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In this paper we will be interested in a question of Mori [23, p. 642] from 1975, which
in recent years has also been advertised by Kollár (see e.g. [21, p. 33]) (see also the
Mathoverflow post [31]). To state the question, we say that a projective variety X
is a smooth specialization of a hypersurface of degree d if there is a smooth proper
morphism X → SpecA over a local ring A, with special fibre X, whose generic fibre is
isomorphic to a hypersurface of degree d in projective space.

Question 1. Let X be a smooth specialization of a hypersurface of prime degree in
Pn+1 with n ≥ 3. Is then also X a hypersurface?

In dimensions 1 and 2 there are many counterexamples to this question (even in the
case where X is defined over C). There are explicit families of smooth plane curves
which specialize to hyperelliptic curves (which are not embeddable in P2) [10]. In
dimension 2, we can view cubic surfaces as blow-ups of P2 in six general points and
specialize to a non-cubic surface by moving the points into special position. Moreover,
simultaneous resolution of ADE surface singularities [1] shows that the simultaneous
resolution of a family of smooth surfaces in P3 degenerating to a surface with only ADE
singularities gives a counterexample for any degree ≥ 2 (as long as we allow the total
space X to be an algebraic space). A much more sophisticated example was found by
Horikawa [13], who showed that over the complex numbers, quintic surfaces specialize
to smooth surfaces which themselves, as well as their canonical models, cannot be
embedded into P3.
The restriction to prime degrees in Question 1 is also necessary. Mori [23] constructed

the following examples, showing that for any composite degree and in arbitrary di-
mension ≥ 3, hypersurfaces can deform to non-hypersurfaces: if f and g are generic
homogeneous polynomials in x0, . . . , xn of degree ab and b respectively, the family

X = Z(ya − f(x0, . . . , xn), ty − g(x0, . . . , xn)) ⊂ P(1n+1, b)× A1
t

is smooth, and Xt is a degree ab hypersurface for t 6= 0, but X0 = Z(ya − f, g) is not
isomorphic to a hypersurface: it is a a : 1 cover of the hypersurface Z(g) ⊂ Pn and so
the ample generator of the Picard group is not very ample. Replacing t by a uniformizer
of Zp, we obtain similar examples for specializations in mixed characteristic.
In light of the above examples, one could perhaps expect counterexamples to Question

1, but coming up with prime degree examples makes it more difficult. After all, if X is
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defined over an algebraically closed field of characteristic zero, the result of Brieskorn [3]
(see also the related results in [18] and [15]) and Fujita [8,9] imply a positive answer to
Question 1 in degrees 2 and 3, respectively.
In this paper we settle Mori’s question for quintics in arbitrary dimension and for

septics in dimension three.

Theorem 0.1. Let X be a smooth projective variety of dimension n ≥ 3 over a field
k. Assume that X is the smooth specialization of a hypersurface of degree d, and that
one of the following holds:

(a) (n, d) = (3, 7);

(b) (n, d) = (3, 5);

(c) n ≥ 4, d = 5 and char k = 0.

Then X is isomorphic to a hypersurface of degree d in Pn+1
k .

The examples in items (a), (b) and (c) are of general type, Calabi–Yau and Fano,
respectively. Note also that the above theorem classifies arbitrary smooth specializations
of quintic or septic threefolds over local rings of mixed characteristic.
Item (c) in Theorem 0.1 will be deduced from the following numerical characterization

of smooth quintic hypersurfaces in dimension at least three.

Theorem 0.2. Let X be a smooth projective variety of dimension n ≥ 3, defined over an
algebraically closed field k of characteristic zero. Suppose that PicX/ ∼num= Z[OX(1)]

for an ample line bundle OX(1) with

OX(1)n = 5, χ(X,OX(1)) ≥ n+ 2 and KX = OX(3− n).

Then X is isomorphic to a quintic hypersurface in Pn+1
k .

Items (a) and (b) in Theorem 0.1 will be deduced from numerical characterizations
of quintic and septic threefolds in arbitrary characteristic that are similar to Theorem
0.2 above, see Theorems 3.1 and 5.1 below.
Theorem 0.2 has the following consequence.

