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Abstract. We show that the Tate conjecture for divisors over a finite field F is equivalent to

an explicit algebraic problem about the third Milnor K-group of the function field F̄(x, y, z) in

three variables over F̄.

1. Introduction

An important invariant of a field L is the Milnor K-theory KM
∗ (L), see [Mil70]. This is the

graded algebra obtained as the quotient of the free tensor algebra on the abelian group L∗ of

units in L, modulo the two-sided ideal generated by a⊗ (1− a) with a ∈ L \ {0, 1}. Elements

of degree i are given by finite linear combinations of symbols (g1, . . . , gi) with g1, . . . , gi ∈ L∗,
modulo the subgroup generated by the relation (g1, . . . , gi) = 0 whenever ga + gb = 1 for some

1 ≤ a < b ≤ i.
We will be interested in the case when L = F̄(X) for some geometrically irreducible variety

X over a finite field F = Fq with q elements. In other words, L is the function field of the

base change X̄ = X × F̄ of X to the algebraic closure of F. The arithmetic Frobenius Frobq

relative to Fq acts via id×Frobq on X̄ and this induces a Z-linear action F̄(X)∗ → F̄(X)∗,

given explicitly by raising the coefficients of a given rational function to the q-th power. This

induces a Z-linear action

Frobq : KM
i (F̄(X)) //KM

i (F̄(X)) (1.1)

on the Milnor K-groups of F̄(X), which we denote by Frobq.

The `-adic completion

KM
i (F̄(X))⊗̂Z` := lim←−

r

KM
i (F̄(X))⊗ Z/`r

is a Z`-module with a natural Galois action by the absolute Galois group GF := Gal(F̄/F). We

then get an associated Q`-vector space

KM
i (F̄(X))⊗̂Q` := (KM

i (F̄(X))⊗̂Z`)⊗Z`
Q`

and the Frobenius action in (1.1) induces a Q`-linear map

Frobq : KM
i (F̄(X))⊗̂Q`

//KM
i (F̄(X))⊗̂Q`. (1.2)
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We say that λ ∈ Q` is an eigenvalue of this map if Frobq −λ · id has a nontrivial kernel on

KM
i (F̄(X))⊗̂Q`.

The first main result of this paper is as follows.

Theorem 1.1. Let F = Fq be a finite field with q elements and let ` be a prime invertible in

F. The Tate conjecture for divisors holds on all smooth projective varieties over F if and only

if q is not an eigenvalue of the arithmetic Frobenius action

Frobq : KM
3 (F̄(P3))⊗̂Q`

//KM
3 (F̄(P3))⊗̂Q`.

For the Tate conjecture for divisors, we refer the reader to the survey [To17] and the references

therein. de Jong and Morrow [Mor19] showed that the Tate conjecture for divisors is equivalent

to the Tate conjecture for divisors on surfaces. The above theorem shows that this is in turn

entirely encoded in the third Milnor K-group of the purely transcendental extension F̄(x, y, z)

in three variables over F̄ together with its natural Frobenius action. This may be seen as

an elementary reformulation of the Tate conjecture for divisors in terms of a fairly explicit

algebraic problem about the function field F̄(x, y, z) in three variables.

Theorem 1.1 develops further some results from joint work with Balkan [BS24]. While the

results in [BS24] are valid in arbitrary codimension, we do not know if Theorem 1.1 admits

generalizations to cycles of higher codimension.

By Theorem 1.1, the Tate conjecture for divisors is equivalent to the injectivity of Frobq −q·id
on KM

3 (F̄(P3))⊗̂Q`. The next theorem collects some related results around this question.

Theorem 1.2. Let F = Fq be a finite field with q = pm elements and let ` be a prime invertible

in F. The following hold true:

(1) KM
3 (F̄(P3))⊗̂Z` 'M⊗̂Z` for a GF-module M which is Z-free of countable rank.

(2) The operator Frobq −q · id is injective on KM
3 (F̄(P3))⊗Q`.

(3) The operator Frobq −q · id is injective on the p-adic completion KM
3 (F̄(P3))⊗̂Qp.

(4) There is a Galois-equivariant surjection

((F̄(P3)∗)⊗3)⊗̂Q`
// //KM

3 (F̄(P3))⊗̂Q`

and the action of Frobq −q · id on ((F̄(P3)∗)⊗3)⊗̂Q` is injective.

(5) If we set

Sq := {λ ∈ Z | there is a nonzero class α ∈ KM
3 (F̄(P3))⊗̂Q` with Frobq α = λα},

then Sq ⊂ {±1,±q1/2,±q} and {±1,±q1/2} ⊂ Sq for q = p4m.

Some comments are in order.

Item (1) shows that the a priori very complicated Z`-module KM
3 (F̄q(P3))⊗̂Z` that is the

key player in Theorem 1.1 is in fact quite simple: it is the `-adic completion of a GF-module

M whose underlying Z-module is free of countable rank. We will see in the proof (see Theorem

4.2 below) that M is a GF-submodule of a countable direct sum N =
⊕
Pi of permutation

GF-modules Pi ' Zni . The Frobenius eigenvalues on N⊗̂Q` are roots of unity, see Lemma 5.2
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below. Item (5) is thus somewhat surprising, as it says that the submodule M ⊂ N has the

property that M⊗̂Q` has q1/2 as eigenvalue as long as q = p4m is a 4-th power.

Item (2) follows from the simple observation that Frobq acts via finite orbits on any element

in KM
n (F̄(X)). This does of course not imply the criterion formulated in Theorem 1.1, because

⊗Q` and ⊗̂Q` do in general not agree on non-finitely generated abelian groups.

Item (3) asserts that the operator in question is injective on the p-adic completion, opposed

to the `-adic completion needed in Theorem 1.1. In other words, the p-adic version of the

criterion in Theorem 1.1 holds in fact true. This is somewhat remarkable because the `-

adic Tate conjecture for divisors is known to be equivalent to the p-adic version in crystalline

cohomology, see [Mor19, Proposition 4.1].

Item (4) shows that Frobq −q · id is injective on the `-adic completion (F̄(P3)∗)⊗3⊗̂Q`, which

surjects onto KM
3 (F̄(P3))⊗̂Q`. As before, this does not imply the criterion in Theorem 1.1

because, in contrast to the case of finite-dimensional vector spaces, an injective operator on an

infinite dimensional vector space may descend to a non-injective operator on some quotient.

Item (5) shows that the possible integral eigenvalues λ ∈ Z of Frobq on KM
3 (F̄(P3))⊗̂Z` are

±1, ±q1/2, and ±q. A similar result will be proven for KM
3 (F̄(Y ))⊗̂Q` as long as H3

nr(Ȳ , µ
⊗3
`r ) =

0 for all r, see Proposition 6.1 below. This may be seen as a certain weight result for the integral

eigenvalues of the Frobenius action on completed Milnor K-theory. We do not know if the result

generalizes to larger degree.

For sufficiently divisible powers q = pm, item (5) shows that the eigenvalues ±1 and ±q1/2

actually occur. By Theorem 1.1, the question whether one of the remaining eigenvalues ±q
occurs is equivalent to the Tate conjecture for divisors. (Note that if −q occurs as eigenvalue

of Frobq, then q2 occurs for Frobq2 .)

2. Preliminaries and conventions

2.1. Conventions. For an abelian group M , we denote by

M⊗̂Z` := lim←−
r

M/`r and M⊗̂Q` = (M⊗̂Z`)⊗Z`
Q`

the `-adic completion of M and its associated Q`-vector space, respectively. An element m ∈M
is `r-divisible (or divisible by `r) if m = `r ·m′ for some m′ ∈ M ; it is `∞-divisible if it is `r-

divisible for all r ≥ 1. The latter is equivalent to asking that the image of m in M⊗̂Z` vanishes.

