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Variation of stable birational types in positive characteristic

Stefan Schreieder

Abstract. Let k be an uncountable algebraically closed field and let Y be a smooth projective
k-variety which does not admit a decomposition of the diagonal. We prove that Y is not stably
birational to a very general hypersurface of any given degree and dimension. We use this to
study the variation of the stable birational types of Fano hypersurfaces over fields of arbitrary
characteristic. This had been initiated by Shinder [Shi19], whose method works in characteristic
zero.
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Titre. Variation du type birationnel stable en caractéristique positive

Résumé. Soient k un corps algébriquement clos non dénombrable et Y une k-variété lisse et
projective qui n’admet pas de décomposition de la diagonale. Nous montrons que Y n’est pas
stablement birationnelle à une hypersuface très générale de degré et de dimension quelconques.
Nous mettons ceci à profit pour étudier la variation du type birationnel stable des hypersurfaces
de Fano sur des corps de caractéristique arbitraire. Ceci a été initié par Shinder [Shi19], dont la
méthode fonctionne en caractéristique nulle.
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1. Introduction

Starting with a breakthrough of Voisin [Voi15], an improvement by Colliot-Thélène and Pirutka [CTP16a],
and later a further improvement by the author [Sch19a], there has recently been major progress in proving
that certain unirational or rationally connected varieties are not stably rational, see e.g. [AO18, Bea16,
BB16, CTP16a, CTP16b, HKT16, HPT18, HPT19, HT16, KO18, Oka19, Sch18, Sch19a, Sch19b, Tot16, Voi15].
In fact, in all these examples, it is shown that the variety in question does not admit a decomposition of the
diagonal, which implies stable irrationality, because stably rational varieties admit such a decomposition.

Motivated by a recent result of Shinder [Shi19] with an appendix by Voisin [Voi19], we prove in this
paper that the non-existence of a decomposition of the diagonal does not only prevent the variety from
being stably rational, but in fact from being stably birational to a very general hypersurface of any given
degree and dimension.

Theorem 1.1. Let X and Y be smooth projective varieties over an uncountable algebraically closed field k of
arbitrary characteristic, and let d,n ≥ 1 be integers. Assume that Y does not admit a decomposition of the
diagonal and that X ⊂ P

n+1
k is a hypersurface of degree d which is very general with respect to Y .

Then X and Y are not stably birational to each other.

Note that X and Y in the above theorem are not necessarily of the same dimension, and Y is not
assumed to be a hypersurface. The condition that the hypersurface X ⊂ P

n+1
k is very general with respect

to Y means that it lies outside a countable union of proper closed subsets of the linear series |O
P
n+1
k

(d)|,
and these subsets depend on Y . For d = 1, our theorem specializes to the aforementioned well-known fact
that a smooth projective variety which does not admit a decomposition of the diagonal is stably irrational.

Theorem 1.1 will be deduced from a more general result, which we prove in Theorem 4.1 below and
which applies to a wide range of varieties other than hypersurfaces as well. In fact, it applies to any variety
which admits a strictly semi-stable degeneration whose special fibre has universally trivial Chow group of
zero-cycles. In the case of hypersurfaces, we use a degeneration to a general hyperplane arrangement as in
[Shi19].

The above theorem implies in particular the following.

Corollary 1.2. Let k be an uncountable algebraically closed field of arbitrary characteristic. If there is a hy-
persurface Y ⊂ P

n+1
k of degree d which does not admit a decomposition of the diagonal, then two very general

hypersurfaces of degree d in P
n+1
k are not stably birational to each other.
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In characteristic zero, a slightly stronger variant of Corollary 1.2 had previously been proven by Shinder
[Shi19, Theorem 1.2], who obtains the same conclusion under the assumption that Y is smooth and stably
irrational.

Improving earlier results of Kollár [Kol95] and Totaro [Tot16], the author showed in [Sch19b] that over
any uncountable field k of characteristic different from two, a very general hypersurface X ⊂ P

n+1
k of

dimension n ≥ 3 and degree d ≥ log2(n) + 2 does not admit a decomposition of the diagonal and so it is
not stably rational. By the above corollary, we thus obtain the following strengthening of that result.

Corollary 1.3. Let k be an uncountable field of characteristic different from two. Then two very general hyper-
surfaces in P

n+1
k of degree d ≥ log2(n) + 2 and dimension n ≥ 3 are not stably birational to each other.

By [Sch19c, Corollary 1.2], which generalizes the main result of [Sch19b] to characteristic two, we obtain
the following variant in characteristic two.

Corollary 1.4. Let k be an uncountable field of characteristic two. Then two very general hypersurfaces in P
n+1
k

of degree d ≥ log2(n) + 3 are not stably birational to each other.

