
EQUALITY IN THE BOGOMOLOV–MIYAOKA–YAU INEQUALITY
IN THE NON-GENERAL TYPE CASE

FENG HAO AND STEFAN SCHREIEDER

Abstract. We classify all minimal models X of dimension n, Kodaira dimension n−1

and with vanishing Chern number cn−2
1 c2(X) = 0. This solves a problem of Kollár.

Completing previous work of Kollár and Grassi, we also show that there is a universal

constant ε > 0 such that any minimal threefold satisfies c1c2 = 0 or −c1c2 > ε. This

settles completely a conjecture of Kollár.

1. Introduction

We work over the field of complex numbers. A minimal model is a projective terminal

Q-factorial variety X such that KX is nef. By [BCHM10] and [Lai11], any smooth

projective variety X̃ of dimension n and Kodaira dimension κ(X̃) ≥ n − 3 admits a

minimal model X that is birational to X̃.

A minimal model X is good if some multiple of KX is base-point free. The abundance

conjecture predicts that any minimal model is good. By [Ka91, Lai11], this is known in

arbitrary dimension n if κ(X) ≥ n− 3, see Section 2.4 below.

If X is an n-dimensional minimal model of general type (i.e. κ(X) = n), then we have

the Bogomolov–Miyaoka–Yau inequality

(−1)ncn−21 c2(X) ≥ (−1)n
n

2n+ 2
cn1 (X), (1)

see [Yau77] for the smooth case and [GKPT15] in general. Moreover, equality holds if

and only if X is birational to a (mildly singular) ball quotient, see [Yau77, GKPT15].

If X is a good minimal model of dimension n and Kodaira dimension κ(X) ≤ n − 1,

then cn1 (X) = 0 and the Bogomolov–Miyaoka–Yau inequality simplifies to

(−1)ncn−21 c2(X) ≥ 0, (2)

which holds by [Mi87], see also [GT16] where the Bogomolov–Miyaoka–Yau inequality is

established for minimal models of arbitrary Kodaira dimension. As above, it is natural
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to ask for a classification of all cases where equality holds in (2). This problem goes back

to Kollár, who posed it for threefolds of Kodaira dimension two, see [Kol94, Remark 3.6].

If κ(X) ≤ n − 2 and X is a good minimal model, then cn−21 c2(X) = 0 if and only if

the general fibre F of the Iitaka fibration of X satisfies cdimF−2
1 c2(F ) = 0. Since c1(F ) is

numerically trivial, this last condition is empty if κ(X) ≤ n − 3 and it is equivalent to

saying that F is an abelian surface or a bielliptic surface if κ(X) = n − 2, see Lemma

2.2 below. Hence, the classification problem of n-dimensional good minimal models with

cn−21 c2(X) = 0 reduces to the case of Kodaira dimension n − 1. In this paper we solve

this problem completely.

Theorem 1.1. Let X be a minimal model with dimX = n and κ(X) = n − 1. Then

cn−21 c2(X) = 0 if and only if X is birational to a quotient Y = (T × E)/G, where

(1) Y has canonical singularities;

(2) E is an elliptic curve and T is a normal projective variety with ample canonical

class;

(3) G ⊂ Aut(T )× Aut(E) is a finite group which acts diagonally, faithfully on each

factor and freely in codimension two on T ×E; in particular, T ×E → Y is étale

in codimension two.

Note that T and Y in the above theorem are in general not smooth in codimension

two and so cn−21 c2(Y ) is in general not defined.

By item (3), T × E → Y is quasi-étale, which has the following consequence.

Corollary 1.2. In Theorem 1.1, KY is nef and the birational map X 99K Y can be

factored into a sequence of flops X 99K X+ and a terminalization X+ → Y , i.e. a

crepant proper birational morphism such that X+ is terminal and Q-factorial.

The assertion in item (3) of Theorem 1.1, claiming that the group G acts diagonally

on T ×E, is crucial. While diagonal group actions are clearly easier to handle and form

a much smaller class than arbitrary group actions, our proof of Theorem 1.1 depends

heavily on the insight that we can arrange the group action to be diagonal. This is

essentially the content of Theorem 3.1 below, which is a key result that allows us to

pass from arbitrary group actions on T × E to diagonal ones. The result is nontrivial

and somewhat surprising. In fact, already in the case of surfaces, it is easy to construct

examples along the following lines, see Section 5.2 below for detailed constructions.

Example 1.3. There is a minimal projective surface X with κ(X) = 1 and c2(X) = 0,

such that X = (C × E)/G, where C is a smooth projective curve of genus at least two,

E is an elliptic curve and G ⊂ Aut(C ×E) is cyclic of order three, such that the action

of G on C × E is free but not diagonal, i.e. G 6⊂ Aut(C)× Aut(E).
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In sharp contrast, Theorem 1.1 and Corollary 1.2 show that any minimal projective

surface X with κ(X) = 1 and c2(X) = 0 is isomorphic to the quotient of a product

C ′ × E ′ of some smooth projective curve C ′ of genus at least two and an elliptic curve

E ′ by a finite group action that is diagonal and free. While it is classically known that

bielliptic surfaces can be expressed as quotients of two elliptic curves by a finite group

action that is diagonal and free, this analogous statement for minimal surfaces of Kodaira

dimension one and vanishing Euler number seems new.

The fact that G acts diagonally also restricts the possible groups that can appear in

Theorem 1.1. Indeed, G must be a finite subgroup of the automorphism group of an

elliptic curve and so it must be an extension 1→ H → G→ Z/m→ 1 of a finite cyclic

group of order m ≤ 4 or m = 6 by a finite subgroup H ⊂ (Q/Z)2. In fact, we will prove

also the converse to this observation, giving rise to a complete classification of all groups

that appear in Theorem 1.1.

Corollary 1.4. There is a minimal model X of some dimension n ≥ 2 and birational

to Y = (T × E)/G as in Theorem 1.1 if and only if G is a finite subgroup of the

automorphism group of an elliptic curve.

For a minimal model X, cn−21 c2(X) is a priori only a rational number, because KX is

only Q-Cartier. The second main result of this paper shows that for minimal threefolds,

this number, if nonzero, is universally bounded away from zero. This completes work

of Kollár [Kol94] and Grassi [Gra94] and solves completely a conjecture of Kollár, see

[Kol94, Conjecture 3.5].

Theorem 1.5. There is a positive constant ε > 0, such that for any minimal model X

of dimension three, we have either c1c2(X) = 0 or −c1c2(X) ≥ ε.

By work of Kollár [Kol94] and Grassi [Gra94], and the boundedness of threefolds of

general type and bounded volume [HM06, Tak06], Theorem 1.5 reduces to the case where

X has Kodaira dimension two and the Iitaka fibration X → S is generically isotrivial.

In this paper we will settle this remaining case.

Theorems 1.1 and 1.5 will both be deduced from the following theorem, which classifies

all minimal models of dimension n and Kodaira dimension n− 1 whose Iitaka fibration

is generically isotrivial.

Theorem 1.6. For a minimal model X of dimension n and Kodaira dimension n − 1,

the following are equivalent.

(1) The Iitaka fibration f : X → S is generically isotrivial, i.e. the fibres of f over a

dense open subset of S are elliptic curves with constant j-invariants.

(2) There is an elliptic curve E, a normal projective variety T with ample canonical

class KT , and a finite subgroup G ⊂ Aut(T )×Aut(E) whose action on T ×E is
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diagonal and faithful on each factor, such that the quotient Y := (T ×E)/G has

only canonical singularities and there is a commutative diagram

X

f ##

φ
// X+ τ

// Y = (T × E)/G

g
vv

S ' T/G ,

where f is the Iitaka fibration of X, φ is a composition of flops, τ is a termi-

nalization, and g is induced by the projection T × E → T . Moreover, there is a

normal subgroup G0 ⊂ G of index ≤ 4 or 6 whose action on T × E is free.

Again, the fact that G acts diagonally (which relies on the aforementioned Theorem

3.1 below) is not only a convenient statement, but it is also essential for our proof (e.g.

for the existence of φ and τ). The main point is that a diagonal action of a finite group

G on T×E that is faithful on each factor is automatically free in codimension one and so

T ×E → (T ×E)/G is quasi-étale. This property will be crucial, as it allows to translate

between the birational geometry of T × E and that of the quotient Y = (T × E)/G in

an effective way (e.g. KT×E is nef if and only if KY nef).

In Theorems 1.1 and 1.6, the projective variety T has automatically canonical singu-

larities, see Corollary 4.2. Since canonical surfaces are Gorenstein, the assertion about

the normal subgroup G0 ⊂ G in Theorem 1.6 will lead us to the following qualitative

statement in dimension three.

Corollary 1.7. Let X be a minimal model of dimension three and of Kodaira dimension

two. Assume that the Iitaka fibration f : X → S is generically isotrivial.

Then the Cartier index of X is ≤ 4 or 6. In particular, 12KX is Cartier.

In particular, for any minimal model X of dimension three and of Kodaira dimension

two whose Iitaka fibration is generically isotrivial, 4c1c2(X) or 6c1c2(X) is an integer.