For a field k with a separable closure ks, Gk := Gal(ks/k) denotes the absolute Galois group

of k. An algebraic scheme is a separated scheme of finite type over a field. A variety is an

integral algebraic scheme.

Throughout, F = Fq denotes a finite field with q elements and F̄ denotes its algebraic closure.

The arithmetic Frobenius relative to F = Fq is denoted by Frobq ∈ GF.

Let G := Ẑ be the absolute Galois group of a finite field. We say that a G-module P is a

permutation G-module if P ' Zn admits a finite basis B and G acts via permutation on B.

Since B is finite, this action must factor through a finite quotient G→ Z/m. Consideration of

the orbits of this action on B shows that P decomposes into the finite sum of its indecomposable
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G-submodules, which are themselves permutation modules; moreover, P is indecomposable if

and only if the G-action on B has only one orbit and G acts via cyclic permutation.

2.2. Milnor K-groups. If L is a field, then KM
n (L) denotes the n-th Milnor K-group of L,

see [Mil70]. If L =
∏
i∈I Li is a product of finitely many fields, then we define KM

n (L) :=∏
i∈I K

M
n (Li) to be the product of the Milnor K-groups KM

n (Li). This agrees with the direct

sum because I is finite.

For instance, if X is a variety over F, then F̄(X) is a product of fields (namely the function

fields of the components of X̄ = X × F̄) and so KM
n (F̄(X)) is defined. Similarly, if x ∈ X

denotes a schematic point, then x̄ denotes the base change to F̄. This is a finite union of

points x̄ = {x̄1, . . . , x̄m} in X̄ which form an orbit under the GF-action. The Milnor K-

group KM
n (κ(x̄)) is then defined as the product (equivalently the sum) of the Milnor K-groups

KM
n (κ(x̄i)) of the residue fields of the points x̄i.

If x ∈ X(1) is a codimension one point contained in the smooth locus of X, then there is a

residue map ∂x : KM
n (F(X))→ KM

n−1(κ(x)), see [Mil70]. Moreover, with the above conventions,

there is also a natural residue map ∂x̄ : KM
n (F̄(X))→ KM

n−1(κ(x̄)).

2.3. Étale cohomology. If X is an algebraic scheme over a field k and ` is a prime invertible

in k, then we denote by H i(X,µ⊗n`r ), H i(X,Z`(n)), and H i(X,Q`(n)) the respective continuous

étale cohomology groups, see [Jan88]. If k is a finite field or the algebraic closure of a finite field,

then these groups agree with ordinary étale cohomology by [Jan88, (0.2)], because H i(X,µ⊗n`r )

is finite in this case and so the Mittag–Leffler condition holds true. For convenience we denote

the coefficients µ⊗n`r sometimes by Z/`r(n).

If X is a scheme over a finite field F, then we denote by X̄ = X × F̄ the base change to an

algebraic closure of F. We denote by ` a prime invertible in F. The Galois group GF acts on

the second factor of X̄ = X× F̄, which induces a Q`-linear Galois action on H i(X̄,Q`(n)). The

Galois-invariant subspace is denoted by H i(X̄,Q`(n))GF .

We denote by Frobq the endomorphism of X̄ induced by id×Frobq; its action on étale coho-

mology is accordingly denoted by Frob∗q . The analogous action on Milnor K-theory KM
n (F̄(X))

is induced by the Frobq-action on F̄(X)∗ given by raising the coefficients of a rational function

to its q-th power. This action will be denoted by Frobq; both actions are compatible with each

other, see Theorem 2.2 below.

2.4. Cycle conjectures. Let X be a smooth projective variety over a finite field F and fix

a prime ` invertible in F. We say that the 1-semi-simplicity conjecture holds in degree i if

the Frobenius action on H2i(X̄,Q`(i)) is semi-simple at the eigenvalue 1, i.e. the generalized

eigenspace and the eigenspace agree at the eigenvalue 1. We further say that the Tate conjecture

holds in degree i if the cycle class map

cliX : CHi(X)⊗Z Q`
//H2i(X̄,Q`(i))

GF

is surjective. We also say that the respective conjecture holds for divisors if it holds in degree

1.
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Both conjectures are trivially true in degree 0. The conjectures hold for divisors on abelian

varieties [Ta66] and K3 surfaces [Mau14, Ch13, MP15, KMP16], but are in general wide open

even for divisors on smooth projective surfaces. In fact, by work of de Jong and Morrow

[Mor19], the case of divisors on smooth projective varieties of arbitrary dimension is equivalent

to the case of divisors on smooth projective surfaces.

We further have the following result of Milne, see [Mil86, Proposition 8.2 and Remark 8.5].

Lemma 2.1 (Milne). Let X be a smooth projective variety over a finite field F. Assume that

the Tate conjecture holds for divisors on X. Then the following holds:

(1) the 1-semi-simplicity conjecture holds in degree 1 on X;

(2) the Tate conjecture for divisors and the 1-semi-simplicity conjecture in degree 1 on X

hold for any prime `′ invertible in F.

2.5. Filtrations and unramified cohomology. For an equi-dimensional algebraic scheme

X over a field k, we define X(j) as the set of all codimension-j points of X, i.e. X(j) := {x ∈
X
∣∣ dimX − dim {x} = j}. We further denote by

FjX := {x ∈ X
∣∣ dimX − dim {x} ≤ j}

the set of points of codimension at most j. This yields a filtration F0X ⊂ F1X ⊂ · · · ⊂ X and

we may regard FjX as a pro-scheme given by the system of all open subsets of X that contain

X(j), see [Sch23]. For us the case j = 0 will be particularly important and we may think about

F0X as the set of generic points of X.

Let A(n) ∈ {µ⊗n`r ,Z`(n),Q`(n)}, where ` is a prime invertible in k. We then write

H i(FjX,A(n)) := lim//
U⊂X

H i(U,A(n)),

where U ⊂ X runs through all open subsets with FjX ⊂ U . If X = Yk for a variety Y defined

over a subfield k′ ⊂ k, then any element in Gal(k/k′), i.e. any field automorphism of k that fixes

k′, acts naturally on H i(FjX,A(n)). (This uses that we may, under the given assumptions,

run in the above direct limit through those open subsets that are defined over k′.)

The Bockstein sequence for X yields in the direct limit a Bockstein sequence

. . . //H i(FjX,Z`(n)) ×`
r
// H i(FjX,Z`(n)) //H i(FjX,µ

⊗n
`r ) //H i+1(FjX,Z`(n)) // . . .

that we will use, cf. [Sch23].

We denote by N∗ the coniveau filtration on H i(X,A(n)), which is defined via the kernel of

the natural map

N jH i(X,A(n)) := ker(H i(X,A(n)) //H i(Fj−1X,A(n))).

We will further use the shorthand notation

H i(X,A(n))/N j := H i(X,A(n))/N jH i(X,A(n)).

If X is smooth, then for any codimension one point x ∈ X(1), there is a residue map

∂x : H i(F0X,A(n)) //H i−1(x,A(n− 1)),
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where H i−1(x,A(n − 1)) = H i−1(F0{x}, A(n − 1)). The unramified cohomology of X with

values in A(n) is the subgroup H i
nr(X,A(n)) ⊂ H i(F0X,A(n)) of classes that lie in the kernel

of ∂x for all x ∈ X(1), see [CT95, Sch21]. As a consequence of purity and the localization/Gysin

sequence, we have

H1
nr(X,A(n)) = H1(X,A(n))

and

H2
nr(X,A(n)) = H2(X,A(n))/N1.

