generator of OX(mKX) (recall that mKX is Cartier), then

f∗s = y
m·a(E,X)
1 · (unit) · (dy1 ∧ · · · ∧ dyn)⊗m

for some integer a(E,X).

Definition 14.8. Let E be a divisor over X and assume that KX is Q-Cartier . The integer
a(E,X) from above is called the discrepancy of E over X. This generalizes the definition of
discrepancies to the case where f is not necessarily proper and E is not necessarily exceptional.

Note that a(E,X) = 0 if E over X is not exceptional.

Lemma 14.9. Let X be a variety so that KX is Q-Cartier. The discrepancy a(E,X) of a
divisor E over X depends only on the valuation ν(E) of E on the function field k(X) and
not on the explicit choice of f and Y .

Proof. This follows directly from the definition and Lemma 14.7.

Definition 14.10. Let X be a normal variety over a field k such that KX is Q-Cartier. The
total discrepancy discrep(X) of X is given by

discrep(X) := inf{a(E,X) | E is an exceptional divisor over X}.

X has terminal (resp. canonical) singularities if discrep(X) > 0 (resp. discrep(X) ≥ 0).

Remark 14.11. Using the fact that in characteristic zero, any birational map between pro-
jective varieties can be resolved by a sequence of blow-ups along smooth centers, it is not hard
to show that this new definition coincides with the old one if k has characteristic zero.

14.3 Pairs and their singularities

Even though one might a priori mostly be interested in smooth varieties or in varieties X
that have terminal or canonical singularities, it turns out that there is a major advantage if
one allows pairs (X,∆) with mild singularities.

Definition 14.12. A pair (X,∆) consists of the following data:

• a normal variety X;
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• an effective Q-divisor ∆ =
∑
aiDi, where Di are distinct prime divisors on X and the

ai are non-negative rational numbers.5

The divisor ∆ of a pair (X,∆) is referred to as boundary divisor. The case ∆ = 0 corresponds
to the case of a variety without boundary (that is, the notaiton of pairs is really more general
then that of varieties). In the case of a pair (X,∆), the Q-divisor

KX + ∆

plays the role of the canonical class of a variety. Discrepancies of pairs (X,∆) are defined as
follows.

Definition 14.13. Let (X,∆) with ∆ =
∑
aiDi be a pair and assume that m(KX + ∆) is

Cartier for some m� 0. Let f : Y → X be a birational morphism (not necessarily proper).
Let f−1

∗ ∆ =
∑
aif
−1
∗ Di be the birational transform of ∆ (i.e. f−1

∗ Di is zero if Di lies outside
the image of f and it is given by the closure of the preimage of the generic point of Di

otherwise). Then the Weil divisors

m(KY + f−1
∗ ∆) and f∗m(KX + ∆)

agree outside of the f -exceptional locus. Hence,

m(KY + f−1
∗ ∆) ∼ f∗m(KX + ∆) +m ·

∑
i

a(Ei, X,∆)Ei

where Ei runs through the f -exceptional divisors on Y and where ai(Ei, X) are rational num-
bers such that m · a(Ei, X,∆) are integers. This defines the discrepancy of any f -exceptional
divisor E on Y . If E ⊂ Y is a prime divisor that is not f -exceptional, then we put

a(E,X,∆) :=

{
−ai, if E = f−1

∗ Di;

0, if E 6= f−1
∗ Di for all i.

Dividing by m, we get the following Q-linear equivalence:

KY + f−1
∗ ∆ ∼Q f

∗(KX + ∆) +
∑
i

a(Ei, X,∆)Ei.

Moreover, the definition of the discrepancies of non-exceptional divisors is formed in such a
way that we get a formula of the form

KY ∼Q f
∗(KX + ∆) +

∑
E

a(E,X,∆)E.

where E runs through all prime divisors on Y .

Remark 14.14. Let E be a divisor over X and let (X,∆) be a pair such that KX + ∆
is Q-Cartier. Then Lemma 14.7 implies as in the case where ∆ = 0 that the discrepancy
a(E,X,∆) of E with respect to (X,∆) that is defined in the above definition depends only on
the valuation ν(E) of k(X) and not on the explicit model f : Y → X.

The discrepancy of a pair (X,∆) is now defined in analogy with the case where ∆ = 0 as
follows – note however that in the case ∆ 6= 0, there are two different such notions.

5A priori one may also allow the ai to be arbitrary rational numbers. This is done in [3, Definition 2.25]
but in practice the case where the ai are non-negative is most important.
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Definition 14.15. Let (X,∆) be a pair and assume that KX + ∆ is Q-Cartier. Then the
discrepancy of (X,∆) is defined as

discrep(X,∆) := inf{a(E,X,∆) | E is an exceptional divisor over X}.

Similarly, the total discrepancy is defined as

totaldiscrep(X,∆) := inf{a(E,X,∆) | E is a divisor over X}.

Clearly,
discrep(X,∆) ≥ totaldiscrep(X,∆).

Moreover, if ∆ =
∑
aiDi, then

−ai ≥ totaldiscrep(X,∆)

for all i. In particular, totaldiscrep(X,∆) can never be positive if ∆ 6= 0.

The following proposition summarizes important properties of the above notions.

Proposition 14.16. Let (X,∆) be a pair with ∆ =
∑
aiDi and such that KX + ∆ is Q-

factorial.