Note also that the Iitaka fibration is generically isotrivial if c1c2(X) = 0 (see Lemma

2.6 below) and so the above corollary bounds the Cartier index of KX in this situation.

2. Preliminaries

2.1. Conventions and notation. We work over the field of complex numbers. A

variety is an integral separated scheme of finite type over C. A minimal model is a

projective variety X with terminal Q-factorial singularities such that KX is nef.

An open subset of a variety is big if its complement has codimension at least two.

Linear equivalence of divisors is denoted by ∼ and Q-linearly equivalence by ∼Q. In

particular, D1 ∼Q D2 if and only if mD1 ∼ mD2 for some positive integer m.
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For a birational map ϕ : X 99K Y between projective varieties X and Y , we denote for

any Q-Cartier Q-divisor D on X by ϕ∗D the Q-divisor on Y that is obtained by pulling

back D to a common resolution and pushing that pullback down to Y . For a Q-Cartier

Q-divisor D′ on Y , the pullback ϕ∗D′ is defined similarly and coincides with ϕ−1∗ D
′ that

we have just defined.

An elliptic fibre space is a normal quasi-projective variety X with a pojective morphism

f : X → S to a normal quasi-projective variety S whose general fibre is an elliptic curve.

We say that f has trivial monodromy, if R1f∗Q restricts to a trivial local system over

some non-empty Zariski open subset U ⊂ S.

If X is a variety which is smooth in codimension two (e.g. terminal), then c2(X)

denotes the codimension two cycle on X, given by the closure of the second Chern

class of the tangent bundle of the smooth locus of X. If additionally KX is Q-Cartier,

then the intersection numbers cn1 (X) := (−KX)n and cn−21 c2(X) := (−KX)n−2c2(X) are

well-defined rational numbers, where n = dimX.

2.2. Terminalizations. A proper birational morphism τ : Y ′ → Y between normal

varieties with KY Q-Cartier is a crepant birational contraction if τ ∗KY = KY ′ . A termi-

nalization of a variety Y with canonical singularities is a crepant contraction τ : Y ′ → Y

from a Q-factorial and terminal variety Y ′. If Y is canonical, then a terminalization Y ′

of Y exists by [BCHM10]. Explicitly, Y ′ is constructed by taking a resolution Ỹ → Y

and running a relative minimal model program of Ỹ over Y .

2.3. G-equivariant minimal model program. Let G be a finite group. A variety

with a G-action is called a G-variety.

Let f : T → S be a G-equivariant morphism of projective G-varieties with terminal

singularities. Assume that KT is f -big. Then, by [BCHM10], there is a unique relative

canonical model f c : T c → S, where T c has canonical singularities and KT c is f c-ample.

Explicitly, T c = Proj(
⊕

n≥0 f∗ω
⊗n
T ) and so G acts on T c, making f c G-equivariant.

2.4. Good minimal models for κ ≥ n − 3. By [BCHM10] any smooth projective

variety X of dimension n and Kodaira dimension κ(X) = n admits a minimal model

Xmin that is birational to X. Moreover, the basepoint free theorem implies that any

such minimal model is good, see [KM05, Theorem 3.3]. By the minimal model program

in dimension three and a result of Lai [Lai11], the same result holds true if κ(X) ≥ n−3.

Theorem 2.1. Let X be a smooth projective variety of dimension n and κ(X) ≥ n− 3.

Then there is a minimal model Xmin that is birational to X. Moreover, any such minimal

model is good, i.e. for some integer m > 0 the linear system |mKXmin| is base point free.

Proof. If n = 3, then the result follows from the fact that the full minimal model program

(including the abundance conjecture) is known for threefolds, see [KM05] and [Ka91].
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The general result is therefore a direct consequence of [Lai11, Proposition 2.4 and The-

orem 4.4]. �

2.5. Good minimal models with cn−21 c2 = 0 and κ ≤ n−2. The following well-known

lemma essentially reduces the classification of all good minimal models with cn−21 c2 = 0

to the case κ = n− 1, c.f. [Gra94].

Lemma 2.2. Let X be a good minimal model of dimension n and with Iitaka fibration

f : X → S. If κ(X) ≤ n − 2, then cn−21 c2(X) = 0 is automatic if κ(X) ≤ n − 3 and it

is equivalent to asking that the general fibre of f is an abelian or a bielliptic surface if

κ(X) = n− 2.

Proof. Since f is the Iitaka fibration, c1(X) = −f ∗A for an ample Q-divisor A on S and

so cn−21 c2(X) = 0 is automatic if κ(X) ≤ n − 3, because κ(X) = dimS. Moreover, if

κ(X) = n − 2, then cn−21 c2(X) is a nonzero multiple of c2(F ) for a general fibre F of

f , because F has trivial normal bundle and so c2(X) · F = c2(X)|F = c2(F ). Hence,

cn−21 c2(X) = 0 if and only if c2(F ) = 0. Since F has numerically trivial canonical bundle

(given by the restriction of KX), the condition c2(F ) = 0 means that F is an abelian or

a bi-elliptic surface. �

2.6. Étale and quasi-étale morphisms. A morphism f : X → Y between varieties is

étale if it is flat and unramified. Since we are working over the algebraically closed field

C, f is étale if and only if for all x ∈ X, the induced morphism between the completed

local rings ÔY,f(x) → ÔX,x is an isomorphism for all x ∈ X. If f is finite, then f is

étale if and only if it is a topological covering of the underlying analytic spaces and in

this situation, f is uniquely determined by the finite index subgroup f∗π1(X) ⊂ π1(Y ).

Conversely, any finite index subgroup of π1(Y ) corresponds uniquely to a finite étale

covering of Y as above.

A finite morphism f : X → Y between normal varieties is quasi-étale, if it is étale in

codimension one, i.e. there is a big open subset U ⊂ X, such that f |U : U → Y is étale,

see [GKP16, Definition 3.3]. In this situation, f is automatically étale over the smooth

locus of Y , see Corollary 2.4 below.

2.7. Galois covers. A finite morphism f : X → Y between quasi-projective varieties is

Galois (or a Galois cover) if there is a finite subgroup G ⊂ Aut(X) such that Y ' X/G

and f is isomorphic to the quotient map X → X/G. The group G is called Galois group

of f . We will need the following consequence of an equivariant version of Zariski’s main

theorem, see [GKP16, Theorem 3.8].

Theorem 2.3. Let f : U → V be a finite morphism between normal quasi-projective

varieties. Let Y be a normal projective closure of V . Then there is a normal projective
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closure X of U , which is unique up to unique isomorphism, such that f extends to a

finite morphism f : X → Y . Moreover, if f is Galois with group G, then f is also Galois

with group G.

The above theorem implies for instance the following two well-known statements.

Corollary 2.4. Let f : X → Y be a finite quasi-étale morphism between normal quasi-

projective varieties. If Y is smooth, then f is étale.

Proof. By assumption, there is a big open subset V ⊂ Y such that U := f−1(V )→ V is

a finite étale morphism. Since Y is smooth, V is smooth and so U must be smooth as

well. But finite étale morphisms U → V between smooth quasi-projective varieties are

in one to one correspondence to finite index subgroups of π1(V ). Since Y is smooth and

V ⊂ Y is big, π1(Y ) ' π1(V ) and so the finite étale cover U → V extends uniquely to a

finite étale cover U → Y . By Theorem 2.3, U → Y and X → Y extend to finite covers

of a normal projective closure of Y , which by construction coincide over V ⊂ Y . The

uniqueness assertion in Theorem 2.3 thus implies that these extensions are isomorphic,

and so U → Y and X → Y must be isomorphic. Hence, X → Y is étale, as we want. �

Corollary 2.5. Let f : X → Y and g : Y → Z be finite morphisms of normal quasi-

projective varieties. If g ◦ f : X → Z is Galois, then so is f .

Proof. Since f and g are finite and g ◦ f is surjective, f is finite and surjective. Hence,

f̄−1(Y ) = X for any extension f̄ : X̄ → Ȳ of f to a finite morphism between projective

closures of X and Y . By Theorem 2.3, f is thus Galois if and only if its base change

to a non-empty Zariski open subset V ⊂ Y is Galois. Hence, up to replacing X, Y and

Z by suitable dense open subsets, we may assume that X, Y and Z are smooth and f

and g are finite étale. In this situation, consider the injective morphisms on fundamental

groups

π1(X) f∗ // π1(Y ) g∗ // π1(Z).

Since g ◦ f is a finite Galois étale cover, im(g∗ ◦ f∗) ⊂ π1(Z) is a normal subgroup. This

implies that im(g∗ ◦ f∗) ⊂ im(g∗) is a normal subgroup of im(g∗). Since g∗ is injective,

we conclude that im(f∗) ⊂ π1(Y ) is a normal subgroup, which is equivalent to saying

that the finite étale morphism f is Galois. This proves the corollary. �

2.8. Elliptic fibre spaces with cn−21 c2 = 0. Let X be an n-dimensional minimal model

of Kodaira dimension n − 1 and with Iitaka fibration f : X → S, which is a morphism

by Theorem 2.1. Let A be a very ample divisor on S such that KX is linearly equivalent

to a rational multiple of f ∗A and let C ⊂ S be the intersection of n− 1 general elements

of the linear series |A|. Since S is normal and X is terminal, it follows from Bertini’s
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theorem that Z := f−1(C) and C are smooth. We then have the following simple and

well-known lemma.