Moreover, N1 ⊂ H2(X,A(n)) agrees for n = 1 with the subspace of algebraic classes, see

[CT95, §4.2] or [Sch23, Lemma 5.8 and Corollary 5.10].

2.6. Consequence of the Bloch–Kato conjecture. If X is defined over k and X̄ = X × k̄
denotes the base change to an algebraic (or separable) closure of k, then H i(FjX̄, A(n)) admits

a natural Galois action by the group Gk.

Theorem 2.2 (Voevodsky). Let X be a variety over a field k and let ` be a prime invertible

in k. Then the following holds:

(1) H i+1(F0X,Z`(i)) is torsion-free;

(2) there is a canonical isomorphism

KM
i (k(X))⊗̂Z` ' // H i(F0X,Z`(i))⊗̂Z`. (2.1)

If X = Yk for a variety Y defined over a subfield k′ ⊂ k, then the above isomorphism is

equivariant with respect to the natural Aut(k/k′)-action on both sides, where Aut(k/k′)

denotes the group of field automorphisms of k that fix k′.

Proof. The Bloch–Kato conjecture proven by Voevodsky [Voe11] yields a canonical Galois-

equivariant isomorphism

KM
i (k(X))/`r ' // H i(F0X,µ

⊗i
`r ), (2.2)

where we used H i(F0X,µ
⊗i
`r ) ' H i(Spec k(X), µ⊗i`r ), see [Mil80, p. 88, III.1.16]. Bloch noticed

that this in turn implies by the Bockstein sequence that H i+1(F0X,Z`(i)) is torsion-free, see

[Blo80, end of Lecture 5] or [Sch23, Remark 5.14]. This proves (1). Using this and the Bockstein

sequence, we get a canonical Galois-equivariant isomorphism

H i(F0X,µ
⊗i
`r ) = H i(F0X,Z`(i))/`r.

Hence, (2.2) induces a Galois-equivariant isomorphism on `-adic completions

KM
i (k(X))⊗̂Z` ' // H i(F0X,Z`(i))⊗̂Z`,

as we want. This proves item (2.1) and hence concludes the proof of the theorem. �

Corollary 2.3. Let X be a variety over a field k which contains all `-power roots of unity.

Then H i(F0X,Z`(j)) is torsion-free for all i, j ∈ Z.
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Proof. If k contains all `-power roots of unity, then the Z`-modulesH i(F0X,Z`(j)) andH i(F0X,Z`(i−
1)) are isomorphic (this isomorphism does of course not respect the respective Galois actions).

The corollary therefore follows directly from item (1) in Theorem 2.2. �

Remark 2.4. The above theorem shows that the `-adic completion KM
n (k(X))⊗̂Z` is related

to the `-adic cohomology of the generic point of X. In particular, if X is smooth projective,

then there is a natural map

Hn(X,Z`(n)) //KM
n (k(X))⊗̂Z`.

This explains the idea that some cycle conjectures, resp. conjectures on `-adic cohomology, may

have interpretations in terms of completed Milnor K-theory. Note however that the above map

is zero if Hn(X,µ⊗n`r ) = N1Hn(X,µ⊗n`r ) for all r ≥ 1. Remarkably, for k = F̄ and n ≥ 3, it

is to the best knowledge of the author an open problem if the latter always holds, see [BE96,

p. 305]. It is likely that this is not the case in general, but if it holds for a given variety X,

then no information of its n-th `-adic étale cohomology is captured by the completed Milnor K-

group KM
n (k(X))⊗̂Z`. This explains one important subtlety of the relation between completed

Milnor K-theory and étale cohomology. We circumvent this problem in the present paper via

the observation that N1H2(X,A(n)) is generated by algebraic classes and so the above question

is well-understood in the case of degree 2 cohomology.

2.7. Prime to ` alterations. Let X be a variety over a field k. An alteration of X is a

a proper surjective and generically finite morphism τ : X ′ → X such that X ′ is smooth.

Alterations exist by the work of de Jong [deJ96]. By an improvement due to Gabber [IT14],

we can moreover assume that deg(τ) is coprime to any given prime ` that is invertible in k.

Alterations with this property are called prime to ` alterations. In this case we have for instance

τ∗ ◦ τ∗ = deg(τ) · id on H i(X,A(n)) and on H i(F0X,A(n)), see e.g. [Sch23, Lemma 2.1]. For

A(n) ∈ {µ⊗n`r ,Z`(n),Q`(n)}, deg(τ) will be invertible in the above groups (as it is coprime to

`) and so various cohomological questions on X can be checked on X ′.

3. The Tate conjecture and `-adically completed Milnor K-theory

The goal of this section is to prove Theorem 1.1. We start with two lemmas.

Lemma 3.1. Let X be a smooth projective variety over a finite field F. Then H2(F0X̄,Z`(1))GF

is a finitely generated Z`-module.

Proof. We have the long exact sequence

H2(X̄,Z`(1))
f // H2(F0X̄,Z`(1)) ∂ //

⊕
x∈X(1)

H1(x̄,Z`),

see [Sch23, Lemma 5.8 and Corollary 5.10]. (Note that x̄ is the base change of the point

x ∈ X(1) to k̄ and hence it is a finite union of points which form the Galois orbit under the

GF-action which corresponds to x.) Let now α ∈ H2(F0X̄,Z`(1)) be GF-invariant. Then

∂α is GF-invariant and so it is torsion because
⊕

x∈X(1) H1(x̄,Q`) has weight at least 1 and

hence contains no nontrivial Galois-invariant classes, see e.g. [BS24, Corollary 3.10]. Since
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x∈X(1) H1(x̄,Z`) is torsion-free (see Theorem 2.2 but the case at hand is simple, see e.g.

[Sch23, Lemma 5.13]), we conclude that ∂α = 0 and so α lifts to H2(X̄,Z`(1)). In other words,

H2(F0X̄,Z`(1))GF is a Z`-submodule of the image of the map f above. Since H2(X̄,Z`(1)) is

a finitely-generated Z`-module, so is the image of f . This implies that H2(F0X̄,Z`(1))GF is a

finitely generated Z`-module, as we want. �

Lemma 3.2. Let X be an equi-dimensional algebraic F-scheme such that H2i(F0X̄,Z`(i))GF

is a finitely generated Z`-module. Then the natural map

H2i(F0X̄,Z`(i))GF //
(
H2i(F0X̄,Z`(i))⊗̂Z`

)GF

is injective. In particular, if (H2i(F0X̄,Z`(i))⊗̂Z`)GF = 0, then H2i(F0X̄,Z`(i))GF = 0.

Proof. Let α ∈ H2i(F0X̄,Z`(i))GF be a class whose image in H2i(F0X̄,Z`(i))⊗̂Z` vanishes.

By the Bockstein sequence, α is `r-divisible for any r ≥ 1: α = `rβr. Since H2i(F0X̄,Z`(i))
is torsion-free (see Corollary 2.3), βr is GF-invariant for all r. Hence, α is `r-divisible in

H2i(F0X̄,Z`(i))GF for all r. This implies α = 0, because H2i(F0X̄,Z`(i))GF is a finitely gener-

ated Z`-module by assumption. �

Proposition 3.3. Let X be a projective variety over a finite field F. Then the natural map

H2(F0X̄,Z`(1))GF //
(
H2(F0X̄,Z`(1))⊗̂Z`

)GF (3.1)

is an isomorphism. Moreover, if the Tate conjecture holds for divisors on a prime to ` alteration

X ′ → X of X, then both groups in (3.1) vanish.