(a) Either discrep(X,∆) = −∞ or

−1 ≤ totaldiscrep(X,∆) ≤ discrep(X,∆) ≤ 1.

(In particular, discrep(X,∆) = −∞ as soon as ai > 1 for some i.)

(b) If X is smooth then discrep(X, 0) = 1.

(c) Assume that X is smooth,
∑

iDi is a simple normal crossing divisor and ai ≤ 1 for every
i. Then

discrep(X,∆) = min

{
min

i 6=j,Di∩Dj 6=∅
{1− ai − aj},min

i
{1− ai}, 1

}
.

Remark 14.17. Item (a) in the above proposition explains that one usually restricts the
notion of pairs (X,∆) to the case where the coefficients of ∆ are bounded from above by 1.

Definition 14.18. Let (X,∆) be pair with D =
∑
aiDi and such that KX +∆ is Q-factorial.

Then we say that (X,∆) is

(1) terminal if discrep(X,∆) > 0;

(2) canonical if discrep(X,∆) ≥ 0;

(3) Kawamata log terminal (klt) if discrep(X,∆) > −1 and bDc = 0, i.e. ai < 1 for all i;

(4) log canonical (lc) if discrep(X,∆) ≥ −1.

Remark 14.19. Note that item (a) in Proposition 14.16 implies that ai ∈ [0, 1] if (X,∆) is
terminal, canonical, klt or lc.
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14.3.1 Why pairs?

Reasons for this are:

• one gains tremendous flexibility;

• proofs tend to work in this level of generality;

• in fact, certain proofs force one to allow this level of generality, because it is natural to
use induction on the dimension but when passing from X to a subvariety Y ⊂ X of lower
dimensions, e.g. a divisor, then the canonical bundle of X does not transform to the
canonical bundle of Y , but we have the slightly more complicated formula (KX+Y )|Y =
KY , which explains that allowing boundary components can be very useful (and might
in fact be necessary).

14.3.2 Why is the class of klt singularities natural in the context of pairs?

We’ve explained in Section 14.1 that the class of terminal varieties naturally shows up if we
start with a smooth variety X and successively contract KX -negative rays. Which class do we
get if we start with a smooth variety X and a boundary divisor ∆ =

∑
aiDi with ai ∈ [0, 1]?6

For this, assume that KX + ∆ is Q-Cartier and let R be a KX + ∆ negative extremal ray of
NE(X). Assume that the contraction f = contR : X → Z of R exists. Assume furthermore
that f is divisorial and that KZ + ∆′ is Q-factorial, where ∆′ = f∗∆. Then we have

KX + ∆ = f∗(KY + ∆′) + aE

for some a ∈ Q. In fact, if C ∈ R is nonzero, then as in Section 14.1 we get that E · C < 0
and so a > 0 because

0 > (KX + ∆) · C = (f∗(KY + ∆′) + aE) · C = aE · C.

On a first superficial sight, one might get the impression that this suggests that the singulari-
ties of (Y,∆′) are terminal. However, this is false! Indeed, if we look carefully at the definition
of discrepancies of pairs, then we note that we have to compare KY + ∆′ with KX + f−1

∗ ∆′

and not with KX + ∆. This makes a difference if E is a component of ∆! Indeed, in this case

∆ = bE + f−1
∗ ∆′

for some b ∈ [0, 1] and we find that

KX + f−1
∗ ∆′ + bE = f∗(KY + ∆′) + aE

Hence,
a(E, Y,∆′) = a− b.

Here a > 0 and b ≤ 1 are rational numbers, and so a− b will be larger than −1, but it could
apriori be arbitrarily close to −1. This explains why klt singularities are the natural class
of singularities that appear in the MMP for pairs (X,∆), even if we start with the nicest
possible situation, where X is smooth and ∆ =

∑
aiDi with

∑
Di a simple normal crossing

divisor.

6Here the assumption that ai ≤ 1 is very natural from the point of view of item (a) in Proposition 14.16,
as otherwise we essentially allow all possible singularities and get no restriction on the type of singularities
whatsoever.
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14.3.3 Proof of Proposition 14.16

To prove Proposition 14.16, we need the following two lemmas.

Lemma 14.20. Let X be a smooth variety and let ∆ =
∑
aiDi be a sum of distinct prime

divisors. Let Z ⊂ X be a closed subvariety of codimension k. Let p : BlZX → X be the
blow-up of Z and let E ⊂ BlZX be the irreducible component of the exceptional divisor which
dominates Z. (If Z is smooth this is the only component.) Then

a(E,X,∆) = k − 1−
∑

ai ·multZDi

Proof. Replacing X by X \ Zsing, we may assume that Z is smooth. Let X ′ = BlZX. Then
we get

KX′ = τ∗KX + (k − 1)E

and
τ∗∆ = ∆′ +

∑
ai ·multZDi · E

where ∆′ is the birational transform of ∆. Putting everything together, we find

KX′ + ∆′ = τ∗(KX + ∆) + (k − 1−
∑

ai ·multZDi) · E

which proves the lemma.

Lemma 14.21. Let f : X ′ → X be a proper birational morphism between normal varieties.
Let ∆X′ resp. ∆X be effective Q divisors on X ′ resp. X such that KX + ∆X is Q-Cartier and

KX′ + ∆X′ = f∗(KX + ∆X) and f∗∆X′ = ∆X .

