Unramified cohomology

Wednesday 12-2 pm, F442

The program and dates are provisional and open for discussion. Please contact schreieder@... if you are willing to give a talk.

1. Introduction (Schreieder, Oct 21)

2. Review of étale cohomology (Overkamp, Nov 4)

Recall briefly the definition of étale cohomology and discuss briefly the following topics: Kummer sequence and Hilbert theorem 90 for function fields; Cohomology with support and Gysin sequence, Comparison theorem to singular cohomology (for complex varieties). A good source is [13]; more details can be found in [12].

3. Brauer groups (Mezzedimi + Torelli, Nov 11 + 18)

Discuss some basic facts about Brauer groups, including the Brauer group of a field and the (cohomological) Brauer group of a scheme, or possibly of a complex analytic space. A reference for Brauer groups of varieties from a complex geometric point of view is [1]. The algebraic story of Brauer groups of a field is for instance treated in the book [10], or in Grothendiecks original paper(s) [11].

You should also introduce residue maps for Brauer groups and give a geometric interpretation for them. Use this to define unramified Brauer groups and explain in particular the idea that the Brauer group of a smooth projective variety over an algebraically closed field can be computed by looking at unramified elements of the Brauer group of its function field.

4. Definition and basic properties of unramified cohomolgy (Christ, Nov 25)

You may use the surveys [14] or [5] to introduce unramified cohomology of a finitely generated field extension K/k. Prove some basic properties: it is a stable invariant (does not change if we replace K by K(t)), it has some functoriality properties, etc. Prove also that $H^1(k(X)/k, \mu_m^{\otimes n}) \cong H^1(X, \mu_m^{\otimes n})$ whenever X is smooth projective over k (an algebraically closed field in which m is invertible).

5. Merkurjev's pairing and the degeneration method (Valloni, Dec 2)

Recall briefly the definition of Chow groups of a scheme of finite type over a field k (see e.g. Fulton's book). Introduce Merkurjev's pairing [14, §5] (but skip its generalizaton to snc schemes in [14, §6]).

Introduce the notion of decompositions of the diagonal and prove some basic facts about it (e.g. stably rational varieties admit a decomposition of the diagonal), see e.g. [4], [14, §7] and the references therein. Explain the specialization method, see e.g. [14, §8] and the references given there.

6. Computation of unramified cohomology and applications (Pavic, Dec 16)

Discuss some of the examples mentioned in [14, \$9].

7. Connection to the IHC (Paulsen, Jan 6)

Follow the approach in [15, §6] to prove the following theorem of Colliot-Thélène and Voisin [8], which says that for a smooth complex projective variety X, the failure of the integral Hodge conjecture for codimension two cycles is detected by

$$\operatorname{coker}(H^3_{nr}(X,\mathbb{Q})\longrightarrow H^3_{nr}(X,\mathbb{Q}/\mathbb{Z})).$$

Discuss also the generalization given in [15] and in particular the application [15, Theorem 1.2].

8. Applications of the CTV-theorem (Schreieder, Jan 20)

Discuss some applications of [8], including the main result of [5], where Colliot-Thélène proves a generalization of a beauiful result of Benoist Ottem [2], asserting that the integral Hodge conjecture fails for the product of an Enriques surface with a very general elliptic curve.

9. Theorem of Bloch-Esnault (Valloni, Jan 27)

Discuss the main result of [3] and possibly the application in [9].

Literatur

- [1] A. Beauville, *The Lüroth problem*, http://math1.unice.fr/~beauvill/conf/Cime.pdf.
- [2] O. Benoist and J.C. Ottem, Failure of the integral Hodge conjecture for threefolds of Kodaira dimension zero, Commentarii Mathematici Helvetici 95 (2020), 27-35.
- [3] S. Bloch and H. Esnault, The coniveau filtration and non-divisibility for algebraic cycles, Math. Ann. 304 (1996), 303–314.
- [4] S. Bloch and V. Srinivas, *Remarks on Correspondences and Algebraic Cycles*, American J. Math. **105** (1983), 1235–1253.
- [5] J.-L. Colliot-Thélène, Birational invariants, purity and the Gersten conjecture, K-theory and algebraic geometry: connections with quadratic forms and divison algebras (Santa Barbara, CA, 1992), 1–64, Proc. Sympos. Pure Math. 58, AMA, Providence, RI, 1995.
- [6] J.-L. Colliot-Thélène, Cohomologie non ramifiée dans le produit avec une courbe elliptique, Manuscripta Math. 160 (2019), 561–565.
- [7] J.-L. Colliot-Thélène and M. Ojanguren, Variétés unirationnelles non rationnelles: audelà de l'exemple d'Artin et Mumford, Invent. Math. 97 (1989), 141–158.
- [8] J.-L. Colliot-Thélène and C. Voisin, Cohomologie non ramifiée et conjecture de Hodge entière, Duke Math. J. 161 (2012), 735–801.
- [9] H.A. Diaz, On the unramified cohomology of certain quotient varieties, Preprint 2019, arXiv:1906.06598v1.
- [10] P. Gille and T. Szamuely, *Central simple algebras and Galois cohomology*, Cambridge Studies in Advanced Mathematics **101**, 2006.
- [11] A. Grothendieck, Le groupe de Brauer I, II, III, in: Dix exposés sur la cohomologie des schémas, Advanced Studies in Pure Mathematics vol. 3, Masson et North-Holland, 1968.
- [12] J.S. Milne, *Etale cohomology*, Princeton University Press, Princeton, NJ, 1980.

- [13] J.S. Milne, Lectures on étale cohomology, 2013, https://www.jmilne.org/math/ CourseNotes/LEC.pdf
- [14] S. Schreieder, Unramified cohomology, algebraic cycles and rationality, Preprint 2020, https://www.iag.uni-hannover.de/fileadmin/iag/homepages/schreieder/ publications/survey.pdf
- [15] S. Schreieder, Algebraic cycles and refined unramified cohomology, Preprint 2020, https://www.iag.uni-hannover.de/fileadmin/iag/homepages/schreieder/ publications/refined.pdf