Corollary 0.3. Let X be a smooth complex projective variety of dimension n ≥ 3

which deforms via a sequence of Kähler deformations to a quintic hypersurface in Pn+1
C .

Then X is isomorphic to a quintic hypersurface in Pn+1
C .

The above corollary extends the famous work of Horikawa [13] on deformations of
quintic surfaces. In fact, Horikawa showed that any minimal complex algebraic surface
X with invariants pg = 4, q = 0 and K2

X = 5 is deformation equivalent to a quintic
hypersurface. Moreover, there are two cases for such a surface: either KX is base point
free, in which case it gives a morphism onto the canonical model of X which is a
quintic surface; or KX has a unique base point, and the rational map φ|KX | : X 99K F
is generically a double cover of a Hirzebruch surface. Griffin [10] extended this analysis
by writing down explicit equations for a smooth family of quintic surfaces specializing
to a surface of the latter kind (we review this construction in Section 7).
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It is not hard to see that Question 1 has a positive answer if the specialization OX(1)

of the hyperplane bundle is base point free, see Lemma 1.5 below. However, proving this
directly from general theorems using cohomological techniques or vanishing theorems
does not seem to be possible. For instance, Reid [27] constructed an example of a
specialization X of quintic threefolds such that OX(1) has an isolated base point (hence
X is not a hypersurface), but where X has terminal singularities (two ordinary double
points), see Section 7 below.
The analogue of Question 1 for hypersurfaces in abelian varieties is known to have a

positive answer, see [4]. Note however that this case is much simpler, as one has the
Albanese morphism to start with. In particular, the main difficulties that we face in
this paper, namely the possibility of base points of OX(1), disappear.
While we believe that Question 1 is interesting in its own right, understanding

specializations of hypersurfaces is known to be an important tool in the study of the
geometry of hypersurfaces themselves. For instance, Kollár [19] and Totaro [30] used
the aforementioned deformations of Mori (in mixed characteristic) to show that many
hypersurfaces of low degree are not ruled, respectively not stably rational. Totaro’s
result has recently been improved in [28], where different degenerations are used.

Acknowledgements. We would like to thank J. Kollár and B. Totaro, for bringing
this problem to our attention. We would also like to thank B. Totaro for comments
and O. Benoist, R. Laza, J. V. Rennemo, and C. Xu for useful discussions.

1 Basic set-up and some general results

1.1 Notation

Let k be a field, which until Section 6 will be assumed to be algebraically closed. We
denote by X a smooth projective variety of dimension n over k, whose Picard group is
up to numerical equivalence generated by an ample line bundle OX(1) with

OX(1)n = d, h0(X,OX(1)) ≥ n+ 2 and KX = OX(d− n− 2)

for some integer d ≥ 1. If char k = 0, n ≥ 3 and d = 5, then Kodaira vanishing shows
χ(X,OX(1)) = h0(X,OX(1)) and so the above assumptions are exactly those from
Theorem 0.2.
Let us fix some notation, which will be retained for the rest of the paper. We will

consider the linear system |OX(1)| with base locus Bs(|OX(1)|) ⊂ X. We denote by B
the cycle of top-dimensional components of Bs(|OX(1)|), counted with multiplicities.
We further denote the dimension of B by b = dimB.
From now on we assume that we can resolve the rational map φ given by n + 2

general sections of OX(1), and get a diagram

W

X Y ⊂ Pn+1

p q

φ

(1)
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where W is smooth, p is an isomorphism away from the base locus of OX(1) and
Y = φ(X) is integral. By Hironaka’s theorem, this assumption is satisfied if k has
characterstic zero. By [5, p. 1839], it is also satisfied over arbitrary algebraically closed
fields k if n = 3.
We will use the following notation for divisors: we will let L = p∗OX(1); by the

construction of W , we can decompose this as

L = M + F,

where M = q∗OY (1) is the movable part of L and F is the fixed part. It follows from
Lemma 1.1 below that F is supported on the p-exceptional locus and so p∗M = OX(1).