Then for any divisor E over X,

a(E,X ′,∆X′) = a(E,X,∆X).

Proof. Let g : Y → X be a birational morphism with E ⊂ Y . Up to replacing Y by a
suitable blow-up, we may assume that the natural birational map Y 99K X ′ is a morphism
g′ : Y → X ′ with g = f ◦ g′. Let ∆Y (resp. ∆′Y ) be the birational transform of ∆X (resp. of
∆X′) We then find

KY + ∆Y = g∗(KX + ∆X) +
∑
Ei

a(Ei, X,∆X)Ei

where Ei runs through all g-exceptional divisors on Y . Similarly,

KY + ∆′Y = g′
∗
(KX′ + ∆X′) +

∑
E′i

a(E′i, X
′,∆X′)E

′
i,

where E′i runs through all g′-exceptional divisors on Y . Since g = f ◦ g′ and KX′ + ∆X′ =
f∗(KX + ∆X), we find that

g∗(KX + ∆X) = g′
∗
(KX′ + ∆X′)

and so

g′
∗
(KX′ + ∆X′) +

∑
Ei

a(Ei, X,∆X)Ei + ∆Y −∆′Y = g′
∗
(KX′ + ∆X′) +

∑
E′i

a(E′i, X
′,∆X′)E

′
i.
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Hence, ∑
Ei

a(Ei, X,∆X) · Ei =
∑
E′i

a(E′i, X
′,∆X′) · E′i + ∆′Y −∆Y .

Here, ∆′Y−∆Y is effective and f -exceptional, because f∗∆X′ = ∆X . This shows a(E,X ′,∆X′) =
a(E,X,∆X) if E is g′-exceptional.

If E is not g′-exceptional but g-exceptional, then g′∗E is f -exceptional and a(E,X ′,∆X′) = −a
where a is the coefficient of E in ∆X′ . The above equality thus shows a(E,X ′,∆X′) =
a(E,X,∆X) also in this case.

Finally, the case where E is not g-exceptional follows from the fact that f∗∆X′ = ∆X . This
concludes the lemma.

Proof of Proposition 14.16. Let us first prove (a). Blowing up a codimension two subvariety
that meets the smooth locus of X we find that discrep(X,∆) ≤ 1. It remains to show that
discrep(X,∆) = −∞ if a(E,X,∆) < −1 for some divisor E over X. To prove this assume
that E ⊂ Y , where f : Y → X is birational and write

a(E,X,∆) = −1− c

for some c > 0. Define the effective Q-divisor ∆Y on Y via

f∗(KX + ∆) = KY + ∆Y .

Let Z0 ⊂ Y be a closed subvariety of codimension two that is contained in E but in general
position otherwise (more precisely: not in any other f -exceptional divisor and not in f−1

∗ ∆).
Let Y1 → Y be the blow-up along Z0 and let E1 ⊂ Y1 be the unique component of the
exceptional divisor that dominates Z0. Then

a(E1, X,∆) = a(E1, Y,∆Y ) = −c

by Lemma 14.21. Blowing up the (unique) irreducible component Z1 of the intersection E∩E1

that dominates Z0 on Y1, we get a birational model Y2 and a divisor E2 on Y2 dominating
Z2 with

a(E2, X,∆) = a(E2, Y,∆Y ) = −2c.

Blowing up the component Z3 of E2 ∩ E that dominates Z2 and repeating this process
inductively, we find a sequence of divisors Ei over X with

a(Ei, X,∆) = a(Ei, Y,∆Y ) = −i · c.

This proves discrep(X,∆) = −∞, as we want.

Item (b) is a special case of (c), which we aim to prove now. For this let

r(X,∆) := min

{
min

i 6=j,Di∩Dj 6=∅
{1− ai − aj},min

i
{1− ai}, 1

}
.

Blowing up a codimension two subvariety of X shows that

discrep(X,∆) ≤ 1.

Blowing up a codimension two subvariety of X that lies on Ei but is in general position
otherwise shows that

discrep(X,∆) ≤ 1− ai.
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Blowing up the intersection Di ∩Dj (if non-empty), shows that

discrep(X,∆) ≤ 1− ai − aj .

This proves discrep(X,∆) ≤ r(X,∆). For the converse inequality, let E be a divisor over X.
By Lemma 14.22 below, there is a sequence of blow-ups

Y = Xn → Xn−1 → · · · → X1 → X0 = X

such that E ⊂ Y . We need to prove a(E,X,∆) ≥ r(X,∆). To this end we may shrink X
around the point f(y) ∈ X, because r(X,∆) increases if we shrink X. Hence, up to shrinking
X we may assume that the center Zi of the blow-up Xi → Xi−1 is smooth. In particular, Xi is
smooth for i ≥ 0 (because X is smooth by assumption). The claimed inequality then follows
by induction on the number of blow-ups n in the above sequence by an explicit computation,
see the end of proof of [3, Corollary 2.31].

Lemma 14.22. Let X be an algebraic variety over a field and let ν be a discrete valuation
on k(X) with valuation ring (R,m). Assume that

dimR/m = dimX − 1.

Then ν = ν(E) for an exceptional divisor E over X. Explicitly, E can be constructed as
follows.