Lemma 2.6. In the above notation, the following are equivalent:

(1) cn−21 c2(X) = 0;

(2) c2(Z) = 0;

(3) Z → C is a minimal elliptic surface such that all singular fibres are multiples of

smooth elliptic curves;

(4) Z → C is a minimal elliptic surface, whose smooth fibres have constant j-

invariants and whose singular fibres are multiples of smooth elliptic curves.

Proof. Note first that the normal bundle NZ/X = f ∗A⊕n−2|Z is a direct sum of nef line

bundles on Z. Since KX is nef, it follows that KZ = KX |Z ⊗
n−2
∧ NZ/X is nef as well.

Hence, f |Z : Z → C is a minimal elliptic surface of Kodaira dimension one.

Since Z is smooth and contained in the smooth locus of X, we have a short exact

sequence of vector bundles on Z:

0→ TZ → TX |Z → f ∗A⊕n−2|Z → 0.

Applying the Whitney sum formula, we deduce that the second Chern number of Z is

given by

c2(Z) = c2(X) · f ∗An−2 − c1(Z)

(
n− 2

1

)
f ∗A|Z −

(
n− 2

2

)
f ∗A2|Z

= c2(X) · f ∗An−2 − (n− 2)c1(Z)f ∗A|Z ,

where we used f ∗A2|Z = f ∗An = 0. By adjunction, c1(Z) = (c1(X)− (n−2)f ∗A)|Z , and

so c1(Y )f ∗A|Z = 0, as it is a multiple of f ∗An = 0. The above formula thus yields

c2(Z) = c2(X) · f ∗An−2.

This proves the equivalence of (1) and (2), because KX is linearly equivalent to a nonzero

rational multiple of f ∗A.

To prove (2) ⇔ (3), note that c2(Z) coincides with the sum of the Euler numbers of

the singular fibres of Z → C. By Kodaira’s classification of singular fibres it thus follows

that c2(Z) = 0 if and only if all singular fibres of Z → C are multiples of a smooth

elliptic curve.

Finally, (4) ⇒ (3) is clear and the converse follows by noting that if all singular fibres

are multiples of smooth elliptic curves, then the j-invariant j : C 99K P1 is not dominant

and so it must be constant. This proves the lemma. �

The above lemma has the following immediate consequence, cf. [Gra94, Theorem 2.7].
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Corollary 2.7. Let X be an n-dimensional minimal model of Kodaira dimension n− 1

and with Iitaka fibration f : X → S. Then, cn−21 c2(X) = 0 if and only if f is generically

isotrivial and for any codimension one point s ∈ S(1), the fibre of f above s is either

smooth or a multiple of a smooth elliptic curve.

3. Reparametrizing quotients of products with elliptic curves

In this section we analyse quotients (T×E)/G, where T is a smooth projective variety,

E is an elliptic curve and G is a finite group that acts faithfully on T ×E. We will addi-

tionally assume that G acts on T such that the projection T ×E → T is G-equivariant.

The simplest such actions are diagonal, i.e. G ⊂ Aut(T )× Aut(E) acts separately on T

and E, respectively. Diagonal actions have the nice property that they are automatically

free in codimension one, as long as they are faithful on each factor. However, not every

action as above needs to be diagonal. An easy counterexample is given by the action of

Z/2 on the self-product E ×E of an elliptic curve E, generated by (x, y) � // (−x, x+ y).

This action is not diagonal, nor free in codimension one, and it is easy to construct many

more examples along these lines (also for T of general type), see Section 5.2 below.

The following theorem shows however that as long as we are only interested in the

quotient (T × E)/G, we can always replace T , E and G without changing the quotient

so that the action of G on T × E is diagonal and free in codimension one.

Theorem 3.1. Let E be an elliptic curve, T a smooth projective variety, and let G

be a finite group which acts on T × E and T such that the projection T × E → T is

G-equivariant.

Then there is an elliptic curve E ′, a normal projective variety T ′ and a finite group G′

which acts on T ′ × E ′ and T ′, such that the projection T ′ × E ′ → T ′ is G′-equivariant,

with the following properties:

(1) There are compatible isomorphisms

(T ′ × E ′)/G′ ' (T × E)/G and T ′/G′ ' T/G.

(2) The action of G′ on T ′×E ′ is diagonal, i.e. G′ ⊂ Aut(T ′)×Aut(E ′), and faithful

on each factor of T ′ × E ′.
(3) There is a normal subgroup G′0 ⊂ G′ whose index is ≤ 4 or 6, such that the action

of G′0 on T ′ × E ′ is free.

Remark 3.2. While T is assumed to be smooth in the above theorem, we cannot guar-

antee that T ′ will be smooth. Indeed, if the G-action on T ×E is diagonal but trivial on

E, then the theorem produces T ′ = T/G which has quotient singularities.
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Proof of Theorem 3.1. Since T×E → T is G-equivariant, the action of an element g ∈ G
on T × E is of the form

g · (t, e) = (g · t, g(t) · e)

where (g, t) � // g · t denotes the G-action on T and where t � // g(t) yields a morphism

T → Aut(E) with corresponding action (g(t), e) � // g(t) · e on E. Since E is an elliptic

curve, there is a short exact sequence

0 //E // Aut(E) α // Aut(E, 0) // 0,

where E ⊂ Aut(E) acts on E via translation and Aut(E, 0) denotes the image of the

natural map Aut(E) → Aut(H1(X,Z)), which can be identified with the subgroup of

automorphisms of E that fix the origin. In particular, Aut(E, 0) is a cyclic group of

order 2, 4 or 6. Since T is irreducible and Aut(E, 0) is discrete, α(g(t)) ∈ Aut(E, 0) does

not depend on t. Hence there is a well-defined group homomorphism

G // Aut(E, 0), g � //α(g(t)). (3)

Let G0 ⊂ G be the kernel of the above group homomorphism. Then G0 ⊂ G is a normal

subgroup of index ≤ 4 or 6, because Aut(E, 0) has order 2, 4 or 6, and we consider

Y0 := (T × E)/G0,

which is a finite cover of Y := (T × E)/G of degree ≤ 4 or 6.

Step 1. Consider the projection

p : Y0 = (T × E)/G0
//S0 := T/G0.

Then R1p∗Q is a trivial local system on S0.

Proof. Since G0 is in the kernel of (3), any fibre of p : Y0 → S0 is either smooth or a

multiple of a smooth elliptic curve. Hence, R1p∗Q is a local system. The monodromy

is trivial because π1(S0) is an extension of G0 by π1(T ), where π1(T ) acts trivially on E

and G0 acts trivially on H1(E,Q), as it acts via the translation of points on E. This

concludes step 1. �

Step 2. There is an elliptic curve F with an action of G/G0 and a G/G0-equivariant

morphism h : Y0 → F which restricts to finite étale maps on the fibres of p : Y0 → S0.

Proof. Since T is smooth, Y0 has only quotient singularities. Since quotient singularities

are rational [Vie77, Proposition 1], Y0 has rational singularities. Hence, there is a well-

defined Albanese morphism a : Y0 → Alb(Y0), induced by the Albanese morphism of a

resolution of Y0, and we may consider the dual abelian variety

Alb(Y0)
∨ := Pic0(Alb(Y0)).



EQUALITY IN THE BOGOMOLOV–MIYAOKA–YAU INEQUALITY 11

Similarly, S0 := T/G0 has rational singularities and so Alb(S0) is well-defined and we

consider its dual

Alb(S0)
∨ := Pic0(Alb(S0)).

The natural map f0 : Y0 → S0 induces a morphism (f0)∗ : Alb(Y0) → Alb(S0) of

abelian varieties and via duality a morphism f ∗0 : Alb(S0)
∨ → Alb(Y0)

∨. Note that

G/G0 acts on S0 and Y0 in a compatible way and so f ∗0 : Alb(S0)
∨ → Alb(Y0)

∨ is

G/G0-equivariant, where we define the G/G0-action on line bundles L on Alb(Y0) (resp.

Alb(S0)) by

g · L := (g−1)∗L,

where g−1 : Alb(Y0) → Alb(Y0) (resp. g−1 : Alb(S0) → Alb(S0)) denotes the group

homomorphism that is induced by the action of g−1 on Y0 (resp. on S0). Since R1p∗Q is

trivial of rank 2, the global invariant cycle theorem applied to a resolution of Y0 shows

that

F := Alb(Y0)
∨/f ∗0 Alb(S0)

∨

is an elliptic curve. The choice of a G/G0-invariant ample divisor D on Alb(Y0) induces

an isogeny

φ : Alb(Y0) // Alb(Y0)
∨, x � //D −Dx,

where Dx = D + x denotes the translate of D by x. By our definition of the action of

G/G0 on Alb(Y0)
∨, we find that for g ∈ G/G0,

g · (D −Dx) = g(D)− g(D)g(x) = D −Dg(x),

because D is G/G0-invariant and the action of g yields a group homomorphism g :

Alb(Y0)→ Alb(Y0). Hence, φ is G/G0-equivariant.