In [Shi19], Shinder deduced Corollary 1.3 in the case where char(k) = 0 from [Sch19a] with the help of
his joint work with Nicaise [NS19] on the specialization of stable birational types in characteristic zero. In
an appendix to [Shi19], Voisin [Voi19] used decompositions of the diagonal and unramified cohomology to
obtain similar results in low dimensions.

Since [NS19], as well as Kontsevich–Tschinkel’s generalization in [KT19], rely heavily on the weak factor-
ization theorem, and hence on resolution of singularities, it is unclear how to generalize Shinder’s approach
to positive characteristic. Similarly, Voisin’s analysis [Voi19] requires resolution of singularities of the sin-
gular hypersurfaces with unramified cohomology constructed in [Sch19b], which in general is unknown in
positive characteristic. Moreover, Voisin’s approach did not allow to reprove Shinder’s characteristic zero
result in dimensions greater than nine, because it requires the knowledge of certain unramified cohomology
groups of very general hypersurfaces, which seems out of reach in high dimensions.

Our usage of decompositions of the diagonal is more direct than in [Voi19] and we do in particular not
use unramified cohomology. Instead, our approach relies on a moving lemma of Gabber, Liu and Lorenzini
[GLL13, Theorem 2.3] and intersection theory on strictly semi-stable schemes using Fulton’s work [Ful98].
While we use a degeneration to a general hyperplane arrangement as in [Shi19], our approach does not rely
on the weak factorization theorem or Hironaka’s resolution of singularities and does in particular not use
the results in [NS19] and [KT19].

While the above results are formulated over uncountable fields, Theorem 4.1 below together with [Tot16]
and [Sch19b] also allows to produce explicit examples of Fano hypersurfaces X and X ′ over small fields k
(e.g. k = Q(t) or k = Fp(t, s)) which over the algebraic closure of k are neither stably rational, nor stably

birational to each other. If k is not of characteristic two, the slopes degX
dimX+1 of these examples may be

chosen arbitrarily small, see Theorem 5.2 below.
It is worth to compare the results on variation of stable birational types in [Shi19] and the present

paper with the concept of birational rigidity (see [Kol19] for a recent survey), which allows to prove that
for certain classes of smooth projective Fano varieties of Picard rank one, any birational equivalence is an
isomorphism. In particular, in these cases the birational types vary as much as possible. By a result of de
Fernex [deF13], this applies for instance to smooth projective hypersurfaces X ⊂ P

n+1
C

of degree d = n+ 1
and dimension n ≥ 3. The corresponding result in positive characteristic is open. Birational rigidity has so
far mostly been applied to Fano varieties of index one and two (see e.g. [Pu16, Pu20] for the index two case)
and it is unknown whether the method applies to hypersurfaces X ⊂ P

n+1
C

of degree d � n. Finally, the
condition on the Picard rank seems to prevent applications to questions about stable birational equivalence.
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2. Notations

All schemes are separated. An algebraic scheme is a scheme of finite type over a field. A variety is an
integral algebraic scheme. If k is an uncountable field, a very general point of a k-variety X is a closed
point outside a countable union of proper closed subsets.

Let R be a ring and let X be an R-scheme and f be a morphism of R-schemes. Then for any ring
extension R ⊂ A, we denote the base change of X and f to A by XA and fA, respectively.

We denote the Chow group of algebraic cycles of dimension r, resp. codimension r, modulo rational
equivalence on an algebraic scheme X by CHr(X), resp. CH

r(X). For a standard reference on Chow groups,
see [Ful98]. For a codimension r cycle γ ∈ Zr(X), we denote by [γ] ∈ CHr(X) its class in the Chow group
and by |γ | its support, which is a reduced closed subscheme of pure codimension r in X. We say that two
cycles γ ∈ Za(X) and γ ′ ∈ Zb(X) meet properly if |γ | ∩ |γ ′ | has the expected codimension a+ b in X. We
use the same notation for Chow groups and cycles in the more general setting where X is only a scheme
of finite type over a regular base scheme S , replacing the dimension and codimension by an appropriate
relative notion, see [Ful98, Chapter 20].

An algebraic scheme X of pure dimension n over a field k admits a decomposition of the diagonal if

[∆X] = [X × z] + [ZX] ∈ CHn(X ×k X),

where z is a zero-cycle on X and ZX is a cycle on X ×k X which does not dominate the first factor. If X is
integral with function field K = k(X), then this is equivalent to

[δX] = [zK ] ∈ CH0(XK ),

where z is the zero-cycle on X from above and δX denotes the zero-cycle on XK that is induced by the
diagonal ∆X . If X is a proper variety that is stably rational (i.e. X ×Pm is rational for some m ≥ 0), then
it admits a decomposition of the diagonal, see [CTP16a, Lemme 1.5] for the case where X is smooth and
[Sch19b, Lemma 2.4] in general.

We say that a proper algebraic scheme X over a field k has universally trivial Chow group of zero-
cycles, if the degree map deg : CH0(XL) → Z is an isomorphism for any field extension L/k. If X is
geometrically integral and smooth over k, then this is equivalent to the fact that X admits a decomposition
of the diagonal, see e.g. [CTP16a, Proposition 1.4].