Let Y = SpecR and consider the natural morphism f0 : Y → X0 := X. Let y ∈ Y be the
unique closed point and let Z0 ⊂ X be the closure of f0(y). We then put X1 = BlZ1X,
f1 : Y → X1 the induced morphism and Z1 ⊂ X1 the closure of f1(y). Inductively, if
fi : Y → Xi is defined and Zi ⊂ Xi is the closure of xi := fi(y), then Xi+1 = BlZiXi. Then
for some n � 0, fn : Y → Xn induces an isomorphism OY,y = R ∼= OXn,xn. In particular,

E = Zn = {xn} is a divisor on Xn with ν = ν(E).

Proof. See [3, Lemma 2.45].

15 Nef and big divisors and vanishing theorems

15.1 Kodaira vanishing theorem

Recall the following result from Complex Geometry:

Theorem 15.1 (Kodaira vanishing). Let X be a smooth projective variety over an alge-
braically closed field of characteristic zero and let L be an ample line bundle on X. Then

H i(X,KX ⊗ L) = 0

for all i ≥ 1.

After the Serre vanishing theorem, the Kodaira vanishing theorem is one of the most basic
vanishing theorems. The usage of vanishing theorems like that lie in the fact that they allow
one to lift sections. To explain this in a baby example, let X be a smooth complex projective
variety and let A ∈ |L| be a smooth ample divisor on X. Then there is a short exact sequence

0 −→ KX + L −→ KX + 2L −→ (KX + 2L)|A = KA + L|A −→ 0

giving rise to a short exact sequence

0→ H0(X,KX + L)→ H0(X,KX + 2L)→ H0(A,KA + L|A)→ H1(X,KX + L) = 0
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where we used Kodaira vanishing to see that

H0(X,KX + 2L)→ H0(A,KA + L|A)

is surjective. That is, any section of KA + L|A lifts to a section of KX + 2L and such lifting
results are very useful in proving base point freeness results, which is exactly what we need
to prove if we want to prove a contraction theorem for extremal KX -negative rays.

The above approach seems promising, but the assumption that L is ample is usually to strong
for the applications we have in mind. In this section we thus study a class of line bundles that
gets pretty close to being ample and such that a similar vanishing theorem such as Kodaira’s
vanishing theorem still holds for those bundles.

15.2 Nef and big divisors

Lemma 15.2. Let X be a projective scheme of dimension n over a field k. Let D be a
Cartier divisor on X. Then h0(X,OX(mD)) ≤ C ·mn for some positive constant C.

Proof. Let A be an ample divisor on X. For l� 0, the divisor −D+ lA is globally generated
and so it admits a nonzero section. Up to replacing A by lA, we may assume that l = 1.
This shows that we can write

D ∼ A− E
for some effective divisor E. Hence,

h0(X,OX(mD)) ≤ h0(X,OX(mA)).

But for large m, Serre vanishing shows

h0(X,OX(mA)) = χ(X,OX(mA))

and the latter is a polynomial of degree n by the results in Section 4. This concludes the
lemma.

Definition 15.3. Let X be a projective scheme of dimension n over a field k. A Cartier
divisor D on X is called big if there is a positive constant c such that h0(X,OX(mD)) > c·nm
for all m� 0.

Note that D is big if it is ample, because in this case for m� 0 we have

h0(X,OX(mD)) = χ(X,OX(mD))

by Serre vanishing and the above left hand side is a polynomial of degree n with leading
coefficient Dn

n! .

However, not every big divisor is ample.

For instance, if f : Y → X is a proper birational morphism, then

H0(Y, f∗OX(D)) = H0(X, f∗f
∗OX(D)) = H0(X,OX(D))

and so f∗D is big if and only if D is big. (On the other hand, f∗D ample is equivalent to
the fact that f is an isomorphism and that D is ample.)

Lemma 15.4. Let X be a projective variety of dimension n and let D be a Cartier divisor
on X. Then the following are equivalent.

(a) D is big;
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(b) for some m > 0 we have mD ∼ A+ E, where A is ample and E is effective;

(c) for some m > 0 the rational map φ|mD| associated to mD is birational;

(d) for some m > 0 the rational map φ|mD| associated to mD has n-dimensional image.

Proof. Clearly (b) ⇒ (c) ⇒ (d). To prove (d) ⇒ (a), let Y ⊂ PN be the closure of the
rational map φ|mD| : X 99K PN and let OY (1) be the restriction of OPN (1) to Y . Then there
is a natural inclusion

H0(Y,OY (i)) ↪→ H0(X,OX(imD))

for all i ≥ 0. On the other hand,

h0(Y,OY (i)) = χ(Y,OY (i))

is a polynomial of degree in and so the result follows from Lemma 15.2.

It remains to prove (a) ⇒ (b). For this we need to show that mD − A admits a section for
some m� 0. To this end, consider the short exact sequence

0 −→ OX(mD −A) −→ OX(mD) −→ OX(mD)|A −→ 0.

By Lemma 15.2, h0(A,OX(mD)|A) growth at most like mn−1, while h0(X,OX(mD)) growth
like mn. Hence, for m� 0, the restriction map

H0(X,OX(mD)) −→ H0(A,OX(mD)|A)

must have a nontrivial kernel, and so OX(mD − A) must have a nontrivial section, as we
want. This concludes the lemma.