The morphism

h : Y0 //F,

given as composition

Y0
a // Alb(Y0)

φ // Alb(Y0)
∨ // //F = Alb(Y0)

∨/f ∗0 Alb(S0)
∨ (4)

restricts to finite étale covers on the fibres of p. Since φ is G/G0-equivariant, all mor-

phisms apart from the Albanese morphism a in the above composition (4) are G/G0-

equivariant. Moreover, the Albanese morphism is G/G0-equivariant up to the translation

of a point, which depends on the base point y0 ∈ Y0 that we implicitly chose in the defi-

nition of the Albanese map. More precisely, for any g ∈ G/G0 and any y ∈ Y0,

g · a(y)− a(g · y) =

∫ g·y

g·y0
−
∫ g·y

y0

=

∫ y0

g·y0



12 FENG HAO AND STEFAN SCHREIEDER

depends only on g and the base point y0 but not on y. Hence,

g · h(y) = h(g · y) + tg, (5)

where tg ∈ F does not depend on y ∈ Y0.
Note that Aut(E, 0) acts faithfully on H1(E,Q). Hence, G/G0 ⊂ Aut(E, 0) acts

faithfully on H1(E,Q). Since F is isogeneous to E, H1(E,Q) ' H1(F,Q) and the

action of G/G0 on F is faithful as well.

Recall that G/G0 is cyclic of order at most six and let g ∈ G/G0 be a generator. We

may without loss of generality assume that G/G0 6= {1} and so g is not the identity.

Since G/G0 acts faithfully on F , the morphism g− id : F → F is surjective and so there

is an element s ∈ F with g · s− s = −tg. We then define

h′ : Y0 //F, y � //h(y) + s.

By (5),

g · h′(y) = g · h(y) + g · s = h(g · y) + tg + g · s = h′(g · y),

holds for the generator g of the cyclic group G/G0, and so it holds in fact for all g ∈ G/G0.

Hence, up to replacing h by h′ (which essentially amounts to the choice of a different base

point for the Albanese morphism), we may assume that h : Y0 → F is G/G0-equivariant.

This concludes step 2. �

Let S ′ ⊂ h−1(x) be a connected component of a general fibre of h : Y0 → F . By

Bertini’s theorem for normality, S ′ is normal, hence in particular integral, because it

is connected by construction. Since h restricts to finite étale maps on the fibres of p,

p|S′ : S ′ → S0 is finite with ramification induced by the multiple fibres of p. In particular,

S ′ is a multi-section of p : Y0 → S0.

Step 3. The normalization Y ′ of Y0 ×S0 S
′ has the following properties:

(1) the natural map τ : Y ′ //Y0 is quasi-étale;

(2) Y ′ has only quotient singularities and hence rational singularities;

(3) there is an elliptic curve E ′ and an isomorphism over S ′: Y ′ ' S ′ × E ′.

Proof. Since S ′ is normal, a local computation shows that τ is étale in codimension one,

see e.g. [HS19, Lemma 5.11]. This proves (1).

To prove (2), note that Y0 = (T × E)/G0 has quotient singularities by construction.

That is, if we put X0 := T × E, then X0 is smooth and there is a finite Galois cover
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ε : X0 → Y0. Consider the fibre product X ′ := X0 ×Y0 Y ′, which fits into a diagram

X ′

ε′

��

τ ′
// X0

ε

��

Y ′
τ
// Y0.

Since ε is finite and τ is finite quasi-étale, τ ′ is finite quasi-étale. Since X0 is smooth, and

quasi-étale maps are étale over the smooth locus (see Corollary 2.4), τ ′ is in fact étale.

Hence, X ′ is smooth. Since ε is Galois, so is ε′ and so Y ′ has quotient singularities. This

proves item (2) because quotient singularities are rational, see [Vie77, Proposition 1].

It remains to show (3). For this, we show first that it is enough to prove that Y ′

is birational to S ′ × E ′ over S ′. Indeed, such a birational map induces a rational map

Y ′ 99K E ′, given as composition

Y ′
∼
99K S ′ × E ′ pr2 // E ′.

Since Y ′ has rational singularities by item (2) proven above and E ′ is an elliptic curve,

this rational map is in fact a morphism Y ′ → E ′. Together with the natural morphism

Y ′ → S ′, this induces a birational morphism Y ′ → S ′ × E ′ which is finite, because any

fibre of Y0 → S0 is (a multiple of) an elliptic curve and Y ′ → Y0 ×S0 S
′ is finite. Hence,

Y ′ → S ′ × E ′ is an isomorphism by Zariski’s main theorem, because S ′ × E ′ is normal.

It remains to show that Y ′ is birational to S ′ × E ′ over S ′. For this we take a non-

empty open subset U ′ ⊂ S ′, such that p′ : Y ′ → S ′ is smooth over U ′. (Since Y ′ is normal

and dimS ′ = dimY ′ − 1, such U ′ exists.) Note that p′ : Y ′ → S ′ has a natural rational

section, given by the fact that Y ′ is birational to Y0 ×S0 S
′ and S ′ is a multi-section

of Y0 → S0. Hence, after shrinking U ′ if necessary, we may assume that the smooth

elliptic fibration (p′)−1(U ′) → U ′ admits a regular section. Moreover, (p′)−1(U ′) → U ′

has trivial monodromy by step 1 and so it follows from the existence of a fine moduli

space of elliptic curves with level structure that

(p′)−1(U ′) ' U ′ × E ′ (6)

for some elliptic curve E ′. That is, p′ : Y ′ → S ′ and pr1 : S ′ × E ′ → S ′ are isomorphic

over U ′, as we want. This concludes the proof of item (3) and hence finishes step 3. �

By [GKP16, Theorem 3.7], there is a normal variety S ′′ and a finite Galois cover

S ′′ //T/G, which factors through the composition S ′ → S0 → T/G. Let

Y ′′ := Y ′ ×S′ S ′′.

By item (3) in step 3 there is an isomorphism

Y ′′ ' S ′′ × E ′ (7)
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which is compatible with the natural projections to S ′′ on both sides.

Step 4. The natural commutative diagram

Y ′′ //

��

Y ′ //

��

Y0 //

��

Y := (T × E)/G

��

S ′′ // S ′ // S0
// S := T/G

(8)

has the property that all its squares become Cartesian after base change to a non-empty

open subset U of S. Moreover, all varieties in the above diagram are normal.

Proof. Since Y ′′ ' S ′′ × E ′ and S ′′ is normal, Y ′′ is normal as well. Normality of Y ′

follows from its definition and S ′ is normal by Bertini’s theorem for normality, as noted

in the paragraph above step 3. Moreover, S0 = T/G0, S = T/G, Y0 = (T × E)/G0 and

Y = (T × E)/G are normal as quotients of a normal (in fact smooth) variety by the

action of a finite group. Hence, all varieties in (8) are normal. It thus remains to prove

the first claim in step 4.

Since Y ′′ = Y ′×S′ S ′′, the left most square in (8) is Cartesian. Next, the normalization

morphism Y ′ → Y0 ×S0 S
′ is an isomorphism over a non-empty smooth open subset of

S0 and so the middle square is Cartesian after restriction to a non-empty open subset.

Finally, by the universal property of fibre products, there is a finite morphism Y0 →
Y ×S S0 of degree one, which must be the normalization because Y0 = (T × E)/G0 is

normal. In particular, Y0 and Y ×S S0 are isomorphic over a non-empty open subset of

S0.

Altogether, it follows that in (8) all inner squares, and hence by a basic property of

fibre products in fact all squares become Cartesian after base change to a non-empty

open subset U of S. This concludes step 4. �

Since S ′′ → S is Galois, Corollary 2.5 implies that S ′′ → S0 is Galois as well and we

denote its Galois group by G′′0 ⊂ G′′.

Step 5. The finite morphisms Y ′′ → Y and Y ′′ → Y0 are Galois with groups G′′ and

G′′0, respectively. Moreover, G′′0 ⊂ G′′ is a normal subgroup and there is an isomorphism

G/G0 ' G′′/G′′0 such that the two natural actions of these groups on Y0 ' Y ′′/G′′0
coincide.

Proof. By step 4, all varieties in (8) are normal and all squares become Cartesian after

restriction to a non-empty open subset U ⊂ S. In particular, after restiction to U ⊂ S,

the morphisms Y ′′ → Y and Y ′′ → Y0 are Galois with group G′′ and G′′0, respectively,

because G′′ and G′′0 are the Galois groups of S ′′ → S and S ′′ → S0, respectively. But
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then Theorem 2.3 implies that Y ′′ → Y and Y ′′ → Y0 are Galois with group G′′ and G′′0,

respectively, as we want.