Let R be a discrete valuation ring with residue field k and fraction field K . For an R-scheme X , we
denote by X0 := X ×R k the special fibre and by Xη := X ×R K and Xη := X ×R K the generic and the
geometric generic fibres of X → SpecR, respectively. If X is proper and flat over R, we say that Xη
degenerates or specializes to X0. If additionally k is algebraically closed, we also say that for any field
extension L/K , the base change Xη ×K L (e.g. Xη ) degenerates or specializes to X0, cf. [Sch19a, Section 2.2].

We recall the definition of strictly semi-stable R-schemes, which will be particularly important for us,
see e.g. [Har01, Definition 1.1].

Definition 2.1. Let R be a discrete valuation ring and let π : X → SpecR be a proper flat morphism with X
integral. The R-scheme X (or the morphism π) is called strictly semi-stable, if the special fibre X0 is a geometrically
reduced simple normal crossing divisor on X , i.e. the irreducible components of X0 are smooth Cartier divisors
on X and the scheme-theoretic intersection of r different components of X0 is either empty or smooth and equi-
dimensional of codimension r in X .

The generic fibre Xη of a strictly semi-stable R-scheme is automatically smooth, because we assumed
π to be proper in the above definition. Moreover, the total space X is regular, because its generic fibre is
smooth and each component of the special fibre is a smooth Cartier divisor, see [Har01, Remarks 1.1.1 and
1.1.2].

The following lemma is an immediate consequence of [Har01, Proposition 1.3].



S. Schreieder, Variation of stable birational types 5S. Schreieder, Variation of stable birational types 5

Lemma 2.2. Let R be a discrete valuation ring and let X be a strictly semi-stable R-scheme and X ′ be a smooth
and proper R-scheme. Then, X ×R X ′ is also a strictly semi-stable R-scheme. Moreover, if A denotes the local ring
of X ′ at a generic point of X ′0, then the base change XA := X ×R SpecA is a strictly semi-stable A-scheme.

3. Intersection theory on strictly semi-stable schemes

Let R be a discrete valuation ring or a field and let π : X → SpecR be a separated scheme of finite type
over R. Let further γ ∈ Za(X ) and γ ′ ∈ Zb(X ) be cycles whose (set-theoretic) intersection lies in the smooth
locus U ⊂ X of π. Then Fulton defines the intersection [γ] · [γ ′] as a class in the Chow group of |γ | ∩ |γ ′ |,
see [Ful98, Section 20.2]. In particular, if γ and γ ′ meet properly, then the intersection γ ·γ ′ is defined on
the level of cycles and Fulton proves that the corresponding class in the Chow group of U depends only on
the rational equivalence classes of γ and γ ′ on U .

A cycle γ on X is said to be flat over R if its support (as a reduced scheme) is flat over R. This is
equivalent to saying that no component of γ is contained in the special fibre.

Recall that in general there is no intersection product on the Chow group of singular varieties. For us,
it will however be important to compute the intersection of certain cycles on strictly semi-stable R-schemes
and in particular on their special fibres, which are not necessarily smooth and it will not be enough for us
to know the corresponding identities on the smooth locus. In the following two subsections, we deduce two
auxiliary results from Fulton’s theory, which allow us to overcome this difficulty.

3.A. Compatibility of specialization and products in a non-smooth setting

Let R be a discrete valuation ring and let π : X → SpecR be a flat morphism. Taking the closure of a cycle
on Xη and restricting that cycle to X0 yields a well-defined specialization map

sp : CH∗(Xη)→ CH∗(X0),

see [Ful98, Section 20.3]. If π is smooth, this specialization map commutes with the product structure on
both sides. In the following we discuss a variant of this compatibility result in a situation where π is not
necessarily smooth.

Let γ ∈ Za(X ) and γ ′ ∈ Zb(X ) be cycles which meet properly in the smooth locus of π and such that
|γ | ∩ |γ ′ | is flat over R. This implies that the cycles γ0 and γ ′0 on X0 meet properly in the smooth locus of
X0. Hence, their intersection

γ0 ·γ ′0 ∈ Z
a+b(X0)

is defined on the level of cycles.

Lemma 3.1. In the above notation, we have

sp([γη] · [γ ′η]) = [γ0 ·γ ′0] ∈ CH
a+b(X0).

Proof. Since γ and γ ′ meet properly in the smooth locus of π, we can define their intersection on the level
of cycles

γ ·γ ′ ∈ Za+b(X ).