Definition 15.5. Let X be a projective scheme over a field k. A Cartier divisor D on X is
called nef and big if it is nef and big.

Proposition 15.6. Let X be a projective variety of dimension n over a field k of character-
istic zero and let D be a Cartier divisor on X. Then the following are equivalent.

(a) D is nef and big;

(b) D is nef and Dn > 0;

(c) there is an effective divisor E such that Am := D − 1
mE is an ample Q-divisor for all

m� 0;

(d) For any effective Q-divisor ∆, there is a log resolution τ : Y → X of the pair (X,∆) and
an effective divisor E′ on Y with simple normal crossings such that Am := f∗D − 1

mE
′

is an ample Q-divisor for all m� 0.

Proof. (a) ⇒ (b): Assume that (a) holds. We prove (b) by induction on n. By Lemma 15.4,
mD ∼ A + E for some m � 0, where A is ample and E is effective. We aim to show that
Dn > 0 and for this we may repace D by mD. Hence we may assume m = 1 and D ∼ A+E.
Then

Dn = Dn−1A+Dn−1E = D|n−1
A +D|n−1

E .

By Lemma 15.4, D|A is big. Since the restriction of nef divisors is nef, we get by induction
D|n−1

A > 0. Moreover, D|n−1
E ≥ 0 because D is nef and E is effective. This shows Dn > 0, as

we want.
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(b) ⇒ (a): Assume that D is nef and Dn > 0. We aim to show that D is big. It suffices to
show this after pulling everything back via some birational morphism Y → X and so we may
w.l.o.g. assume that X is smooth. Let then B be an effective ample divisor on X such that
B −KX is also ample. Then mD +B −KX is ample by Kleiman’s criterion and so

H i(X,mD +B) = H i(X,mD +B −KX +KX) = 0

for all i ≥ 1 by the Kodaira vanishing theorem (where we use that k has characteristic zero).
Hence,

h0(X,mD +B) = χ(X,mD +B).

From the short exact sequence

0 −→ OX(mD) −→ OX(mD +B) −→ OX(mD +B)|B −→ 0

we find
χ(X,mD +B) = χ(X,mD) + χ(B,OX(mD +B)|B)

and so by induction on n we find that

χ(X,mD +B) = mn/n! ·Dn +O(mn−1).

and
χ(B,mD|B +B|B) = mn−1/(n− 1)! ·Dn−1 +O(mn−2).

Using the above sequence once again, we find that

h0(X,mD) ≥ h0(X,mD +B)− h0(B,mD|B +B|B)

=
Dn

n!
mn +O(mn−1)

and so D is big, as we want.

(c) ⇒ (a): Assume that D − 1
mE is ample for m � 0 and some effective divisor E. Then

Lemma 15.4 implies that D is big, as it is linearly equivalent to an ample divisor plus some
effective Q-divisor. Moreover, D − 1

mE is ample for m� 0 and so

D = lim
m→∞

D − 1

m
E

is nef, which concludes the proof.

(d) ⇒ (a): This follows by literally the same argument as in (c) ⇒ (a) above.

(a), (b), (c)⇒ (d): It suffices to prove (d) after replacing X by some resolution of X. Hence,
we may assume that X is smooth. By Lemma 15.4 we can write D ∼ A + E where A is
ample and E is an effective Q-divisor. Let f : Y → X be a log resolution of (X,E + ∆).
Then f∗D ∼ f∗A + f∗E and f∗E is a snc divisor. The issue now is that f∗A will not be
ample (unless f is an isomorphism). However, since X is smooth, there is an f -exceptional
divisor F such that −F is f -ample. (Indeed, start with a general effective ample divisor
H ′ on Y . Then f∗f∗H

′ = H ′ + F for some effective f -exceptional divisor F that must be
f -anti-ample, as we want.) Then A′ = f∗A− εF is ample for 0 < ε� 1 (see e.g. [2, II.7.10])
and E′ = f∗E + εF is an effective snc divisor, as we want. We may then conclude by setting

A′m :=
1

m
(A′ + (m− 1)f∗D).
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15.3 Kawamata–Vieweg vanishing

Historically, the Kodaira vanishing theorem was first proven via Hodge theory. Roughly
speaking, one picks a (Kähler) metric on the complex manifold X. Cohomology classes of

H i(X,KX ⊗ L) ∼= Hn,i(X,L)

can be represented by harmonic (n, i)-forms with values in the line bundle L and it follows
from a metric computation that such forms need to be zero if L has a positive metric, i.e. if
L is ample.

The usage of metrics explains the restriction to the ground field C. In fact, it is known that
the result does not hold for ample line bundles on smooth projective varieties over fields of
arbitrary characteristic. Nonetheless, there is a much more algebraic proof of the Kodaira
vanishing theorem, which only uses the following consequence of Hodge theory: the natural
map of sheaves CX → OX induces a surjection

H i(X,C)→ H i(X,OX)

for all i ≥ 0. Using this fact it is possible to reduce Kodaira’s vanishing theorem above to
Serre vanishing. The main trick here is to use ramified coverings of X to pass from L to some
high power of L. More precisely, one uses a branched covering Y → X of X to show that

H i(X,L−N )→ H i(X,L−1)

is surjective for i < dimX and some large N , which allows to conclude what we want because

H i(X,L−r) ∼= HdimX−i(X,Lr ⊗KX)

by Serre duality and the above group vanishes for large r by Serre vanishing. For more details
on this argument, see [3, Section 2.4] for details.