Proof. We first aim to prove that the natural map (3.1) is an isomorphism. Using Gabber’s

prime to ` alterations [IT14], it is straightforward to reduce to the case where X is smooth

projective. Injectivity of the map under consideration then follows from Lemmas 3.1 and 3.2.

To prove surjectivity, let (αr) ∈ H2(F0X̄,Z`(1))⊗̂Z` be GF-invariant. For x ∈ X(1), consider

the residue

(∂xαr) ∈ H1(x̄,Z`)⊗̂Z`,
where x̄ denotes the base change of x to F̄ (which may split up into a Galois orbit of points).

The above class is Galois-invariant and we aim to show that this actually forces the class to

vanish. Applying Gabber’s prime to ` alterations [IT14] to the closure of x in X, we can

without loss of generality assume that there is a smooth projective F-variety D whose function

field agrees with the residue field of x. We then find that

(∂xαr) ∈ H1(F0D̄,Z`)⊗̂Z`

is Galois-invariant. Let y ∈ D(1) be a codimension one point. Then

∂y(∂xαr) ∈ H0(ȳ,Z`(−1))⊗̂Z`

is Galois-invariant and hence vanishes because the above group is a finitely generated free Z`-
module with a Frobenius action of weight 2. It follows that each ∂xαr is unramified on D̄ and

hence contained in

H1(D̄,Z/`r) ⊂ H1(x̄,Z/`r).
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These classes form a projective system and so they give rise to a class

(∂xαr) ∈ H1(D̄,Z`)

that is Galois-invariant. Any such class is torsion by the Weil conjectures proven by Deligne,

see [Del74]. Since torsion classes vanish on the generic point (see Theorem 2.2 but the case at

hand is in fact easy, see [Sch23, Lemma 5.13]), we find that

∂xαr = 0 ∈ H1(x̄,Z/`r)

for all r and all x. It follows that αr ∈ H2(F0X̄,Z/`r(1)) is unramified for all r:

αr ∈ H2
nr(X̄,Z/`r(1)). (3.2)

We claim that the natural sequence

0 // NS(X̄)⊗ Z/`r f // H2(X̄,Z/`r(1)) //H2
nr(X̄,Z/`r(1)) // 0 (3.3)

is exact, where NS(X̄) denotes the Néron–Severi group of X̄, and f is the reduction modulo `

of the inclusion NS(X̄)⊗Z` ↪→ H2(X̄,Z`(1)). Apart from the injectivity of f in (3.3), all claims

follow from the Gysin (resp. localization) sequence, see e.g. [Sch23, Lemma 5.8 and Corollary

5.10]. To prove injectivity of f , note that by [Sch23, Lemma 5.8 and Corollary 5.10], we have

a natural exact sequence

0 // NS(X̄)⊗ Z` //H2(X̄,Z`(1)) //H2(F0X̄,Z`(1)).

Since H2(F0X̄,Z`(1)) is torsion-free (see Theorem 2.2 or [Sch23, Lemma 5.13]), it follows that

the natural map

NS(X̄)⊗ Z/`r //H2(X̄,Z`(1))/`r

is injective. Since

H2(X̄,Z`(1))/`r //H2(X̄,Z/`r(1))

is injective by the Bockstein sequence, we conclude that f is injective, as claimed.

The classes αr in (3.2) form a projective system and hence yield a class in limrH
2
nr(X̄,Z/`r(1)).

Since NS(X̄)⊗ Z/`r is a finite group, the Mittag–Leffler condition is satisfied and so

R1 lim
←−

(NS(X̄)⊗ Z/`r) = 0.

It follows that (αr) ∈ limrH
2
nr(X̄,Z/`r(1)) lifts to a class

α̃ ∈ H2(X̄,Z`(1)) = lim←−
r

H2(X̄,Z/`r(1)).

By construction, the image of this class in H2(F0X̄,Z`(1)) is Galois-invariant modulo `r for

all r. Since H2
nr(X̄,Z`(1)) is finitely generated as a Z`-module, we deduce that the image of α̃

in H2
nr(X̄,Z`(1)) ⊂ H2(F0X̄,Z`(1)) is Galois-invariant. The reduction modulo `r of this class

is nothing but αr and so (3.1) is surjective, as we want. This completes the proof of the first

assertion of the proposition.

Let us now assume that the Tate conjecture holds for a prime to ` alteration X ′ → X of X.

Replacing X by X ′ we can without loss of generality assume that X is smooth projective and the

Tate conjecture holds for divisors on X. By Lemma 2.1, the same holds for the 1-semi-simplicity
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conjecture. By [BS24, Theorem 6.1(1)], H2(F0X̄,Q`(1))GF = 0 and so H2(F0X̄,Z`(1))GF = 0

by torsion-freeness (this follows from Hilbert 90, see Theorem 2.2 or [Sch23, Lemma 5.13]).

This concludes the proof of the proposition. �

Theorem 3.4. Let X be a smooth projective variety over a finite field F and let ` be a prime

invertible in F. Then the following are equivalent:

(1) The Tate conjecture holds for divisors on X.

(2) The Frobq-action on KM
2 (F̄(X))⊗̂Q` does not have q as an eigenvalue.

(3) We have (
H2(F0X̄,Z`(1))⊗̂Q`

)GF = 0.

Proof. There is a canonical Galois-equivariant isomorphism

(H2(F0X̄,Z`(1))⊗̂Z`)⊗Z`
Z`(1) ' H2(F0X̄,Z`(2))⊗̂Z`.

By the Bloch–Kato conjecture in degree 2, proven by Merkurjev–Suslin [MS83], we also have

a Galois-equivariant isomorphism

H2(F0X̄,Z`(2))⊗̂Z` ' KM
2 (F̄(X))⊗̂Z`,

see Theorem 2.2. Altogether this proves the equivalence of (2) and (3).

By Proposition 3.3, (3) implies

H2(F0X̄,Q`(1))GF = 0.

This in turn implies item (1) by [BS24, Theorem 6.1(2)]. Conversely, item (1) implies (3) by

Proposition 3.3. This completes the proof of the theorem. �

Theorem 3.5. Let F be a finite field and let ` be a prime invertible in F. Then the following

are equivalent:

(1) The Tate conjecture holds for smooth projective surfaces over F.

(2) The group H3(F0P3
F̄,Z`(2)) has no nontrivial GF-invariant classes.

(3) The group H3(F0P3
F̄,Z`(2))⊗̂Z` has no nontrivial GF-invariant classes.

Proof. By Theorem 2.2, H3(F0P3
F̄,Z`(2)) is torsion-free and so this group has no Galois-

invariant classes if and only if this holds for H3(F0P3
F̄,Q`(2)). The equivalence of (1) and

(2) follows therefore from Lemma 2.1 and [BS24, Corollary 7.6].

Next, assume that (1) holds true and let

(αr) ∈ H3(F0P3
F̄,Z`(2))⊗̂Z`

be GF-invariant. Assume that this class is nonzero. Since P3
F̄ is rational, H3(F0P3

F̄,Z/`
r(2))

admits for r > 0 no nontrivial unramified class. We thus find that there is some codimension

one point x ∈ P3, such that

(∂xαr) ∈ H2(x̄,Z`(1))⊗̂Z`
is nonzero and GF-invariant. This contradicts Proposition 3.3 and so (αr) was zero and (3)

holds true.
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Conversely, assume that (3) holds. We aim to prove H3(F0P3
F̄,Z`(2))GF = 0. For a contra-

diction, assume that

α ∈ H3(F0P3
F̄,Z`(2))GF

is nonzero. Our assumption implies that α ∈ H3(F0P3
F̄,Z`(2)) maps to zero inH3(F0P3

F̄,Z/`
r(2))

for all r. By the Bockstein sequence, α is `r-divisible in H3(F0P3
F̄,Z`(2)) for all r. This implies

that for any codimension one point x ∈ P3, the residue

∂xα ∈ H2(x̄,Z`(1))

is Galois-invariant and `r-divisible for all r. We aim to show that no such class exists. Using

prime to ` alterations (see [IT14]) we can without loss of generality assume that there is a

smooth projective surface D such that κ(x) = F(D). Hence,

∂xα ∈ H2(F0D̄,Z`(1))

is Galois-invariant and `r-divisible for all r. In particular, the natural map

H2(F0D̄,Z`(1))GF // (H2(F0D̄,Z`(1))⊗̂Z`)GF

has a nontrivial kernel. This contradicts the injectivity of (3.1) in Proposition 3.3, which

concludes the proof of the theorem. �

We are finally in the position to prove Theorem 1.1.