By construction, Y0 → Y is Galois with Galois group G/G0. That is, there is a

natural isomorphism Aut(Y0/Y ) ' G/G0, where Aut(Y0/Y ) denotes the subgroup of

automorphisms of Y0 that lie over the identity of Y .

We aim to construct a surjective group homomorphism

χ : G′′ // Aut(Y0/Y ) (9)

with kernel G′′0. For this, we fix a general point y′′0 ∈ Y ′′ and for any point y′′ ∈ Y ′′, we

denote its image in Y0 = Y ′′/G′′0 by [y′′]. For a group element g ∈ G′′, we then have

[g′′ · y′′0 ] = ϕ[y′′0 ] ∈ Y ′′/G′′0

for some ϕ ∈ Aut(Y0/Y ), because Y0 → Y is Galois. Note that ϕ is unique because y′′0 is

general and so Aut(Y0/Y ) acts faithfully transitively on the fibre of Y0 → Y above the

image of y′′0 ∈ Y ′′ in Y ' Y ′′/G′′. We may thus define

χ(g′′) := ϕ ∈ Aut(Y0/Y ).

Note the corresponding map χ : G′′ → Aut(Y0/Y ) is surjective, because for a given

element ϕ ∈ Aut(Y0/Y ), the point ϕ[y′′0 ] is always of the form [g′′ · y′′0 ] for some g′′ ∈ G′′,
because ϕ is an automorphism of Y0 which lies over the identity of Y ' Y ′′/G′′.

By construction,

[g′′ · y′′] = χ(g′′)[y′′] ∈ Y ′′/G′′0 (10)

holds for y′′ = y′′0 and in fact for all y′′ ∈ Y ′′ in a small analytic neighbourhood U of

y′′0 such the quotient map Y ′′ → Y ′′/G′′ splits into a disjoint union of |G′′| copies of U

above the image U/G′′ ⊂ Y ′′/G′′ of U in Y ′′/G′′. Consider then the two maps Y ′′ → Y ′′0 ,

given by y′′ � // [g′′ · y′′] and y′′ � //ϕ[y′′], respectively. The locus where these two maps

coincide is a Zariski closed subset of Y ′′ which contains a small analytic neighbourhood

of y′′0 . Since Y ′′ is irreducible, we deduce that (10) holds for all y′′ ∈ Y ′′.
We now claim that χ is a group homomorphism. For this, let g′′1 , g

′′
2 ∈ G′′. Then we

have

χ(g′′1g
′′
2)[y′′0 ] = [g′′1g

′′
2y
′′
0 ] = χ(g′′1)[g′′2y

′′
0 ] = χ(g′′1)χ(g′′2)[y′′0 ],

where we used that (10) holds for all y′′ ∈ Y ′′. Since Aut(Y0/Y ) acts faithfully transi-

tively on the fibre of Y0 → Y above the image of y′′0 ∈ Y ′′ in Y ' Y ′′/G′′, we deduce

that

χ(g′′1g
′′
2) = χ(g′′1)χ(g′′2)

for all g′′1 , g
′′
2 ∈ G′′ and so χ is a group homomorphism.
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As we have seen above, χ is surjective. Clearly, G′′0 ⊂ ker(χ) and so χ induces a

surjection

G′′/G′′0 // Aut(Y0/Y ).

On the other hand, G′′/G′′0 and Aut(Y0/Y ) have the same number of elements, because

Y0 ' Y ′′/G′′0 → Y ' Y ′′/G′′ is Galois. Hence, ker(χ) = G′′0 and so the group homo-

morphism in (9) is surjective with kernel G′′0, as we want. Since Aut(Y0/Y ) ' G/G0, χ

induces in particular a natural isomorphism

G′′/G′′0 ' G/G0

such that the two natural actions of these groups on (S ′′ × E ′)/G′′0 ' Y0 coincide. This

concludes step 5. �

We consider the composition

h′′ : S ′′ × E ′ ' Y ′′ π0 // (S ′′ × E ′)/G′′0 ' Y0
h // F,

where π0 denotes the quotient map.

Step 6. There is a finite étale morphism ε : E ′ → F with h′′ = ε ◦ pr2 .

Proof. Let S̃ ′′ be a resolution of singularities of S ′′. This induces a resolution Ỹ ′′ ' S̃ ′′×E ′

of Y ′′ ' S ′′ × E ′, see (7). The morphism h′′ induces a morphism h̃′′ : Ỹ ′′ → F and it

suffices to show that this morphism factors through the second projection pr2 : S̃ ′′×E ′ →
E ′. By the universal property of the Albanese morphism, h̃′′ factors as the composition

of the Albanese morphism

Ỹ ′′ // Alb(Ỹ ′′) ' Alb(S̃ ′′)× E ′

and a morphism

φ : Alb(S̃ ′′)× E ′ //F.

Since φ is a morphism between abelian varieties, it is a group homomorphism up to the

translation by a point. This implies that it suffices to show that φ contracts Alb(S ′′)×{0}
to a point. But for this it suffices to show that h̃′′ contracts S̃ ′′ × {0} to a point. Or

equivalently, h′′ contracts S ′′ × {0} to a point. By construction, S ′′ × {0} maps via

Y ′′ → Y0 to S ′ ⊂ h−1(x) and so it is clear that h′′(S ′′×{0}) = x is a point. This finishes

the proof of step 6. �

By step 5, G′′ acts on Y ′′ and this action is by construction compatible with the

natural G′′-action on S ′′. By (7), Y ′′ ' S ′′ × E ′ such that Y ′′ → S ′′ corresponds to

the first projection and so G′′ acts naturally on S ′′ and S ′′ × E ′ in compatible ways.

Moreover, step 5 implies that

(S ′′ × E ′)/G′′ ' Y = (T × E)/G
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and S ′′/G′′ ' T/G. The action of an element g′′ ∈ G′′ on (s′′, e′) ∈ S ′′×E ′ is thus of the

form

g′′ · (s′′, e′) = (g′′ · s′′, g′′(s′′) · e′), (11)

for some morphism S ′′ → Aut(E ′).

Step 7. The action of G′′ on S ′′ × E ′ is diagonal, i.e. for any g′′ ∈ G′′, the element

g′′(s′′) ∈ Aut(E ′) in (11) does not depend on s′′.

Proof. Recall the G/G0-equivariant morphism h : Y0 → F from step 2. By step 5,

G′′/G′′0 ' G/G0 and so h is equivariant with respect to an action of G′′/G′′0. In particular,

the above G/G0-action on F induces an action of G′′ on F whose restriction to G′′0 is

trivial. Since h′′ : Y ′′ → F is given by h′′ = h ◦ π0, it factors through the projection

π0 : Y ′′ → Y0 and so h′′ is equivariant with respect to the natural actions of G′′ on Y ′′

and F , respectively. By (7), Y ′′ ' S ′′ × E ′ and by step 6, h′′ = ε ◦ pr2 for a finite map

ε : E ′ → F .

Explicitly, for g′′ ∈ G′′ and (s′′, e′) ∈ S ′′ × E ′, (11) then implies

h′′(g′′ · (s′′, e′)) = h′′((g′′ · s′′, g′′(s′′) · e′)) = ε(g′′(s′′) · e′).

Since h′′ is G′′-equivariant, we also have

h′′(g′′ · (s′′, e′)) = g′′ · h′(s′′, e′) = g′′ · ε(e′).

Hence,

ε(g′′(s′′) · e′) = g′′ · ε(e′)

for all s′′ ∈ S ′′ and e′ ∈ E ′. Since ε is finite, this is only possible if g′′(s′′) in (11) does

not depend on s′′. Hence, the action of G′′ on S ′′ × E ′ is diagonal, as we want. �

By step 7, G′′ ⊂ Aut(S ′′) × Aut(E ′). Since S ′′ → S is Galois with group G′′, we

find that G′′ acts faithfully on S ′′, i.e. the natural map G′′ → Aut(S ′′) is injective. A

priori, G′′ might not act faithfully on E ′ and we denote the kernel of the natural group

homomorphism G′′ → Aut(E ′) by H. Then H ⊂ G′′ is a normal subgroup and we put

G′ := G′′/H and T ′ := S ′′/H.

By construction, G′ acts on T ′ × E ′ and T ′ with quotients

(T ′ × E ′)/G′ ' Y = (T × E)/G and T ′/G′ ' T/G,

such that the natural maps

(T ′ × E ′)/G′ → T ′/G′ and (T × E)/G→ T/G

are identified with each other. This proves item (1) in Theorem 3.1.
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Also, G′ acts diagonally and faithfully on each factor of T ′ × E ′ and so its action on

T ′ ×E ′ is free in codimension one, i.e. T ′ ×E ′ → Y is quasi-étale. This proves item (2)

in Theorem 3.1.