This algebraic proof of Kodaira’s vanishing theorem has the advantage that it also works in the
case where X is slightly singular, as long as H i(X,C)→ H i(X,OX) is still surjective. In fact,
the strategy is very robust enough to allow not only to weaken the smoothness assumption on
X but also the positivity assumption on L. This leads to the Kawamata–Vieweg vanishing
theorem, which plays a central role in higher dimensional birational geometry.

Theorem 15.7 (Kawamata–Vieweg vanishing theorem). Let X be a smooth projective variety
over an algebraically closed field of characteristic zero. Let ∆ =

∑
diDi be a Q-divisor and

let L be a line bundle on X. Assume that L+∆ is nef and big and that
∑
Di has only simple

normal crossings. Then

H i(X,OX(KX + L+ d∆e)) = 0 for i > 0.

Proof. See [3, Theorem 2.64 and 3.1].

Note that in the special case where ∆ = 0, the above theorem says that

H i(X,OX(KX + L)) = 0 for i > 0

whenever L is a big and nef line bundle on X.

Serre duality shows that

H i(X,OX(−N)) ∼= HdimX−i(X,OX(KX +N)).

The following theorem thus generalizes the above version to the situation of klt pairs.

Theorem 15.8 (Logarithmic Kawamata–Vieweg vanishing theorem). Let (X,∆) be a proper
klt pair over an algebraically closed field of characteristic zero. Let N be a Q-Cartier divisor
on X such that N ∼num M + ∆, where M is a nef and big Q-Cartier Q-divisor . Then

H i(X,OX(−N)) = 0 for i < dimX.
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16 Cone and contraction theorem for klt pairs

16.1 Statement of results

We start by formulating four central theorems culminating in the cone and contraction the-
orem for klt pairs. Throughout we work over an algebraically closed field of characteristic
zero.

Theorem 16.1 (Non-vanishing Theorem). Let (X,∆) be a proper klt pair over an alge-
braically closed field of characteristic zero. Let D be a nef Cartier divisor on X and suppose
that for some a > 0 the divisor aD −KX −∆ is Q-Cartier, nef and big.

Then, for all m� 0, H0(X,mD) 6= 0.

Theorem 16.2 (Basepoint-free Theorem). Let (X,∆) be a proper klt pair over an al-
gebraically closed field of characteristic zero. Let D be a nef Cartier divisor such that
aD − KX − ∆ is nef and big for some a > 0. Then the linear series |bD| has no base-
points for all b� 0.

Theorem 16.3 (Rationality Theorem). Let (X,∆) be a proper klt pair over an algebraically
closed field of characteristic zero such that KX + ∆ is not nef. Let a(X) > 0 be an integer
such that a(X) · (KX + ∆) is Cartier. Let H be a nef and big Cartier divisor and define

r = r(X) := max{t ∈ R | H + t(KX + ∆) is nef}.

Then r is a rational number of the form r = u/v where u, v are integers with

0 < v ≤ a(X) · (dimX + 1).

Moreover, there is a (KX + ∆)-negative extremal ray R with R · (H + r(KX + ∆)) = 0.

Theorem 16.4 (Cone Theorem). Let (X,∆) be a projective klt pair over an algebraically
closed field of characteristic zero. Then

(1) There are countably many rational curves Cj ⊂ X such that 0 < −(KX+∆)·Cj ≤ 2 dimX
and

NE(X) = NE(X)(KX+∆)≥0 +
∑

[Cj ] · R≥0.

(2) For any ε > 0 and ample Q-divisor H,

NE(X) = NE(X)(KX+∆+εH)≥0 +
∑
finite

[Cj ] · R≥0

(3) Let F ⊂ NE(X) be a (KX + ∆)-negative extremal face. Then the contraction of F , i.e.
the unique morphism contF : X → Z with connected fibres to a projective variety Z such
that a curve is contracted by contF iff it lies in the face F , exists.

(4) Let F and contF be as in (3) and let L be a line bundle on X with L · C = 0 for every
curve C with [C] ∈ F . Then there is a line bundle M on Z with L = cont∗FM .

The proofs of the above theorems are pretty interwoven with each other. The logical order
in which these theorems are proven is as follows:

non-vanishing ⇒ basepoint free ⇒ rationality ⇒ cone.

A complete proof of the non-vanishing theorem as well as of all implications above can be
fuond e.g. in [3, Section 3]. To illustrate the mechanism of the proofs and because of lack of
time, we will only explain one step, namely the first implication above.
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16.2 The non-vanishing theorem implies the basepoint-free theorem

The purpose of this section is to prove that Theorem 16.1 implies Theorem 16.2.

Let (X,∆) be a proper klt pair over an algebraically closed field of characteristic zero. Let
D be a nef Cartier divisor on X and suppose that for some a > 0 the divisor aD −KX −∆
is Q-Cartier, nef and big. By the non-vanishing theorem, we may assume that for all m� 0,
H0(X,OX(mD)) 6= 0.