Proof of Theorem 1.1. By [Mor19], the Tate conjecture for divisors on smooth projective va-

rieties over F = Fq is equivalent to the analogous statement for smooth projective surfaces

over F. Hence, Theorem 1.1 follows from Theorem 3.5 together with the Galois-equivariant

isomorphism

H3(F0P3
F̄,Z`(3))⊗̂Z` ' KM

3 (F̄(P3))⊗̂Z`
from Theorem 2.2. �

4. `-adic completion of Milnor K-theory

Recall from Section 2.2 our convention that Milnor K-theory of finite products of fields is the

product of the Milnor K-theories of the individual fields. In particular, if X is a variety over

F with base change X̄, then for any codimension one point x ∈ X(1) in the smooth locus of X

there is a well-defined residue map ∂x̄ : KM
i (F̄(X)) → KM

i−1(κ(x̄)) (which takes into account

that X̄ as well as the base change x̄ of the point x may be reducible).

Lemma 4.1. Let X be a smooth projective variety over a finite field F and let ` be a prime

invertible in F. Let α ∈ KM
i (F̄(X)) be a class whose reduction modulo `r lies in the kernel of

the residue map

∂x̄ : KM
i (F̄(X))/`r //KM

i−1(κ(x̄))/`r

for all x ∈ X(1) and all r ≥ 1. Assume that i = 1, 2 or that H i
nr(X̄, µ

⊗i
`r ) = 0 for all r ≥ 1.

Then α is `∞-divisible.
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Proof. Let α ∈ KM
i (F̄(X)) such that ∂x̄α is zero mod `r for all x ∈ X(1) and all r ≥ 1. Then

the image

[α]r ∈ KM
i (F̄(X))/`r ' H i(F0X̄, µ

⊗i
`r )

of α is unramified, where the above isomorphism follows from [Voe11]. If H i
nr(X̄, µ

⊗i
`r ) = 0,

then α is zero modulo `r for all r ≥ 1 and hence α is `∞-divisible, as we want.

Let now i = 1, 2. Then

[α]r ∈ H i
nr(X̄, µ

⊗i
`r ) = H i(X̄, µ⊗i`r )/N1.

(Note that N1H1(X̄, µ⊗i`r ) = 0.) The classes [α]r for different values of r form a projective

system and so we get an element in the inverse limit:

([α]r) ∈ lim←−
r

(H i(X̄, µ⊗i`r )/N1). (4.1)

We claim that

lim←−
r

(H i(X̄, µ⊗i`r )/N1) ' H i(X̄,Z`(i))/N1H i(X̄,Z`(i)). (4.2)

To see this, consider the short exact sequence

0 //N1H i(X̄, µ⊗i`r ) //H i(X̄, µ⊗i`r ) //H i(X̄, µ⊗i`r )/N1 // 0.

Since N1H i(X̄, µ⊗i`r ) ⊂ H i(X̄, µ⊗i`r ) is finite, the Mittag–Leffler condition holds and we get

lim←−
r

(H i(X̄, µ⊗i`r )/N1) ' H i(X̄,Z`(i))/ lim←−
r

N1H i(X̄, µ⊗i`r ).

Recall that N1H i(X̄, µ⊗i`r ) is zero for i = 1 and it coincides with the subgroup of algebraic

classes for i = 2 (because X̄ is defined over F̄ which contains all roots of unity and so the Tate

twists can be ignored). This implies

lim←−
r

N1H i(X̄, µ⊗i`r ) = N1H i(X̄,Z`(i)),

which concludes the proof of (4.2).

Via the isomorphism (4.2), (4.1) yields a class

([α]r) ∈ H i(X̄,Z`(i))/N1H i(X̄,Z`(i)).

On the other hand, αr is obtained via reduction modulo `r of α ∈ KM
i (F̄(X)). Since the

Frobenius action on KM
i (F̄(X)) has finite orbits, it follows that ([α]r) is fixed by some power of

Frobq. Hence the class vanishes, because H i(X̄,Z`(i))/N1 is torsion-free (see Corollary 2.3) and

the corresponding Q`-Galois module has weight i−2i 6= 0 (see [Del74]) hence no nontrivial class

is fixed by a power of the Frobenius action. It follows that α is `∞-divisible, as we want. �

Theorem 4.2. Let X be a variety over a finite field F and let ` be a prime invertible in F. Let

n be a positive integer such that one of the following holds:

(1) n = 2;

(2) n = 3 and H3
nr(X̄, µ

⊗3
`r ) = 0 for all r (e.g. X̄ is rational).
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Then there is a GF-module M , whose underlying Z-module is free of countable rank, such that

there is a GF-equivariant isomorphism between the `-adic completions:

KM
n (F̄(X))⊗̂Z` = M⊗̂Z`.

Moreover, M is a GF-submodule of a countable sum of permutation GF-modules.

Proof. By the Bloch–Kato conjecture, proven by Voevodsky [Voe11], we have a canonical iso-

morphism

KM
n (F̄(X))⊗̂Z` ' // lim←−

r

Hn(F0X̄, µ
⊗n
`r ).

Since affine varieties over F̄ have no cohomology in degrees larger than their dimensions,

Hn(F0X̄, µ
⊗n
`r ) vanishes for n > dimX and so does the above completion. We may thus

from now on assume that n ≤ dimX.

Let S(n) := S(n)(X) be the set of all tuples (up to isomorphism)

~x := (x0, x1, x2, . . . , xn),

consisting of the following inductive data:

• x0 ∈ X(0) is the generic point of X;

• if xi is defined, we choose a projective variety C(xi) whose function field is κ(xi) together

with a prime to ` alteration τ(xi) : D(xi)→ C(xi) (see [IT14]);

• if xi, C(xi), D(xi) and τ(xi) are defined, then xi+1 ∈ D(xi)
(1) is a codimension one

point.

Each tuple ~x consists of the data of (xi, C(xi), D(xi), τ(xi)) with i = 1, . . . , n; we drop

C(xi), D(xi), τ(xi) from the notation for convenience. We emphasize that S(n) is the set of

all such tuples up to isomorphism, where the notion of isomorphism is the obvious one. In

particular, all projective varieties C(xi) with function field κ(xi), all prime to ` alterations

τ(xi) : D(xi) → C(xi) and all codimension one points xi+1 ∈ D(xi)
(1) appear. For the argu-

ments below to work it would be possible to choose one C(xi), D(xi), and τ(xi) for each xi,

but it is important that all xi+1 ∈ D(xi)
(1) appear. (We choose the above canonical definition

as it yields compatibilities of the sets S(n)(X) for different X, as used for instance in the proof

of Lemma 4.3 below.)

Since F̄ is countable, so is the set S(n)(X).