Finally, if we put G′0 := G′′0/H, then G′/G′0 ' G′′/G′′0. It thus follows from step 5 and

the construction of G0 ⊂ G in (3) that G′0 is a normal subgroup of G′ of index ≤ 4 or 6,

and (T ′ × E ′)/G′0 ' Y0. Since p : Y0 → S0 has trivial monodromy by step 1, the action

of G′0 on E ′ is given by translation by torsion points. Since G′ acts faithfully on E ′, it

follows that G′0 acts freely on E ′ and hence freely on T ′×E ′. This proves item (3), which

concludes the theorem. �

Remark 3.3. A crucial point in the above argument is the existence of the G/G0-

equivariant morphism h : Y0 → F from step 2. This uses in an essential way that

G/G0 is a cyclic group, which in turn relies on the classification of the automorphism

groups of elliptic curves. In particular, the above proof does not generalize to the situa-

tion where E is an abelian variety of higher dimension or a smooth projective curve of

higher genus, so that the quotient of the automorphism group Aut(E) by the subgroup of

those automorphisms that act trivial on cohomology, is not cyclic. It is conceivable that

also the result of Theorem 3.1 does not generalize to this more general setting.

4. Minimal models with κ = n− 1 and generically isotrivial Iitaka

fibration

In this section we use Theorem 3.1 to prove Theorem 1.6, stated in the introduction.

Proof of Theorem 1.6. Let X be a minimal model of dimension n and Kodaira dimension

n − 1. Then X is a good minimal model by Theorem 2.1 and so the Iitaka fibration

f : X → S is a morphism with

KX ∼Q f
∗A (12)

for some ample Q-divisor A on S.

Since (2)⇒ (1) in Theorem 1.6 is obvious, it suffices to prove the converse implication.

For this, we assume that f is generically isotrivial. We then proceed in several steps.

Step 1. There is a finite group G′ and a non-empty open subset U ⊂ S, such that

XU := f−1(U)→ U is given by

XU ' (U ′ × E ′)/G′ → U ′/G′ ' U,

where E ′ is an elliptic curve and U ′ is a G′-variety with U ′/G′ ' U whose action on U ′

lifts to U ′ × E ′ making the first projection G′-equivariant.

Proof. By assumptions, f is generically isotrivial with typical fibre an elliptic curve E ′.

Let U ⊂ S be a sufficiently small Zariski open non-empty subset, such that U and f |XU
:
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XU → U are smooth. Then R1f∗Z|U is a local system. Moreover, XU is smooth and

f |XU
is a proper morphism between complex manifolds which is locally isotrivial. Hence,

f |XU
is an analytic fibre bundle by [FG65]. Since the identity component of Aut(E ′)

acts trivially on H1(E ′,Z), this implies that the monodromy of R1f∗Z|U is finite. That

is, for any fixed base point u ∈ U , the image of π1(U, u)→ Aut(H1(Xu,Z)) = GL2(Z) is

a finite group. Hence, there is an irreducible variety U ′ and a finite Galois étale covering

U ′ → U with Galois group G′, such that the base change XU ′ := X ×S U ′ is an elliptic

fibre bundle over U ′ with trivial monodromy. Since X is projective, XU ′ → U ′ admits

a rational multi-section. Hence, up to shrinking U and replacing U ′ → U by another

Galois étale covering (where we use Corollary 2.5), we may assume that f ′ : XU ′ → U ′

admits a section. Note also that R1f ′∗Z is a trivial local system on U ′ by construction.

The existence of a fine moduli space for elliptic curves with level structure thus shows

XU ′ ' U ′ × E ′, (13)

because we know that any fibre of XU ′ → U ′ is isomorphic to E ′. Moreover, since

XU ′ → XU is Galois with Galois group G′, there is a natural action of G′ on U ′ × E ′

with quotient XU . This concludes step 1. �

Step 2. There is an elliptic curve E, a normal projective variety T , and a finite group

G ⊂ Aut(T ) × Aut(E) whose action on T × E is diagonal and faithful on each factor,

such that:

• there is a normal subgroup G0 ⊂ G of index ≤ 4 or 6 whose action on T × E is

free;

• Y = (T × E)/G fits into a commutative diagram

X

f

��

ϕ
// Y = (T × E)/G

g

��

S T/G,
h

oo

(14)

where ϕ is a birational map, h is a birational morphism, and g is the canonical

morphism induced by the projection pr1 : T × E → T .

Proof. By step 1, there is an open subset U ⊂ S, such that XU := f−1(U) is a quotient

XU = (U ′ × E ′)/G′.

By equivariant resolution of singularities [AW97], there is a smooth projective G′-variety

T ′, with a G′-equivariant birational map to U ′, such that T ′/G′ admits a birational

morphism to S. The action of an element g′ ∈ G′ on U ′ × E ′ is of the form

g′ · (u′, e′) = (g′ · u′, g′(u′) · e′)
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for a morphism g′ : U ′ → Aut(E ′). Since T ′ is smooth and each connected component

of Aut(E ′) is isomorphic to E ′, the induced rational map T ′ 99K Aut(E ′) must be a

morphism T ′ → Aut(E ′) and so the action of G′ on U ′ × E ′ extends to a G′-action on

T ′ × E ′ such that T ′ × E ′ → T ′ is G′-equivariant. The claim in step 2 then follows by

applying Theorem 3.1 to the action of G′ on T ′ × E ′. �

Step 3. We may in step 2 assume that:

• T is a canonical model over S; in particular, T has only canonical singularities

and KT is ample over S.

• KY ∼Q g
∗B for an h-ample Q-divisor B on T/G, where g and h are as in (14).

Proof. Replacing T by a G-equivariant resolution of singularities, we may assume that

T is smooth. The natural map T → S is G-equivariant, where we take the trivial action

of G on S. The relative canonical model T c of T over S exists because T is smooth and

T → S is generically finite, see [BCHM10]. Since T → S is G-equivariant, T c inherits

a natural action of G, see Section 2.3. This action induces a diagonal action on T c × E
which coincides birationally with the given diagonal action of G on T ×E. Hence, up to

replacing T by T c, we may assume that T → S is a relative canonical model and so KT

is ample over S and T has only canonical singularities.

Since G acts diagonally and faithfully on each factor of T × E, the quotient map

ξ : T × E → Y is quasi-étale and so

ξ∗KY ∼ KT×E ∼ pr∗1KT ,

because E is an elliptic curve. Note that KT×E is Q-Cartier and so is KY by [KM05,

Proposition 5.20]. Since KT is G-invariant, this shows that KY ∼Q g
∗B for a Q-Cartier

Q-divisor B on T/G whose pullback to T coincides with KT . Since KT is relatively

ample over S and T → T/G is finite, B must be h-ample, as we want. �

Step 4. The rational map ϕ : X 99K Y in (14) does not extract any divisor. In

particular, ϕ∗KX ∼ KY .

Proof. For a contradiction, assume that ϕ extracts some divisors Ei ⊂ Y , i.e. the Ei are

the ϕ−1-exceptional divisors. Since X is terminal, we find

KY ∼Q ϕ∗KX +
∑

aiEi (15)

for some ai > 0. Recall that ϕ is an isomorphism over an open subset of S by step 1

(and the argument in step 2, resp. in Theorem 3.1). Since g is equi-dimensional, this

implies that each Ei is of the form Ei = (Di×E)/G for some G-invariant divisor Di ⊂ T

which is contracted via p : T → S. In fact, the Di are exactly the divisors on T that are

contracted by the natural map p : T → S.
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Since T ×E → Y is quasi-étale, KY pulls back to KT×E ∼Q pr∗1KT and so (15) implies

KT ∼Q p
∗A+

∑
aiDi, (16)

where Di and ai are as above and A is the ample Q-divisor on S with KX ∼Q f
∗A from

(12). Let

T ρ // S ′ p′ // S

be the Stein factorization of p : T → S. Then ρ is birational and the exceptional divisors

of ρ are exactly given by the divisors Di.

Since KT is ample over S, we deduce from (16) that
∑
aiDi is Q-Cartier (because p∗A

and KT are Q-Cartier) and ample over S ′. Note also that the pushforward of −
∑
aiDi

to S ′ is trivial and hence effective. But then −
∑
aiDi must be effective, (see e.g. [KM05,

Lemma 3.39]), which is a contradiction, because ai > 0. �

Step 5. In (14), h is an isomorphism, Y has only canonical singularities, KY ∼Q g
∗h∗A

and KT is ample, given by the pullback of A via T → T/G ' S.

Proof. By step 4, ϕ∗KX ∼ KY . Since KX ∼Q f
∗A and KY ∼Q g

∗B, this implies

g∗h∗A ∼Q g
∗B.

Since B is h-ample, this implies that h must be finite and so it is an isomorphism, because

it is birational by construction. Using h to identify S with T/G, we find KY ∼Q g
∗B ∼Q

g∗h∗A and so KX ∼Q ϕ∗KY (see Section 2.1 for the definition of ϕ∗). Let X̃ → X

be a resolution of the birational map ϕ : X 99K Y . Then X̃ is a common resolution

of X and Y and so we can use X̃ to compute the discrepancies of X and of Y . Since

X is terminal, the only possible exceptional divisors with nonpositive discrepancy for

X̃ → Y are coming from exceptional divisors of ϕ, which in fact have discrepancy 0

because KX ∼Q ϕ∗KY . This implies that Y has only canonical singularities. Finally,

since T × E → Y is quasi-étale by step 2, KY ∼Q g
∗h∗A pulls back to KT×E = pr∗1KT .