For any positive integer s, let B(s) denote the reduced base locus of the linear series |sD|.
Clearly B(st) ⊂ B(s) ∪ B(t) and so B(sa) ⊂ B(sb) for any positive integers s, a and b with
a ≥ b. By Noetherian induction

Bs :=
⋂
a≥1

B(sa)

is either empty or it is algebraic and coincides with B(sa) for a� 0.

Step 1. It suffices to show that Bs = ∅ for all s ≥ 2.

Proof. If Bs = ∅ for all s ≥ 2, then in particular Bs = ∅ and Bt = ∅ for coprime integers
s, t|geq2. This implies B(sa) = ∅ and B(tb) = ∅ for some a, b ≥ 1. Replacing s and t by sa and
tb, we may assume that a = b = 1. Since |sD| and |tD| are basepoint-free, the linear series
|n1sD| and |n2tD| is basepoint-free for all n1, n2 ≥ 1. Now, any sufficiently large integer
m � 0 is a linear combination m = n1s + n2t and so |mD| is basepoint-free, as we want.
This concludes step 1.

From now on we assume for a contradiction that Bs 6= ∅ for some s ≥ 2. In particular, there
is some m = sa such that Bs = Bs(mD) is non-empty.

Step 2. There is a resolution f : Y → X with the following properties:

(a) f∗mD ∼ L+
∑
rjFj where L is basepoint-free, rj ≥ 0 are integers and rj > 0 if and only

if Fj is a divisorial component of the base locus of f∗mD.

(b) the divisor f∗(aD −KX −∆) −
∑
pjFj is ample for suitable 0 < pj � 1, where the Fj

need not be f -exceptional;

(c) KY ∼Q f∗(KX + ∆) +
∑
ajFj , where aj > −1 are rational numbers and and Fj are

prime divisors on Y that are either f -exceptional or proper transforms of components of
∆; Moreover, −1 < aj < 0 whenever Fj is not f -exceptional.

(d) the divisor
⋃
Fj given by the union of all Fj that appear above is a snc divisor

Proof. Let Z ⊂ X be the base locus of |mD|. By Hironaka’s theorem, there is a log resolution
f : Y → X such that f−1(Z ∪ supp(∆) ∪ Xsing) is a simple normal crossing divisor. Since
X is normal and f is proper birational, it has connected fibres by Zariski’s main theorem.
Hence,

f∗f
∗OX(mD) ∼= f∗OX ⊗OX(mD) ∼= OX(mD).

This implies that f∗ induces an isomorphism H0(X,mD) ∼= H0(Y, f∗mD) and so

Bs(f∗mD) = f−1Bs(mD) = f−1(Z).

By construction, this is a divisor on Y with simple normal crossings. If Fj denote the
components of this divisor, then we find

f∗mD ∼ L+
∑

rjFj
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for some integers rj ≥ 1 and a basepoint-free Cartier divisor L. This proves item (a).

Note that item (a) is stable under replacing Y by a further log resolution τ : Y ′ → Y of the
pair (X,

∑
Fj), i.e. a proper birational morphism so that Y ′ is smooth and τ−1

∑
Fj is a snc

divisor. Since aD−KX −∆ is nef and big, it thus follows from item (d) in Proposition 15.6
that we may assume that item (b) in Step 2 holds true. Item (c) in Step 2 follows directly
from the fact that (X,∆) is klt. Finally, item (d) follows frmo the fact that ∪Fj is supported
on f−1(Z ∪ supp(∆) ∪ Xsing), which is a snc divisor by construction. This concludes step
2.

Recall from the above proof that Bs(f∗mD) = f−1Bs(mD). Hence, in order to arrive at a
contradiction to our assumption that Bs = Bs(mD) is non-empty, it suffices to show that
there is some component of the base locus of f ∗mD that is not in the base locus of f∗bD
for b � 0. In other words, we need to show that there is soe component Fj with rj > 0 in
item (a) of Step 2 such that Fj is not contained in Bs(f∗bD) for b� 0.

Step 3. For an integer b > 0 and a rational number c > 0 such that b > cm+a, the Q-Cartier
divisor

N(b, c) := f∗bD −KY +
∑

(−crj + aj − pj)Fj

is ample.

Proof. By step 2, we have −KY +
∑
ajFj ∼Q −f∗(KX + ∆). Using this we get

N(b, c) ∼Q (b− cm− a)f∗D + c(mf∗D −
∑

rjFj) + f∗(aD −KX −∆)−
∑

pjFj .

Since b > cm+ a, (b− cm− a)f∗D is nef. By step 2,

mf∗D −
∑

rjFj ∼ L

is basepoint-free, hence nef, and

f∗(aD −KX −∆)−
∑

pjFj

is ample. Hence, N(b, c) is linearly equivalent to the sum of a nef divisor and an ample
divisor, and so it is ample by Kleiman’s criterion. This concludes step 3.

By item (d) in step 2, the fractional part of the ample divisor N(b, c) from step 3 has simple
normal crossing support. The Kawamata-Vieweg vanishing theorem (Theorem 15.7) thus
implies that

H1(Y,KY + dN(b, c)e) = 0.