Note that each xi is defined over F; its base change x̄i to F̄ will be a finite Galois orbit of

points. For each ~x ∈ S(n) and each i, there is a natural residue map

∂i(~x) : KM
j (κ(x̄i)) //KM

j−1(κ(x̄i+1)),

given by the composition

KM
j (κ(x̄i)) = KM

j (F̄(C(xi)))
τ(xi)

∗
// KM

j (F̄(D(xi)))
∂x̄i+1// KM

j−1(κ(x̄i+1)).

For each ~x ∈ S(n), we may then define a map

∂~x : KM
n (F̄(X)) //KM

0 (κ(x̄n)) (4.3)
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via the composition

KM
n (F̄(X)) = KM

n (κ(x̄0))
∂0(~x)// KM

n−1(κ(x̄1))
∂1(~x)// KM

n−2(κ(x̄2))
∂2(~x)// · · · ∂n−1(~x)// KM

0 (κ(x̄n)).

Note that KM
0 (κ(x̄n)) is a free abelian group whose (finite) rank is given by the number of

points in the scheme x̄n, i.e. the length of the Galois orbit over F̄ that corresponds to xn. The

Galois action is induced by the natural action on this orbit and so KM
0 (κ(x̄n)) is a permutation

GF-module.

Lemma 4.3. Let n ≤ 3 be a natural number. If n = 3, we assume that H3
nr(X̄, µ

⊗3
`r ) = 0 for

all r. Then the kernel of the map

⊕~x∈S(n)∂~x : KM
n (F̄(X)) //

⊕
~x∈S(n)

KM
0 (κ(x̄n))

is `-divisible.

Proof. We recall that an abelian group A is `-divisible if A/` = 0. In other words, A is

`-divisible if any element of A is `-divisible (and hence in fact, any element is `∞-divisible).

We prove the lemma by induction on n. For convenience of notation, we denote the generic

point of D(xi) by x′i. Then τ(xi) induces a field extension κ(xi) ⊂ κ(x′i) whose degree is finite

and coprime to `. If we base change this to F̄, we get a finite morphism of zero-dimensional

schemes Specκ(x̄′i)→ Specκ(x̄i) whose degree on the various connected components is constant

and coprime to `.

For n = 1, the statement boils down to showing that any an invertible regular function

α ∈ κ(x̄0)∗ on Specκ(x̄0), which lies in the kernel of

κ(x̄0)∗ // κ(x̄′0)∗
∂x̄1 // KM

0 (κ(x̄1))

for all ~x ∈ S(1), is `-divisible. To prove this, let α ∈ κ(x̄0)∗ be as above. By Lemma 4.1, the

image of α in κ(x̄′0)∗ is `-divisible. It then follows from a norm argument that α is `-divisible,

as we want, where we use that the alterations chosen above have degree coprime to `.

Let now n > 1 and let α ∈ KM
n (F̄(X)) be in the kernel of ∂~x for all ~x ∈ S(n). Via a norm

argument along the morphism τ(x0) : D(x0)→ C(x0), where C(x0) is birational to X, as above,

we reduce to the case where X is smooth projective. For each x ∈ X(1), ∂x̄α ∈ KM
n−1(κ(x̄)) lies

by construction in the kernel of ∂~y for all ~y ∈ S(n−1)({x}). We conclude by induction that ∂x̄α

is `-divisible for all x ∈ X(1). If either n = 2, or n = 3 and H3
nr(X̄, µ

⊗3
`r ) = 0 for all r, then

we conclude from Lemma 4.1 that α is `-divisible, as we want. This concludes the proof of the

lemma. �

Consider the GF-module

N :=
⊕
~x∈S(n)

KM
0 (κ(x̄n)),

where S(n) = S(n)(X). Each KM
0 (κ(x̄n)) is a finite rank permutation GF-module. Since S(n)

is countable, N is a free Z-module of countable rank, given as a countable direct sum of
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permutation GF-modules. We then let

M := im

⊕~x∈S(n)∂~x : KM
n (F̄(X)) //

⊕
~x∈S(n)

KM
0 (κ(x̄n))

 ⊂ N,
which is a GF-submodule of N . Since N is a free Z-module of countable rank, so is M .

By Lemma 4.3, there is a short exact sequence

0 //D //KM
n (F̄(X)) //M // 0,

where D is `-divisible. It follows that the above sequence induces GF-equivariant isomorphisms

KM
n (F̄(X))/`r 'M/`r

for all r and hence a GF-equivariant isomorphism

KM
n (F̄(X))⊗̂Z` 'M⊗̂Z`.

This concludes the proof of the theorem. �

5. `-adic completions of tensor products

Let X be a geometrically irreducible variety over a finite field F = Fq. By definition, there

is a natural surjection

(F̄(X)∗)⊗i // //KM
i (F̄(X)).

By [Stacks, Tag 00M9], this induces a surjection on `-adic completions and hence we get a

surjection

((F̄(X)∗)⊗i)⊗̂Q`
// //KM

i (F̄(X))⊗̂Q`.

This surjection is equivariant with respect to the Frobenius action and so it is natural to wonder

about the Frobenius eigenvalues on ((F̄(X)∗)⊗i)⊗̂Q`.

Proposition 5.1. Let X be a geometrically irreducible variety over a finite field F = Fq.
Assume that Pic X̄ is a free abelian group. Then all eigenvalues of the Frobq-action on

(F̄(X)∗)⊗i⊗̂Q` are roots of unity.

Proof. Since Frobqm = Frobmq , it suffices to prove the statement up to replacing F = Fq by

a finite extension. In particular, we may assume that Frobq acts trivially on the free abelian

group Pic X̄. There is a natural Galois-equivariant exact sequence

0 // F̄(X)∗/F̄∗ ∂ //
⊕

y∈X̄(1)

[y]Z // Pic X̄ // 0.

The group
⊕

y∈X̄(1) [y]Z is a direct sum of permutation modules given by the Galois orbits of

codimension one points on X̄. Up to replacing F by a finite extension, we may assume that a

basis of Pic X̄ can be represented by a linear combination of irreducible subvarieties that are all

defined over F. Under this assumption the surjection in the above short exact sequence admits

a GF-equivariant section and so the sequence splits as a sequence of GF-modules. It follows

https://stacks.math.columbia.edu/tag/00M9
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that F̄(X)∗/F̄∗, viewed as a Galois module, is a direct sum of permutation modules. Hence the

same holds for the tensor product

(F̄(X)∗/F̄∗)⊗i.

Since F̄ is algebraically closed, F̄∗ is a divisible group (in fact a divisible torsion group because

F is finite). It follows that the natural map

(F̄(X)∗)⊗i⊗̂R // (F̄(X)∗/F̄∗)⊗i⊗̂R

is an isomorphism for R ∈ {Z`,Q`} and so the proposition follows from Lemma 5.2 below. �

Lemma 5.2. Let G = Ẑ and let N be a G-module. Assume that N ' ⊕i∈IPi decomposes into

a direct sum of permutation G-modules Pi,. Then any eigenvalue of the action

F : N⊗̂Q`
//N⊗̂Q`

induced by the element 1 ∈ G is a root of unity.

Proof. An element in (⊕i∈IPi)⊗̂Z` is given by an inverse system (
∑

i αi,r)r, where αi,r ∈ Pi/`r

and for each r, all but finitely many αi,r are zero. We thus get a natural map(⊕
i∈I

Pi

)
⊗̂Z` ↪→

∏
i∈I

Pi⊗̂Z`, (
∑
i

αi,r)r
� // ((αi,r)r)i.