This shows that KT is Q-linearly equivalent to the pullback of A via the finite morphism

T → T/G ' S. Since A is ample, it follows that KT is ample as well. This concludes

step 5. �

Step 6. The birational map ϕ : X 99K Y in (14) factors as

X
φ
99K X+ τ // Y = (T × E)/G,

where φ is a sequence of flops and τ is a terminalization of Y .

Proof. Since Y is canonical by step 5, there is a terminalization τ : X+ //Y with

τ ∗KY = KX+ , see Section 2.2. Since KY ∼Q g∗B and h is an isomorphism by step 5,

KX+ is nef over S. Hence, X and X+ are birational minimal models over S and so they

are connected by a sequence of flops, see [Ka08]. �
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The proof of Theorem 1.6 follows immediately from steps 2, 5 and 6 above. �

Corollary 4.1. Assume in the notation of Theorem 1.6 that for any codimension one

point s ∈ S(1), the fibre of f above s is irreducible. Then the action of G on T × E is

free in codimension two.

Proof. Assume for a contradiction that the action of G on T×E is not free in codimension

two. Since G acts diagonally and faithfully on each factor, there is a nontrivial element

g ∈ G that fixes a codimension two set of the form D × {e} for some e ∈ E and some

divisor D ⊂ T . Since G acts freely in codimension one on T × E, the fixed points of

nontrivial elements of G correspond to singular points of the quotient Y = (T × E)/G

(see e.g. [Fuj74, Page 296, Corollary]) and so the image

D × {e} ⊂ Y

of D × {e} lies in the singular locus of Y . Moreover, the image of this codimension two

locus via g : Y → T/G is a divisor D ⊂ T/G. Since terminal varieties are smooth in

codimension two, the terminalization τ : X+ → Y in Theorem 1.6 resolves the singularity

at the generic point of D × {e}. Since φ is an isomorphism in codimension one, this

implies that X contains a prime divisor R ⊂ X with τ(φ(R)) = D. But then the

fibre of f above the generic point of f(R) ⊂ S must be reducible, which contradicts our

assumption because f(R) ' D is a divisor on S ' T/G. This concludes the corollary. �

Corollary 4.2. In the notation of Theorem 1.6, T has canonical singularities.

Proof. Since G acts diagonally and faithfully on each factor, the quotient map T×E → Y

is quasi-étale. Since Y is canonical by Theorem 1.6, this implies that T ×E is canonical,

see [KM05, Proposition 5.20.(3)]. But then it is clear that T is canonical as well. �

5. Proof of main results

5.1. Proof of Theorem 1.1.

Lemma 5.1. Let X and X+ be good minimal models that are connected by a sequence of

flops φ : X 99K X+. Let f : X → S and f : X+ → S+ be the respective Iitaka fibrations.

Then there is an isomorphism ψ : S ∼ // S+ such that ψ ◦ f = f+ ◦ φ.

Proof. It suffices to prove the lemma in the case where φ is a single flop. In this case, let

g : X → Z and g+ : X+ → Z be the corresponding flopping contractions. Since KX is

trivial on all curves that are contracted by g, the cone theorem [KM05, Theorem 3.7.(4)]

implies that KX = g∗L for some Q-Cartier divisor L on Z. Since g and g+ are small

contractions, KX+ = (g+)∗L. This implies that the Iitaka fibration of X and X+ factor

both through the Iitaka fibraiton of the Q-Cartier divisor L on Z, and so the statement

is clear. This proves the lemma. �
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Proof of Theorem 1.1. Let X be a minimal model of dimension n and Kodaira dimension

n−1. By Theorem 2.1, X is a good minimal model and so the Iitaka fibration f : X → S

is a morphism which equips X with the structure of an elliptic fibre space.

Let us first assume that cn−21 c2(X) = 0. Then, by Corollary 2.7, the smooth fibres of

f have constant j-invariants and the fibre of f over any codimension one point of S is

irreducible (it is either smooth or a multiple of a smooth elliptic curve). Hence, Theorem

1.6 and Corollary 4.1 imply that X is birational to a quotient Y = (T × E)/G with

canonical singularities, where T is a projective variety with canonical singularities and

ample canonical class, E is an elliptic curve and G ⊂ Aut(T )× Aut(E) acts diagonally,

faithfully on each factor and freely in codimension two on T × E. This proves one

direction in Theorem 1.1.

Conversely, assume that X is birational to a quotient Y = (T × E)/G, where T is a

projective variety with ample canonical class, and G ⊂ Aut(T )×Aut(E) acts diagonally,

faithfully on each factor and freely in codimension two on T×E such that Y is canonical.

We then need to show that cn−21 c2(X) = 0.

Since T ×E → Y is quasi-étale and KT is ample, KY is nef. Since Y is canonical, any

terminalization τ : X+ → Y of Y (see Section 2.2) is a minimal model that is birational

to X. Hence the natural birational map φ : X 99K X+ is a sequence of flops by [Ka08].

By Lemma 5.1, the Iitaka fibration f : X → S is given by the composition of φ with

the Iitaka fibration f+ : X+ → S+ of X+. (Note that both Iitaka fibrations are actual

morphisms by Theorem 2.1.) Since τ is crepant, the Iitaka fibration of X+ is given by

the composition of τ and the Iitaka fibration of Y . Since T × E → Y is quasi-étale

and KT is ample, the Iitaka fibration of Y is a morphism, given by the natural map

g : Y → T/G, induced by the first projection T × E → T . Altogether, we conclude

that there is an isomorphism S ' T/G such that the Iitaka fibration f : X → S is

given by the composition of the birational map τ ◦ φ : X 99K Y and the Iitaka fibration

g : Y → T/G of Y . That is, we arrive at a commutative diagram

X

f ##

φ
// X+ τ

// Y = (T × E)/G

g
vv

S ' T/G .

(17)

Since f is the Iitaka fibration of X, there is a very ample line bundle A on S such that

KX is a linearly equivalent to a rational multiple of f ∗A. Let C ⊂ S be the intersection

of n− 2 general elements of the linear series |A|. By Lemma 2.6, cn−21 c2(X) = 0 is then

equivalent to showing that Z := f−1(C) is a minimal elliptic surface over C such that

all singular fibres of Z → C are multiples of smooth elliptic curves.
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Since KX is nef and the normal bundle of Z in X is a direct sum of nef line bundles,

KZ is nef. By Bertini’s theorem and because X is terminal, hence smooth in codimension

two, Z is smooth. In particular, Z → C is a minimal elliptic surface.

Since C ⊂ S is the intersection of general hyperplanes, (17) shows that Z is birational

to g−1(C) ⊂ Y . If C̃ denotes the preimage of C ⊂ T/G via the quotient map T → T/G,

then G acts on C̃ and

g−1(C) = (C̃ × E)/G.

Since T is normal and C ⊂ S ' T/G is the intersection of general hyperplanes, C̃ is

smooth by Bertini’s theorem. Since G acts diagonally, faithfully on each factor and freely

in codimension two on T ×E, it also follows that G acts freely on C̃ ×E. (Once again,

this uses that C̃ ⊂ T is in general position, as C ⊂ S ' T/G is the intersection of general

hyperplanes.) In particular, the quotient map C̃×E → g−1(C) is étale and we conclude

that g−1(C) is a smooth projective minimal surface, birational to Z. Minimal models

of surfaces are unique and so Z ' g−1(C). Since C̃ × E → g−1(C) is étale, all singular

fibres of Z ' g−1(C)→ C must be multiples of smooth elliptic curves, as we want. This

concludes the proof of Theorem 1.1. �

5.2. Examples of non-diagonal group actions.

Proof of the claim in Example 1.3. Let E be an elliptic curve with an automorphism ϕ

of order 3. Consider the quotient map π : E → E/ϕ = P1 and let τ : P1 → P1 be a

non-trivial finite morphism, branched at general points of P1. We may then consider the

fibre product C := E ×P1 P1, giving rise to a Cartesian diagram

C
τ ′
//

π′
��

E

π
��

P1 τ
// P1.

Then C is a smooth projective curve of general type which comes with an automorphism

ϕ′ of order three, induced by ϕ. Since the above diagram is Cartesian, this automorphism

has the property that

ϕ ◦ τ ′ = τ ′ ◦ ϕ′. (18)

By the Hurwitz formula, π is ramified at 3 points (with ramification index 2 at each

point). This shows that there is a 3-torsion point t ∈ E such that π is not ramified at t.

We may then consider the automorphism

ψ : C × E //C × E, (x, y) � // (ϕ′(x), τ ′(x) + y − t).