Since
dN(b, c)e = f∗bD −KY +

∑
d−crj + aj − pjeFj ,

this is saying that

H1(Y, f∗bD +
∑
d−crj + aj − pjeFj) = 0. (5)

Step 4. Up to changing the pj ’s from step 2 slightly, we may assume that there is a rational
number c > 0 such that ∑

d−crj + aj − pjeFj = A− F

where A is effective and f -exceptional and F = Fj for some j with rj > 0.
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Proof. We choose c > 0 such that

min
j

(−crj + aj − pj) = −1

Up to wiggeling the pj ’s from step 2 slightly, we may assume that this minimum is achieved
for a unique index j0, which then necessarily has to satisfy rj > 0. With this choice for the
rational number c > 0, we find that∑

d−crj + aj − pjeFj = A− F

where A is effective and F = Fj0 with rj0 > 0. It remains to show that A is f -exceptional.
For this note that rj > 0 for all j and so −crj ≤ 0 for all j. Moreover, −pj ≤ 0 is negative.
Since

min
j

(−crj + aj − pj) = −1,

and this minimum is achieved for the index j = j0 only, we conclude that for j 6= j0 we have
d−crj + aj − pje ≥ 0 and strict inequality holds here only if aj > 0. But aj > 0 implies that
Fj is f -exceptional by item (c) in step 2. This concludes step 4.

By (5) and step 4, we find that

H1(Y, f∗bD +A− F ) = 0

for all integers b > cm + a, where A is an effective f -exceptional divisor and F = Fj0 with
rj0 > 0. This vanishing implies that the restriction map

H0(Y, f∗bD +A) −→ H0(F, (f∗bD +A)|F )

is surjective. Since A is effective and f -exceptional, we find that f∗OX(A) = 0 and so the
projection formula yields

H0(Y, f∗bD +A) ∼= H0(X, bD).

Since F is in the base locus of f∗bD, we conclude that the above surjection is the zero map
and so

H0(F, (f∗bD +A)|F ) = 0.

To derive the desired contradiction, we aim to apply the non-vanishing theorem to (f∗bD +
A)|F as follows.

Step 5. The non-vanishing theorem applies to the divisor (f∗bD+A)|F and this shows that

H0(F, (f∗bD +A)|F ) 6= 0

for b� 0.

Proof. Let

A′ :=
∑
j 6=j0

(−crj + aj − pj)Fj .

Then A = dA′e. Moreover, F 6⊂ suppA′. Since F = Fj0 and
⋃
Fj is a snc divisor by step 2,

we find that the support of the restriction A′|F is also a simple normal crossing divisor. In
particular, the fractional part of the restriction (f∗bD +A′)|F is a snc divisor. By step 3,

N(b, c) = f∗bD −KY − F +A′
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is ample on Y and so this divisor restricts to an ample divisor on F . On the other hand,
KF = (KY +F )|F . Hence, if we knew that the pair (Y, (A−A′)|F ) was klt, where (A−A′)|F
denotes the fractional part of the divisor N(b, c)|F , then the non-vanishing theorem (Theorem
16.1) applied to F would show that

H0(F, (f∗bD +A)|F ) 6= 0

as we want. Hence it remains to show that the pair (F,∆F ) with ∆F := (A − A′)|F is klt.
Since A is the round up of A′ and F is not contained in the support of A′, we find that

∆F =
∑
j 6=j0

ejFj |F with ej = d−crj + aj − pje − (−crj + aj − pj).

Clearly, 0 ≤ ej < 1 and so discrep(F,∆F ) > −1 by Proposition 14.16, which implies that
(F,∆F ) is klt, as we want. This concludes step 5 and hence the proof of the basepoint-free
theorem.

17 Canonical models

Definition 17.1. Let (X,∆) be a proper klt (or lc) pair. Then the canonical ring of (X,∆)
is defined as

R(X,∆) :=
∞⊕
m=0

H0(X,OX(mKX + bm∆c)).

Note that the canonical ring is indeed a ring, because

bm1∆c+ bm2∆c ≤ b(m1 +m2)∆c.

(This is the reason why we have to take round downs, as the inequality would go in the wrong
direction if we were using round ups in the definition of canonical rings.)

Theorem 17.2. Let (X,∆) be a proper klt pair over an algebraically closed field k of charac-
teristic zero. If KX + ∆ is nef and big, then the canonical ring R(X,∆) is finitely generated.

Proof. Let a ≥ 2 be a positive integer such that D := r(KX + ∆) is Cartier. Since KX + ∆ is
nef and big, the same holds true for D −KX −∆. By the basepoint-free theorem (Theorem
16.2), aD is basepoint-free for all a � 0. Since D is nef and big, Proposition 15.6 implies
that the associated morphism

φ := φ|aD| : X −→ P(H0(X, aD)∨)

is birational onto its image for a sufficiently large and we denote by Y the image of φ|aD|.
There is an ample line bundle L on Y such that

φ∗L = aD = ar(KX + ∆).

Let Gm := φ∗OX(mKX + bm∆c). Then

R(X,∆) =

∞⊕
m=0

H0(Y,Gm).

Moreover,
Gm+ar

∼= L⊗Gm
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by the projection formula, because φ∗L = ar(KX + ∆). Since L = OY (1), we have

Y = ProjS, with S =
∞⊕
i=0

H0(Y,Li).

In particular, S is finitely generated. On the other hand, R(X,∆) is generated as an S
module by

ar−1⊕
m=0

H0(Y,Gm)

which is a finite-dimensional k-vector space. Since S is finitely generated over k, it follows
that R(X,∆) is a finitely generated k-algebra, as we want.
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