By the construction of the specialization homomorphism on Chow groups,

sp([γη] · [γ ′η]) = [(γ ·γ ′)0], (3.1)

where (γ ·γ ′)0 ∈ Za+b(X0) denotes the restriction of the cycle γ ·γ ′ to X0.
We claim that

(γ ·γ ′)0 = γ0 ·γ ′0 ∈ Z
a+b(X0). (3.2)
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To see this, note first that |γ0|∩ |γ ′0| is contained in the smooth locus of X0. Recall next that for any smooth
R-scheme U , and cycles α and β on U , Fulton defines an intersection product α ·β as a class in the Chow
group of |α| ∩ |β| and this construction commutes with specialization, see [Ful98, Section 20.3]. Applying
this to the smooth locus U ⊂ X of π, we find that

[(γ ·γ ′)0] = [γ0] · [γ ′0] ∈ CH
∗(|γ0| ∩ |γ ′0|).

Since γ0 and γ ′0 meet properly, the above equality has to hold already on the level of cycles and so (3.2)
follows.

The lemma follows now from (3.1) and (3.2). �

3.B. Intersection theory on the special fibre

Let R be a discrete valuation ring and let π : X → SpecR be a strictly semi-stable R-scheme. Let us denote
by X0i ,X0j ⊂ X0 irreducible components of the special fibre of π and assume that X0ij := X0i ∩X0j is
non-empty. Consider the following diagram, where all morphisms are given by the natural inclusions:

X0i
εi

  

ε0i // X0

ι
��

X0ij

εiij
==

ε
j
ij !!

εij
// X

X0j

εj

>>

ε0j

// X0

ι

OO

Let β ∈ Zb(X ) be a cycle that is flat over R. Since X is semi-stable over R, X0i and X0j are Cartier
divisors on X , and X0ij is a Cartier divisor on X0i , as well as on X0j . Hence, εij , εi and εj are regular
embeddings and so the pullbacks

(εij )
∗[β] ∈ CHb(X0ij ), (εi)

∗[β] ∈ CHb(X0i) and (εj )
∗[β] ∈ CHb(X0j )

are well-defined on the level of Chow groups, see [Ful98, Section 20.1]. For any closed subvariety Z ⊂ Xij ,
the projection formula thus shows

(εiij )∗([Z] · (εij )
∗[β]) = (εiij )∗[Z] · (εi)

∗[β] and (εjij )∗([Z] · (εij )
∗[β]) = (εjij )∗[Z] · (εj )

∗[β].

Applying the pushforwards (ε0i )∗ and (ε0j )∗, respectively, this implies

(ε0i )∗((ε
i
ij )∗[Z] · (εi)

∗[β]) = (ε0j )∗((ε
j
ij )∗[Z] · (εj )

∗[β]) ∈ CH∗(X0). (3.3)

We use this compatibility, to prove the following.

Lemma 3.2. Let R be a discrete valuation ring and let π : X → SpecR be a strictly semi-stable R-scheme with
special fibre X0. Let α0, α̃0 ∈ Za(X0) be cycles on X0 that are supported on the smooth locus of X0. Let further
β ∈ Zb(X ) be a cycle on X that is flat over R and denote its restriction to X0 by β0. Assume that β0 meets α0
and α̃0 properly. If α0 and α̃0 are rationally equivalent on X0, then so are the cycles

α0 · β0 ∈ Za+b(X0) and α̃0 · β0 ∈ Za+b(X0).
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Proof. Let τ : X̃0 → X0 be the normalization of X0. Since π is strictly semi-stable, X̃0 = tiX̃0i is the
disjoint union of the components X̃0i = X0i of X0. Let τi := τ |X̃0i

be the restriction of τ to the component
X̃0i and let ι : X0→X be the inclusion of the special fibre. Then ι ◦ τi is a regular embedding and so we
may consider the pullback

(ι ◦ τi)∗[β] ∈ CHb(X̃0i).

Since β is flat over R, the above pullback is already defined on the level of cycles. This allows us to define

τ∗β0 :=
∑
i

(ι ◦ τi)∗β ∈ Zb(X̃0) =
⊕
i

Zb(X̃0i).

Since α0 and α̃0 are supported on the smooth locus of X0, the pullbacks τ∗α0, τ
∗α̃0 ∈ Za(X̃0) are

defined on the level of cycles as well. By construction of these pullbacks, we have the following identities of
cycles on X0:

τ∗(τ
∗α0 · τ∗β0) = α0 · β0 and τ∗(τ

∗α̃0 · τ∗β0) = α̃0 · β0. (3.4)

Assume now that α0 and α̃0 are rationally equivalent on X0. To show that the intersections α0 ·β0 and
α̃0 · β0 are rationally equivalent on X0 as well, it suffices by (3.4) to prove the following: Let Z ⊂ X̃0 be a
closed integral subscheme of codimension a, then the class

τ∗([Z] · [τ∗β0]) ∈ CHa+b(X0) (3.5)

is invariant under the following operations:

1. replace Z by a rationally equivalent cycle on X̃0;

2. if Z ⊂ X̃0i and τ(Z) ⊂ X0i ∩X0j , then replace Z by the unique subscheme Z ′ ⊂ X̃0j with τ(Z) = Z ′ .