Since each Pi is finitely generated, we have Pi⊗̂Z` = Pi ⊗ Z`. It follows that the above map

is injective, because (αi,r)r = 0 for all i implies that αi,r = 0 for all i, r. Altogether we have

established a G-equivariant embedding(⊕
i∈I

Pi

)
⊗̂Z` ↪→

∏
i∈I

Pi ⊗ Z`.

The eigenvalues of the natural action of F on the right hand side are the eigenvalues of the

action on Pi⊗Z`, which are roots of unity because Pi is a permutation module. This concludes

the proof of the lemma. �

6. Weights for completed Milnor K-theory

Let Y be a projective variety over a finite field F = Fq with q elements and let Frobq denote

the arithmetic Frobenius relative to F. We say that λ ∈ Z` is an eigenvalue of the Frobq-action

on KM
3 (F̄(Y ))⊗̂Q` if there is a nonzero element

α ∈ KM
3 (F̄(Y ))⊗̂Q`

with Frobq(α) = λα. We say that λ has absolute value v ∈ R if for all embeddings Q̄` ↪→ C,

the absolute value of λ is v.

Proposition 6.1. Let Y be a projective variety over a finite field F = Fq with q elements and

let Frobq denote the arithmetic Frobenius relative to F. Let ` be a prime invertible in F and

assume that H3
nr(Ȳ , µ

⊗3
`r ) = 0 for all r ≥ 1. Then any eigenvalue λ ∈ Z` of the Frobq-action

on KM
3 (F̄(Y ))⊗̂Q` has absolute value |λ| ∈ {1, q1/2, q}.
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Proof. By Theorem 2.2, there is a canonical Galois-equivariant isomorphism

KM
3 (F̄(Y ))⊗̂Z` ' H3(F0Ȳ ,Z`(3))⊗̂Z`. (6.1)

Let α = (αr) ∈ H3(F0Ȳ ,Z`(3))⊗̂Z` be non-torsion and assume that Frob∗q α = λα for some

λ ∈ Z` with

|λ| /∈ {1, q1/2, q}.
Since H3

nr(Ȳ , µ
⊗3
`r ) = 0 for all r ≥ 1, there must be a codimension one point x ∈ Y (1), such

that the residue

(∂xαr) ∈ H2(x̄,Z`(2))⊗̂Z`
is nonzero, hence a λ-eigenvector for the Frob∗q-action. Using prime to ` alterations, we can

without loss of generality assume that there is a smooth projective F-variety X with κ(x) =

F̄(X). We then get a nonzero class β = (∂xαr) ∈ H2(F̄(X),Z`(2))⊗̂Z` with Frob∗q β = λβ. Let

y ∈ X(1) be a codimension 1-point. The residue

∂yβ ∈ H1(ȳ,Z`(1))⊗̂Z`

is either zero or a λ-eigenvector of Frob∗q . Since |λ| 6= 1, another residue computation shows

that ∂yβ is unramified and hence lifts to

H1
nr(ȳ,Z`(1))⊗̂Z`.

The above group is a finite rank Z`-module all of whose Frob∗q-eigenvalues have absolute value

q1/2 by [Del74] (use prime to ` alterations [IT14]). Since |λ| 6= q1/2, we deduce ∂yβ = 0. It

follows that

βr = ∂xαr ∈ H2
nr(X̄,Z/`r(2)) = H2(X̄,Z/`r(2))/N1.

These classes are compatible for various r and hence we get in the inverse limit a class

(∂xαr) ∈ (H2(X̄,Z`(2))/N1)⊗̂Z` = H2(X̄,Z`(2))/N1,

where we used that N1H2 is generated by algebraic classes and hence

N1H2(X̄,Z`(2))⊗ Z/`r ' N1H2(X̄,Z/`r(2))

for all r. Since F̄ contains all `-th roots of unity, H2(X̄,Z`(2))/N1 is torsion-free, see Corol-

lary 2.3. Since (∂xαr) is nonzero, it follows that λ is an eigenvalue of the Frob∗q-action on

H2(X̄,Z`(2)). Since Frobq is the arithmetic Frobenius, the Weil conjectures (see [Del74]) im-

ply |λ| = q, which contradicts the assumption |λ| /∈ {1, q1/2, q}. �

7. Frobenius Eigenvalues on completed Milnor K-theory of P3

Theorem 7.1. Let F = Fq be a finite field with q elements. Let Frobq be the arithmetic

Frobenius relative to Fq and consider the set of integral eigenvalues of Frob∗q on KM
3 (F̄(P3))⊗̂Z`:

Sq := {λ ∈ Z | there is a nonzero class α ∈ KM
3 (F̄(P3))⊗̂Z` with Frob∗q α = λα.}

Then:

(1) Sq ⊂ {±1,±q1/2,±q};
(2) If q = p4m, then {±1,±q1/2} ⊂ Sq.
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We will use the following example from [KS99] for the proof of item (2) in Theorem 7.1.

Lemma 7.2. Let q = pm be a power of p and consider the Fermat curve X ⊂ P2, given by

xq+1 + yq+1 = zq+1. Then Frobq4 acts by multiplication with q2 on H1(X̄,Z`(1)).

Proof. As a consequence of a point count and the Weil bound, the geometric Frobenius relative

to Fq2 acts via multiplication by −q on H1(X̄,Z`), see [KS99, p. 8], and hence via multiplication

by −q−1 on H1(X̄,Z`(1)). Since the action of the geometric Frobenius relative to Fq2 agrees

with the inverse of the action of the arithmetic Frobenius Frobq2 , we find that Frobq2 acts via

−q and hence Frobq4 acts via q2 on H1(X̄,Z`(1)), as we want. �

For the proof of Theorem 7.1 it will be useful to use Borel–Moore cohomology, which for an

equi-dimensional algebraic scheme X over a field k is defined by

H i
BM (X,A(n)) := H i−2dX (Xproét, π

!
XA(n− dX)),

where A ∈ {Z/`r,Z`,Q`} for a prime ` invertible in k, dX = dimX, πX : X → Spec k denotes

the structure map and Xproét is the pro-étale site of X, see [Sch23, Section 4 and Proposition

6.6]. If k is a finite field or the algebraic closure of a finite field, then the pro-étale site

may be replaced by the étale site in the above formula, as in this case the above groups are

finitely generated A-modules. Basic properties are listed in [Sch23, §4, §6] and in [BS24, §2.4].

Most importantly, there are proper pushforwards [Sch23, Proposition 6.6, P1], there is a Gysin

sequence [Sch23, Proposition 6.6, P2], and Borel–Moore cohomology agrees with continuous

`-adic cohomology if X is smooth and equi-dimensional [Sch23, Lemma 6.5]. If X is defined

over a finite field F, then GF acts naturally on H i
BM (X̄, A(n)), see e.g. [BS24, §3.2].

Lemma 7.3. Let X be as in Lemma 7.2 and let Y ⊂ P2 be a nodal cubic curve over F = Fq with

one node y0 ∈ Y . Then there is a class ε ∈ H2
BM (X̄ × Ȳ ,Z`(2)) with the following properties:

the image of ε in H2(F0(X̄ × Ȳ ),Z`(2)) is nonzero and an eigenvector for the Frobq4-action

with eigenvalue q2.

Proof. The normalization of Y is P1 and we may assume that the preimage of the singular

point y0 ∈ Y corresponds to 0,∞ ∈ P1. In particular, Y reg = Gm. The Gysin sequence yields

a short exact sequence

H−1(y0,Z`(0)) = 0 //H1
BM (Ȳ ,Z`(1)) //H1(Gm,F̄,Z`(1)) ∂ // H0(y0,Z`(0)). (7.1)

Applying the Gysin sequence to Gm,F̄ ⊂ P1
F̄, we see that the group H1(Gm,F̄,Z`(1)) ' Z` is

generated by a class that has opposite residues at 0 and ∞. By functoriality of the Gysin

sequence, the residue map in (7.1) is the sum of the residues at 0 and infinity, hence it is zero.