Since ϕ′ has order three, we have ϕ′ ◦ ϕ′ + ϕ′ + id = 0. Moreover, τ ′(ϕ′(x)) = ϕ(τ ′(x))

for all x ∈ C by (18). Altogether, this easily implies that ψ is an automorphism of order
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three. Since t is not a ramification point of π, it is not a fixed point of ϕ and so one

easily checks that ψ has no fixed points. Hence,

X := (C × E)/ψ

is a smooth projective surface with a finite étale cover ε : C × E → X. Since C × E is

minimal of Kodaira dimension one, the same holds for X. Moreover,

c2(X) =
1

3
ε∗c2(X) =

1

3
c2(C × E) = 0,

which concludes the proof. �

5.3. Proof of Corollary 1.2.

Proof of Corollary 1.2. We use the notation of Theorem 1.1. Since G acts diagonally

and faithfully on each factor of T × E, the quotient map T × E → Y = (T × E)/G

is quasi-étale. Hence, KY pulls back to KT×E ∼Q pr∗1KT , which is nef by item (2) in

Theorem 1.1. This implies that KY is nef. Since Y is canonical by item (1) in Theorem

1.1, there is a terminalization X+ → Y , see Section 2.2. In particular, X+ is a minimal

model, birational to Y . Hence, X and X+ are birational minimal models and so they

are connected by a sequence of flops [Ka08]. This concludes the corollary. �

5.4. Classification of all groups that appear in Theorem 1.1.

Proof of Corollary 1.4. The only if part follows from Theorem 1.1, becauseG ⊂ Aut(T )×
Aut(E) acts faithfully on each factor and so G is a subgroup of Aut(E) for some elliptic

curve E. Conversely, let G ⊂ Aut(E) be a finite subgroup for some elliptic curve E.

Then the quotient C := E/G is a smooth projective curve of genus at most one which

comes with a quotient map π : E → C. Let f : C ′ → C be a finite covering, branched at

a positive number of points that are disjoint from the branch points of π. We consider

the fibre product E ′ := C ′ ×C E, which sits in a commutative diagram

E ′
f ′
//

π′

��

E

π
��

C ′
f
// C

Here, E ′ is a smooth projective curve and f ′ : E ′ → E is branched at a finite number

of points, so that E ′ is a smooth projective curve of genus at least two. We claim

that there is a natural injective group homomorphism χ : G → Aut(E ′). To see this,

let g ∈ G ⊂ Aut(E) and consider the morphism g ◦ f ′ : E ′ → E. Together with
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π′, this induces by the universal property of the fibre product a unique isomorphism

χ(g) : E ′ → E ′ with

g ◦ f ′ = f ′ ◦ χ(g). (19)

The uniqueness statement shows that χ(g1g2) = χ(g1)χ(g2) because

g1 ◦ g2 ◦ f ′ = g1 ◦ f ′ ◦ χ(g2) = f ′ ◦ χ(g1) ◦ χ(g2)

and so χ is a group homomorphism. If g ∈ ker(χ), then g◦f ′ = f ′ and so g = id, because

f ′ is surjective. This proves that χ : G→ Aut(E ′) is an injective group homomorphism.

Hence, there is an injective action of G on E ′.

For a positive integer n ≥ 2, we may then consider the diagonal action of G on

Tn := (E ′)n. Since E ′ is a smooth projective curve of general type, Tn is a smooth

projective variety with ample canonical class KTn = ⊗ni=1 pr∗i KE′ , where pri is the i-th

projection. The quotient

Yn := (Tn−1 × E)/G

by the diagonal action of G on Tn−1×E has isolated singularities, because the G-action

on Tn−1 × E is free outside a finite set of points.

We claim that Yn has terminal singularities as soon as n > |G|. To see this, recall

that Yn has isolated singularities and let y ∈ Yn be such an isolated singularity. Let

(t, e) ∈ Tn−1×E be a lift of y and let H ⊂ G be the maximal subgroup of elements that

fix the point (t, e). Then H 6= {1} and there is an embedding H ↪→ GLn(C) such that

locally in the analytic topology, there is a neighbourhood of y in Yn that is isomorphic to

a neighbourhood of the origin in the quotient of Cn by H ⊂ GLn(C). By construction,

any non-trivial element g ∈ G acts with at most finitely many fixed points on Tn−1×E.

This implies that each non-trivial element h ∈ H ⊂ GLn(C) has the origin as its unique

fixed point, i.e. the eigenvalues of h are all different from 1. If m denotes the order of H

and ξ denotes a primitive m-th root of unity, then the eigenvalues of h are of the form

ξa1 , . . . , ξan for some integers 0 ≤ ai < m. Since none of the eigenvalues of h is one,

ai ≥ 1 for all i and so

age(h) :=
1

m
·

n∑
i=1

ai ≥
n

m
.

Since n > |G| ≥ |H| = m, age(h) > 1 and so y ∈ Yn is a terminal singularity by the

Reid–Tai criterium, see e.g. [Kol13, Theorem 3.21].

Altogether, this shows that X := Yn = (Tn−1×E)/G is a minimal model of dimension

n and of Kodaira dimension n− 1. By Theorem 1.1, cn−21 c2(X) = 0 and so we see that

the group G appears in Theorem 1.1 when applied to X. This concludes the proof of

the corollary. �
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5.5. Proof of Corollary 1.7.

Lemma 5.2. Let X be a minimal model and let φ : X 99K X+ be a flop. Then the

Cartier index of X and X+ coincide, i.e. m · KX is Cartier if and only if mKX+ is

Cartier.

Proof. The flop φ fits into a diagram

X //

f ��

X+

f+~~

Z ,

where f : X → Z is a flopping contraction, i.e. the contraction of a KX-trivial ray that

is small.

Assume that m · KX is Cartier. By the cone theorem [KM05, Theorem 3.7.(4)],

mKX = f ∗L for some line bundle L on Z. Since φ is an isomorphism in codimension

one, mKX+ = (f+)∗L, and so this divisor is Cartier as well. On the other hand, φ−1 :

X+ 99K X is also a flop (see [KM05, Definition 6.10]) and so the same argument as above

shows that mKX is Carrier if and only if mKX+ is Cartier. Hence, the Cartier indices

of X and X+ coincide, as we want. �

Proof of Corollary 1.7. Assume that the Iitaka fibration f : X → S is generically isotriv-

ial. By Theorem 1.6, we get a commutative diagram

X

f ##

φ
// X+ τ

// Y = (T × E)/G

g
vv

S ' T/G ,

where φ is a composition of flops, τ is a terminalization, and g is induced by the projection

T × E → T . Moreover, there is a normal subgroup G0 ⊂ G of index ≤ 4 or 6 whose

action on T × E is free.

By Lemma 5.2, X and X+ have the same Cartier indices. Also, KX+ = τ ∗KY and

so it suffices to show that Y has Cartier index ≤ 4 or 6. To see this, note that X is a

threefold and so T is a surface with canonical singularities, by Corollary 4.2. Hence, T

is Gorenstein, see e.g. [Ish14, Theorem 7.5.1] and so the same holds true for T × E.

Recall the normal subgroup G0 ⊂ G of index ≤ 4 or 6 from Theorem 1.6 which acts

freely on T ×E. We claim that Y0 := (T ×E)/G0 is Gorenstein as well. To see this, note

that T ×E → Y0 is étale. Since T ×E is Goernstein, this readily implies that OY0(KY0)

is locally free in the analytic category. But then OY0(KY0) is locally free in the algebraic

category by Serre’s GAGA-principle, where we use that Y0 is projective. Hence, Y0 is
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Gorenstein. Since G acts diagonally and faithfully on each factor of T ×E, the quotient

map T × E → Y = (T × E)/G is quasi-étale. Hence,

Y0 = (T × E)/G0
//Y = (T × E)/G

is quasi-étale as well. Since Y0 is Gorenstein (as we have seen above), it follows that

the Gorenstein index of Y divides the order of G/G0, see e.g. [KM05, Proposition 5.20].

Since G/G0 has order ≤ 4 or 6, 4KY or 6KY is Cartier. As explained above, this implies

that 4KX or 6KX is Cartier, which concludes the proof. �

Corollary 1.7 has the following immediate consequence.

Corollary 5.3. Let X be a minimal threefold of Kodaira dimension two. Assume that

the smooth fibres of the Iitaka fibration f : X → S have constant j-invariants. Then

4c1c2(X) ∈ Z or 6c1c2(X) ∈ Z.

5.6. Proof of Theorem 1.5.

Proof of Theorem 1.5. Let X be a minimal threefold. If X is of general type, then the

statement follows from the Miyaoka–Yau inequality (1) and the universal lower bound

on K3
X from [HM06, Tak06]. If X is Calabi-Yau, then c31(X) = 0 by the abundance

conjecture [Ka91]. If X has Kodaira dimension one, then the result follows from [Gra94,

Theorem 1.5] and if X has Kodaira dimension two and the Iitaka fibration of X is not

generically isotrivial, then the statement follows from [Gra94, Proposition 2.5] (which

in turn relies on results from [Kol94]). The remaining case of Kodaira dimension two

and generically isotrivial Iitaka fibration follows from Corollary 5.3. This concludes the

proof. �
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