Since X̃0 is smooth, it is clear that (3.5) is invariant under (1), see [Ful98, §1.4 and §8]. Moreover, invariance
under (2) follows from (3.3), which concludes the proof of the lemma. �

4. The diagonal distinguishes stable birational types

It is well-known that the non-existence of a decomposition of the diagonal prevents a variety from being
stably rational, i.e. from being stably birational to a point. The purpose of this section is to prove the fol-
lowing theorem, which shows that decompositions of the diagonal allow to distinguish two stable birational
types in much greater generality. Partial results in this direction have previously been obtained by Voisin
[Voi19].

Theorem 4.1. Let R be a discrete valuation ring with algebraically closed residue field k. Let π : X → SpecR
and π′ : X ′ → SpecR be flat projective morphisms with geometrically connected fibres such that π is strictly
semi-stable and π′ is smooth. Assume

1. the special fibre X0 of π has universally trivial Chow group of zero-cycles;

2. the special fibre X ′0 of π′ does not admit a decomposition of the diagonal.

Then the geometric generic fibres of π and π′ are not stably birational to each other.

If π is smooth, then the above theorem is known and follows by similar arguments as in [Voi19].
However, for most applications (e.g. to hypersurfaces) it is essential to allow π to have singular special fibre.

Theorem 4.1 can be seen as a cycle-theoretic analogue of the main result in [NS19], where Nicaise and
Shinder showed that the geometric generic fibres of two strictly semi-stable families over a discrete valuation
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ring of equal characteristic zero are not stably birational, unless the special fibres have the same class in
the Grothendieck ring of varieties modulo the class of the affine line.

Compared to [NS19, Shi19], the main advantage of the above theorem is that it works over fields of
arbitrary characteristic. Note however that there is also an advantage in characteristic zero, because the
assumption on the universal CH0-triviality holds in various cases where Shinder’s assumption does not. For
instance, a general arrangement of d hyperplanes in P

n+1 is always universally CH0-trivial, but its class in
the Grothendieck group of varieties is congruent to 1 mod L only if d ≤ n+1.

As an immediate corollary of Theorem 4.1 and [Sch19a, Lemma 8], we have for instance.

Corollary 4.2. Let k be an uncountable algebraically closed field of arbitrary characteristic. Let π : X → C be
a flat projective morphism between smooth k-varieties X and C with dimC = 1. Let 0 ∈ C be a closed point and
assume that

1. the very general fibre of π does not admit a decomposition of the diagonal;

2. the special fibre X0 is a reduced simple normal crossing divisor on X which has universally trivial Chow
group of zero-cycles.

Then two very general fibres of π are not stably birational to each other.

The key step in the proof of Theorem 4.1 is the following proposition.

Proposition 4.3. Let R be a discrete valuation ring with algebraically closed residue field k. Let π : X → SpecR
and π′ : X ′→ SpecR be flat projective schemes with connected fibres such that π is strictly semi-stable and π′ is
smooth. Assume

1. the generic fibres of π and π′ are stably birational to each other;

2. the special fibre X0 of π has universally trivial Chow group of zero-cycles.

Then the special fibre X ′0 of π′ admits a decomposition of the diagonal.

Proof of Proposition 4.3. Up to multiplying X and X ′ with some projective spaces (possibly of different
dimensions), we may assume that there is a birational map f : Xη d X ′η . In particular, π and π′ are of the
same relative dimension, which we denote by n. Let

Γ ⊂ X ×R X ′

be the closure of the graph of f , which is a cycle of codimension n on X ×RX ′ . Note that Γ is automatically
flat over R.

To explain the idea of the proof, assume first that π is smooth and let Γ t ⊂ X ′ ×RX be the transpose of
Γ , which is nothing but the closure of the graph of f −1. Since π is smooth, X ×R X ′ is smooth over R and
so we can define the composition of cycles Γ ◦ Γ t ∈ CHn(X ′ ×R X ′) as pushforward of

(pr∗12 Γ
t) · (pr∗23 Γ ) ∈ CH

n(X ′ ×R X ×R X ′). (4.1)

Since f ◦ f −1 = id, the restriction of this cycle to the generic fibre of X ′ ×R X ′ → SpecR is the diagonal.
It thus follows from the specialization map on Chow groups [Ful98] that the special fibre of the above
cycle must be rationally equivalent to the diagonal of X ′0. On the other hand, this cycle is given by the
pushforward of