It follows that H1
BM (Ȳ ,Z`(1)) ' Z` is a free Z`-module of rank 1 with trivial Galois action.

Consider the singular surface X × Y. The Gysin sequence yields an exact sequence

H0
BM (X̄×{y0},Z`(1)) //H2

BM (X̄×Ȳ ,Z`(2)) //H2
BM (X̄×Ȳ reg,Z`(2)) //H1

BM (X̄×{y0},Z`(1)).

Since X × Y reg is smooth, we find that

H2
BM (X̄ × Ȳ reg,Z`(2)) = H2(X̄ × Ȳ reg,Z`(2)).
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Since the `-adic cohomology of X̄ and Ȳ reg is torsion-free (both are curves over an algebraically

closed field), the Künneth formula yields a Galois-equivariant isomorphism

H2(X̄ × Ȳ reg,Z`(2)) ' H1(X̄,Z`(1))⊗H1(Ȳ reg,Z`(1)),

see [Mil13, Theorem 22.4].

Let α ∈ H1(X̄,Z`(1)) and β ∈ H1(Ȳ reg,Z`(1)) be nonzero. By Lemma 7.2, Frobq4(α) = q2α.

Moreover, β is Galois-invariant because H1(Ȳ reg,Z`(1)) = Z` with trivial Galois action. Via

the above Künneth formula, we get a nontrivial class

ε := α⊗ β ∈ H2
BM (X̄ × Ȳ reg,Z`(2))

with Frobq4(ε) = q2ε. We have seen above that β has trivial residues on Ȳ . It thus follows

from the above Gysin sequence that ε lifts to a class in H2
BM (X̄ × Ȳ ,Z`(2)) that we denote by

the same symbol:

ε ∈ H2
BM (X̄ × Ȳ ,Z`(2)).

It remains to show that the restriction of ε to F0(X̄ × Ȳ ) is nonzero. Since Y is rational, we

have F0(X̄ × Ȳ ) = F0(X̄ × P1
F̄). There is a residue map

∂X̄×{0} : H2(F0(X̄ × Ȳ ),Z`(2)) //H1(F0X̄,Z`(1))

that is associated to the divisor X̄ ×{0} on X̄ ×P1
F̄. The image of ε under this map is given by

∂X̄×{0}(ε) = −∂0(β) · α ∈ H1(F0X̄,Z`(1)),

see [Sch21, Lemma 2.4]. The above class is nonzero because ∂0β is nonzero and H1(X̄,Z`(1))→
H1(F0X̄,Z`(1)) is injective by the Gysin sequence. Hence, the image of ε in H2(F0(X̄ ×
Ȳ ),Z`(2)) is nonzero, as we want. This concludes the proof of the lemma. �

Proof of Theorem 7.1. Item (1) follows from Proposition 6.1.

To prove (2), let X and Y be as in Lemmas 7.2 and 7.3. We embed X × Y into some

projective space and project generically to P3 to obtain an integral subscheme Z ⊂ P3 with a

finite birational map f : X × Y → Z. Since f is proper, we can consider the class

f∗ε ∈ H2
BM (Z,Z`(2)),

where ε ∈ H2
BM (X̄ × Ȳ ,Z`(2)) is as in Lemma 7.3. Since f is birational, the restriction of this

class to F0Z̄ agrees with the restriction of ε to F0(X̄ × Ȳ ). Let U = P3 \Z be the complement

of Z. There is a short exact sequence

H3
BM (P3

F̄,Z`(3)) //H3
BM (Ū ,Z`(3)) //H2

BM (Z̄,Z`(2)) //H4
BM (P3

F̄,Z`(3)).

The class f∗ε has to map to zero in H4
BM (P3

F̄,Z`(3)) ' Z`(1) for weight reasons and so it lifts

to a class

α ∈ H3
BM (Ū ,Z`(3)).

Since α is defined on Ū , the only possible residue of its restriction to F0P3
F̄ is given by the

residue along the map

∂Z : H3(F0P3
F̄,Z`(3)) //H2(F0Z,Z`(2)).
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By Lemma 7.3, we have

∂Z Frob∗q4 α = Frob∗q4 ∂Zα = q2∂Zα.

It follows that the class

Frob∗q4 α− q2α ∈ H3(F0P3
F̄,Z`(3))

is unramified. Hence the above class vanishes because P3
F̄ has no unramified cohomology in

positive degree (see e.g. [Sch24, Corollary 1.8(1) for j = 0]). It follows that Frob∗q4 α = q2α.

Since α is nonzero we conclude that q2 is an eigenvalue of Frob∗q4 on H3(F0P3
F̄,Z`(3)) for any

q = pm.

Replacing q by q4 shows that q1/2 ∈ Sq whenever q = p4m is a fourth power. Replacing in

the above argument Y by a union of two smooth Galois conjugate rational curves that meet in

two points, we obtain via a similar argument that −q1/2 ∈ Sq if q = p4m is a 4-th power.

It remains to show that λ := ±1 ∈ Sq. To this end consider the function field F̄(x) in

one variable. There is a non-constant rational function ξ ∈ F̄(x)∗ with Frobq(ξ) = λξ, where

F̄(x)∗ = KM
1 (F̄(x)) is written as an additive group. (For instance, if λ = −1, then we can pick

ξ = f/g for linear polynomials f and g that are interchanged by Frobenius.) We denote affine

coordinates on A3 ⊂ P3 by x, y, z and find that the class α := (ξ, y, z) ∈ KM
3 (F̄(P3)) is nonzero

(evaluate the residue at z = 0 followed by the residue at y = 0) and satisfies Frob∗q α = λα. The

image of α in the `-adic completion KM
3 (F̄(P3))⊗̂Z` is nonzero by a similar residue computation

as above. This proves ±1 ∈ Sq, which concludes the proof of (2). This concludes the proof of

the theorem. �

8. Proof of Theorem 1.2

Proof of Theorem 1.2. Item (1) follows from Theorem 4.2 together with the straightforward

observation that KM
3 (F̄(P3))⊗̂Z` is not a Z`-module of finite rank.

We will prove items (2) and (3) more generally for KM
n (F̄(X)) in place of KM

3 (F̄(P3)), where

X denotes any geometrically irreducible variety over F = Fq. Item (2) follows in this generality

from the fact that the Frobq-action has finite orbits on KM
n (F̄(X)), hence on KM

n (F̄(X))⊗Q`,

and so all eigenvalues are roots of unity.

To prove item (3), assume that Frobq −q · id has a nontrivial kernel on KM
n (F̄(X))⊗̂Qp. This

implies that there is a nontorsion class α ∈ KM
n (F̄(X))⊗̂Zp such that Frobq(α) = q · α. To see

that this is impossible, note that Frobq acts via isomorphisms on KM
n (F̄(X)) and hence also

via isomorphisms on the completion

KM
n (F̄(X))⊗̂Zp = lim←−

r

KM
n (F̄(X))/pr.

Let φq : KM
n (F̄(X))⊗̂Zp → KM

n (F̄(X))⊗̂Zp be an inverse of Frobq. Then Frobq(α) = q · α
implies Frob◦rq (α) = qr · α and hence α = qr · φ◦rqr(α) is qr-divisible for all r. This implies

α = 0 ∈ KM
n (F̄(X))⊗̂Zp,

which contradicts the assumption that α was nontorsion.
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Item (4) follows from Proposition 5.1 and item (5) follows from Theorem 7.1. This concludes

the proof of the theorem. �
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