Birational Geometry

Sheet 07

Exercise 1. Let R be a finitely generated \mathbb{Z} -algebra. Show that

(a) for any maximal ideal $\mathfrak{m} \subset R$, R/\mathfrak{m} is a finite field;

(*Hint:* You may use the following fact: if K/k is a field extension so that K is a finitely generated k-algebra, then K/k is algebraic and hence a finite extension. Use this to reduce the problem to showing that the preimage of \mathfrak{m} via $\mathbb{Z} \to R$ is a maximal ideal of \mathbb{Z} .)

(b) the closed points of $\operatorname{Spec} R$ are dense.

Exercise 2. Let X and Y be projective varieties, let $\pi : X \to Y$ be a morphism, let $f : C \to X$ be a morphism from a smooth projective curve C and let $c_0 \in C$. Let T be an affine curve and let $F : T \times C \longrightarrow X$ be a morphism with

- (a) $F(t, c_0) = f(c_0)$ for all $t \in T$;
- (b) there is some $t_0 \in T$ such that $F(t_0, c) = f(c)$ for all $c \in C$;
- (c) for general $t \in T$ and general $c \in C$, $\pi(F(t,c)) \neq \pi(f(c))$.

Show that there is a morphism $f': C \to X$ and an effective 1-cycle of rational curves R on X with $f(c_0) \in R$ and $\pi_* R \neq 0$ such that

$$f_*C \sim_{num} f'_*C + R.$$

Exercise 3 (Lueroth's theorem). Let $f : \mathbb{P}^1 \to C$ be a dominant morphism between smooth projective curves over an algebraically closed field k. The purpose of this exercise is to prove Lueroth's theorem, which says that in the above situation, $C \cong \mathbb{P}^1$. This implies in particular that the image of any non-constant morphism $f : \mathbb{P}^1 \to X$ is a rational curve, i.e. the image $f(\mathbb{P}^1)$ is birational to \mathbb{P}^1 . (Note that the analogous statement fails for surface, see Exercise 4 on sheet 06.)

- (a) Prove Lueroth's theorem in the case where the differential $df: T_{\mathbb{P}^1} \to f^*T_C$ is not identically to zero.
- (b) Prove that the df is not identically to zero if the field extension k(C) ⊂ k(P¹) is separable.
 (*Hint:* Use the theorem of the primitive element to find an explicit affine curve that is birational to C.)

(c) Show that f factors as follows:

$$\mathbb{P}^1 \stackrel{h}{\longrightarrow} C' \stackrel{g}{\longrightarrow} C,$$

where g is separable and h is purely inseparable, i.e. $k(C) \subset k(C')$ is separable while $k(C') \subset k(\mathbb{P}^1)$ is purely inseparable. Conclude from (b) that this reduces Lueroth's theorem to the case where f is purely inseparable.

(*Hint:* You may use without proof that a field existence $k(C) \subset k(C')$ with the required properties exists.)

(d) Prove Lueroth's theorem in the case where f is purely inseparable, by showing that f factors through $F^{\circ r} : \mathbb{P}^1 \to \mathbb{P}^1$, where $F([x : y]) = [x^p : y^p]$ denotes the Frobenius endomorphism and where $\deg(f) = p^r$ for some positive integer r. Conclude from this that $f = F^{\circ r}$ and $C \cong \mathbb{P}^1$.

(Hint: Note that it is essentially enough to prove the assertion on the level of function fields and recall from field theory that if L/K is a purely inseparable field extension of degree p^r , then $L^{p^r} \subset K$, or in other words, $L \subset K^{1/p^r}$.)

You can hand in your solutions via email to schreieder@math.uni-hannover.de before **Mon-**day, **June 22th**, **10:00**. It is preferable if you submit solutions as a single (pdf) file, e.g. by using Latex or by converting pictures of your handwritten solutions into a single (pdf) file.