(pr∗12 Γ
t
0) · (pr

∗
23 Γ0) ∈ CH

n(X ′0 ×k X0 ×k X ′0) (4.2)

to X ′0 ×k X
′
0. Since X0 has universally trivial Chow group of zero-cycles, the restriction of Γ t0 to the generic

fibre k(X ′0)×k X0 of the projection X ′0 ×k X0→ X ′0 is rationally equivalent to the base change k(X ′0)× z of
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a zero-cycle z on X0. As we already know that the pushforward of (4.2) to X ′0 ×k X
′
0 is rationally equivalent

to the diagonal, this information is enough to conclude that X ′0 admits a decomposition of the diagonal. In
this argument, we used heavily that π is smooth, as the intersections in (4.1) and (4.2) are not even defined
in the non-smooth setting. The idea that allows us to bypass this difficulty is to replace in (4.1) the first
factor of X ′×RX ×RX ′ by the localization of X ′ at the generic point of X ′0 ⊂ X ′ . This way, the intersections
in (4.1) and (4.2) are of relative dimension zero and so we can hope to use a moving lemma to make sense
of these intersections. Moreover, by localizing at the generic point of X ′0 ⊂ X ′ it is still possible to exploit
the information that k(X ′0) ×X0 has trivial Chow group, which will eventually allow us to prove what we
want. We give the details of this argument in what follows.

Let A := OX ′ ,ηX′0 be the local ring of X ′ at the generic point of X ′0 ⊂ X ′ . This is a discrete valuation

ring, because X ′0 ⊂ X ′ is a Cartier divisor. By Lemma 2.2, the base change XA := X ×R SpecA is strictly
semi-stable over A.

Let
γ̃ ∈ Zn(XA)

be the relative zero-cycle that is induced by Γ . Since π is strictly semi-stable, the smooth locus U ⊂ X of
π meets each component of any fibre of π in a non-empty Zariski open subset. Since XA is regular, the
moving lemma for relative zero-cycles in [GLL13, Theorem 2.3] thus shows that

(]) there is a cycle γ ∈ Zn(XA) with [γ] = [γ̃] ∈ CHn(XA), which does not meet the singular locus of
πA : XA→ SpecA and also not the locus in XA over which the projection pr1 : ΓA→XA is non-flat,
where ΓA ⊂ XA ×A X ′A denotes the base change of Γ to A.

By Lemma 2.2, XA ×A X ′A is a semi-stable A-scheme. Consider the following diagram

XA ×A X ′A
p

$$

q

zz

XA X ′A

where p and q denote the corresponding projections. Since q is flat, there is a flat pullback map q∗ on the
level of cycles. Condition (]) implies the following:

(]′) q∗γ is a cycle on XA ×A X ′A which intersects ΓA properly in the smooth locus of XA ×A X ′A over A.

Therefore, the intersection (q∗γ) · (ΓA) is defined on the level of cycles, and so we may consider the cycle

α := p∗((q
∗γ) · (ΓA)) ∈ Zn(X ′A). (4.3)

By (]), the generic fibre of this cycle is rationally equivalent to

p∗((q
∗γ̃η) · (Γη)F(X ′η )) ∈ Z

n
(
(X ′η)F(X ′η )

)
,

where F denotes the fraction field of R. Since Γ and γ̃ are induced by the birational map f : Xη d X ′η ,

the above cycle coincides with the zero-cycle δX ′η ∈ Z
n
(
(X ′η)F(X ′η )

)
that is induced by the diagonal of X ′η .

Hence,
[αη] = [δX ′η ] ∈ CH

n
(
(X ′η)F(X ′η )

)
.

Applying the specialization map on Chow groups, we thus find

[α0] = [δX ′0] ∈ CH
n ((X ′0)K ) , (4.4)

where K = k(X ′0) denotes the residue field of A and δX ′0 denotes the zero-cycle induced by the diagonal of
X ′0. In what follows, we use Lemmas 3.1 and 3.2 to compute [α0] in another way, which will allow us to
conclude that X ′0 admits a decomposition of the diagonal.
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By (]′), Lemma 3.1 applies and we get

sp([q∗γη] · [ΓF(X ′η )]) = [(q∗γ0) · (Γ0)K ] ∈ CH0 ((X0)K ×K (X ′0)K ) ,

where q∗γ0 is the flat pullback of the zero-cycle γ0 ∈ Z0((X0)K ), given as special fibre of γ → SpecA and
(Γ0)K is obtained via base change to K of the n-cycle on X0 ×X ′0 given by the special fibre of Γ → SpecR.
Since specialization and proper pushforward commute (see [Ful98, Proposition 20.3]), this yields

[α0] = (p0)∗ ([(q
∗
0γ0) · (Γ0)K ]) ∈ CH0 ((X

′
0)K ) . (4.5)

Since X0 has universally trivial Chow group of zero-cycles by assumption,

[γ0] = [zK ] ∈ CHn ((X0)K ) ,

where z ∈ Zn(X0) is a zero-cycle with degz = degγ0 = degγη = deg γ̃η = 1. By Lemma 3.2, we conclude
from (4.5) that

[α0] = (p0)∗ ([(z ×X ′0)K · (Γ0)K ])
holds in CH0((X ′0)K ). This implies in particular

[α0] ∈ im(CH0(X
′
0)→ CH0 ((X

′
0)K )) .

Comparing this with (4.4), we conclude that X ′0 admits a decomposition of the diagonal, as claimed. This
concludes the proof of the proposition. �

Proposition 4.3 deals with stably birational generic fibres. To deal with stably birational geometric
generic fibres, we need the following result of Hartl [Har01] about the behaviour of strictly semi-stable
schemes under base change.

Lemma 4.4. Let R be a discrete valuation ring with algebraically closed residue field k and let π : X → SpecR
be strictly semi-stable. Let R ⊂ R′ be a finite extension of discrete valuation rings and let XR′ be the base change
of X to R′ . Then there is a finite sequence of blow-ups

X̃ := V r → V r−1→ ·· · → V 1→ V 0 := XR′ ,
where X̃ is strictly semi-stable over R′ and V i → V i−1 is the blow-up of V i−1 along an irreducible component
of the special fibre V i0 of V i which is not Cartier. Moreover, pushforward via the natural map induces an
isomorphism on Chow groups

CH0

(
(X̃0)L

) ∼ // CH0 ((X0)L)

after base change to any extension L of k.

Proof. The first assertion is [Har01, Proposition 2.2]. The proof of [Har01, Proposition 2.2] shows that in
each step V i → V i−1, the central fibre V i0 is obtained from V i−10 by glueing in a Zariski locally trivial
P
1-bundle. Hence the assertion about the Chow group of X̃0 follows. �

We are now able to prove Theorem 4.1.

Proof of Theorem 4.1. Replacing R by its completion, we may assume that R is a complete discrete valuation
ring and we denote the fraction field of R by K . For a contradiction, we assume that Xη is stably birational
to X ′η . Then there is a finite field extension L/K , such that Xη ×K L is stably birational to X ′η ×K L. Let R′

denote the integral closure of R in L. Since R is a complete discrete valuation ring, R→ R′ is a finite map
of rings and R′ is a complete discrete valuation ring as well, see [EGAIV, Théorème 23.1.5 and Corollaire
23.1.6]. Replacing π and π′ by the base change to R′ , our families have all the initial properties, apart from
the strict semi-stability of X , which we will lose in general. However, by Lemma 4.4, there is projective
birational morphism X̃ → X such that X̃ is a strictly semi-stable R-scheme and such that the special fibres
X̃0 and X0 have isomorphic Chow groups of zero-cycles after any extension of the base field. Hence, X̃0
has universally trivial Chow group of zero-cycles, because the same holds true for X0 by assumptions.
Therefore, Proposition 4.3 shows that X ′0 admits a decomposition of the diagonal, which contradicts our
assumptions. This proves the theorem. �
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5. Applications to hypersurfaces

Theorem 1.1 follows from the following more precise result.

Theorem 5.1. Let k be an uncountable algebraically closed field of arbitrary characteristic and let Y be a
smooth projective variety over k which does not admit a decomposition of the diagonal. For some d,n ≥ 1,
let ` ⊂ P(H0(Pn+1k ,O(d))) be a general pencil of hypersurfaces of degree d in P

n+1
k which contains a general

arrangement of d hyperplanes as one of its members. (The pencil ` does not need to be very general, and also not
general with respect to Y .)

Then Y is not stably birational to a very general member of the pencil `.

Proof. Let π : X → ` ' P
1
k be the universal family of the pencil. By assumptions, there is a point 0 ∈ ` such

that X0 = {l1 · · · ld = 0} for general linear polynomials li . By the genericness assumption on `, X is smooth
away from the central fibre X0. In [Shi19, Lemma 3.6], Shinder computes a resolution of singularities
τ : X̃ → X by repeatedly blowing-up the proper transforms of {li = 0} for i = 1, . . . ,d and shows that X̃0
is a reduced simple normal crossing divisor on X̃ , all of whose components are rational. (Shinder’s paper
is written over an uncountable algebraically closed field of characteristic zero, but that computation holds
more generally over an arbitrary field.) Hence, X̃0 has universally trivial Chow group of zero-cycles.

Consider the families π̃ : X̃ → ` and π′ : X ′ := Y ×k `→ `. Applying Theorem 4.1 to the base change of
these families to the local ring of ` at 0, we conclude that the geometric generic fibres X̃η and Y × k(`) are
not stably birational to each other. We thus conclude from [Sch19a, Lemma 8] that also the very general
fibres of π̃ and π′ : X ′ → ` are not stably birational to each other. That is, the very general fibre of π̃
(which coincides with the very general fibre of π) is not stably birational to Y , as we want. �

Proof of Corollary 1.2. Assume that there is a hypersurface Y ⊂ P
n+1
k of degree d which does not admit a

decomposition of the diagonal. By the specialization map on Chow groups [Ful98, Proposition 11.1], we
may assume that Y is very general and so it is in particular smooth. Hence, Corollary 1.2 follows from
Theorem 1.1. �

Proof of Corollary 1.3. Passing from k to its algebraic closure, we may assume that k is an uncountable
algebraically closed field of characteristic different from two. By [Sch19b, Theorem 8.1], a very general
hypersurface X ⊂ P

n+1
k of degree d ≥ log2(n) + 2 and dimension n ≥ 3 does not admit a decomposition of

the diagonal and so the result follows from Corollary 1.2. �

Proof of Corollary 1.4. Passing from k to its algebraic closure, we may assume that k is an uncountable
algebraically closed field of characteristic two. By [Sch19c, Corollary 1.2], a very general hypersurface
X ⊂ P

n+1
k of degree d ≥ log2(n) + 3 does not admit a decomposition of the diagonal and so the result

follows from Corollary 1.2. �

Theorem 5.2. Let k =Q(t) or k = Fp(s, t). There are smooth Fano hypersurfaces X and X ′ over k of the same
dimension and degree, which over the algebraic closure of k are neither stably rational, nor stably birational to each

other. Moreover, if k is not of characteristic two, the slopes degX
dimX+1 of these examples may be chosen arbitrarily

small.

Proof. We may write k = F(t), where F = Q or F = Fp(s). Let us first deal with the case where k has
characteristic different from two. Then [Sch19b, Theorem 8.3] implies that there is a smooth projective
Fano hypersurface Z over F of arbitrarily small slope whose base change to the algebraic closure F of
F does not admit a decomposition of the diagonal. We may write Z = {f = 0} for some irreducible
homogeneous polynomial f ∈ F[x0, . . . ,xn+1] of degree d. (It is possible to deduce an explicit description
of f from [Sch19b].)
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Consider the discrete valuation ring R := F[t](t) whose residue field is the algebraic closure of F. We
then define the flat projective R-schemes

X := {tf + l1 · · · ld = 0} and X ′ := {f + tg = 0},

where g ∈ F[x0, . . . ,xn+1] is general with degg = d and l1 · · · ld is a product of general linear polynomials
li ∈ F[x0, . . . ,xn+1]. Note that the generic fibres Xη and X ′η can be defined over k. Moreover, the geometric
generic fibres Xη and X ′η are smooth and do not admit decompositions of the diagonal, because they

both specialize (via t−1→ 0, resp. t→ 0) to ZF , which is smooth and does not admit a decomposition of
the diagonal. In particular, Xη and X ′η are stably irrational; it remains to show that they are not stably
birational to each other.

As in the proof of Theorem 1.1, Shinder’s computation in [Shi19, Lemma 3.6] shows that there is a
projective modification X̃ → X , such that X̃ is strictly semi-stable over R and such that X̃0 has universally
trivial Chow group of zero-cycles. Since g is general, X ′ is smooth over R. Moreover, X ′0 ' ZF does not
admit a decomposition of the diagonal. Applying Theorem 4.1, we thus find that Xη and X ′η are not stably
birational to each other. This concludes the case where k has characteristic different from two.

If chark = 2, then we may argue similarly by using Totaro’s result [Tot16], which produces a smooth
projective hypersurface Z ⊂ P

n+1
F2(s)

of any even degree d ≥ 2dn+23 e which does not admit a decomposition
of the diagonal over the algebraic closure of F2(s). The rest of the argument is analogous to the one given
above. �

6. Questions

Let Hd,n denote the coarse moduli space of smooth hypersurfaces of degree d in P
n+1. Stable birational

equivalence induces an equivalence relation ∼ on the set of k-rational points Hd,n(k) of this moduli space
and we can consider the quotient Hd,n(k)/ ∼. A priori, this quotient is only a set, but we can nonetheless
study its size in various ways. For instance, we may define the dimension of Hd,n(k)/ ∼ as

min{dimZ | Z ⊂Hd,n(k) is closed and Z→Hd,n(k)/ ∼ is surjective}.

By Theorem 5.1, we know that for any uncountable algebraically closed field k such that the very general
element of Hd,n(k) does not admit a decomposition of the diagonal, the set Hd,n(k)/ ∼ is uncountable. (By
[Sch19b], this holds for instance if d ≥ log2(n) + 2, n ≥ 3 and char(k) , 2.) In particular, Hd,n(k)/ ∼ is
positive-dimensional in these cases and it is natural to ask to improve this result.

Question 6.1. What can we say about the dimension of Hd,n(k)/ ∼?

A related question that goes back to Voisin asks about the dimension of the fibres of the quotient map
Hd,n(k)→Hd,n(k)/ ∼.

Question 6.2 (Voisin). What is the maximal dimension of a subvariety Z ⊂Hd,n(k) such that all hypersurfaces
parametrized by Z are stably birational to each other?

In light of Theorem 5.2, it is also worth to ask the following.

Question 6.3. Are all smooth Fano hypersurfaces of given dimension and degree over Q stably birational to each
other over Q?
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