1.2 Some useful lemmas

We will repeatedly make use of the following lemmas.

Lemma 1.1. In the notation of Section 1.1, dimB ≤ n−2 and deg Y ≥ n+2−dimY .

Proof. Since PicX is up to numerical equivalence generated byOX(1), and h0(X,OX(1)) ≥
2, the base locus of OX(1) cannot contain any divisorial components and so dimB ≤
n− 2. Moreover, deg Y ≥ n+ 2 − dimY because Y is integral and not contained in
any hyperplane of Pn+1 [6].

Lemma 1.2. In the notation of Section 1.1, LiMn−i−1F ≥ 0 for all i. Moreover, if
OX(1) is not base point free and b = dimB, then LbMn−b−1F > 0.

Proof. Since OX(1) is ample, some multiple of L is base point free. Since M is base
point free as well and F is effective, LiMn−i−1F ≥ 0 for all i.
Let us now assume that OX(1) is not base point free and let b = dimB. Since φ is

given by n+ 2 general sections of OX(1), the proper transform of a general element of
|OX(1)| is given by a general element of |M |. Using that F dominates the base locus
of OX(1), OX(1) is ample on X and L = p∗OX(1), we then find that Mn−b−1LbF = 0

implies that an intersection of n − b − 1 general elements of |OX(1)| on X does not
contain the base locus, a contradiction. This proves the lemma.

Lemma 1.3. In the notation of Section 1.1, Y has no hyperplane section which is
numerically equivalent to H1 +H2 +D with H1, H2 effective movable divisors and D
effective.
In particular, Y is not covered by linear spaces of codimension 1.

Proof. For a contradiction, suppose there is a hyperplane section H of Y that is
numerically equivalent to H1 +H2 +D with H1, H2 effective and movable (in the sense
that they can be deformed to pass through general points of Y ). Then up to numerical
equivalence, q∗H is a Cartier divisor on W with at least two movable components,
and hence so is p∗q∗H. However, this divisor lies in the linear system |OX(1)|, which
contradicts the fact that OX(1) generates PicX/ ∼num freely.
For the last statement, we assume Y contains a linear subspace H1 = PdimY−1 of

codimension one whose deformations cover Y . Taking hyperplane sections containing
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H1, we obtain a desired decomposition H = H1 +H2 where H2 is the residual effective
divisor. Since Y ⊂ Pn+1 is not contained in any linear subspace, it has degree at least
two and so H2 is nonzero. For each H1 there is at least a 1-dimensional family of
hyperplanes in Pn+1 that contain it, and so we get a decomposition as above.

Lemma 1.4. In the notation of Section 1.1, assume that n ≥ 2. Then dimY ≥ 2.

Proof. Since Y is not contained in a hyperplane of Pn+1, it must be positive-dimensional.
The lemma thus follows from Lemma 1.3, which shows that dimY = 1 is impossible.

1.3 The case when φ is a morphism

Lemma 1.5. In the notation of Section 1.1, suppose that d is a prime number. If
OX(1) is base point free, i.e. φ is a morphism, then X is isomorphic to a hypersurface
of degree d and φ is an isomorphism.

Proof. Since OX(1) is base point free, L = M and φ is a morphism. Hence,

d = Ln = Mn = deg Y · deg φ.

Since d is prime and deg Y ≥ 2, we conclude that Y is a hypersurface of degree d and
deg φ = 1, i.e. φ is a birational morphism.
Let C denote the complete intersection of n− 1 elements of φ∗|OY (1)|. Then C is a

smooth curve such that

KC = OX(−n− 2 + d+ (n− 1))|C = OX(d− 3)|C ,

which has degree d(d−3). Note that C maps onto a complete intersection curve C ′ ⊂ Y .
Since Y is a degree d hypersurface, C ′ is a plane curve of degree d. In particular, C ′ is
Gorenstein, and KC′ = OY ((d− 3)H)|C′ has degree d(d− 3) as well. It follows that
C ' C ′ is isomorphic to a plane curve of degree d. In particular, Y is non-singular
in codimension 2. Since Y is a hypersurface in a smooth variety, it is also Cohen–
Macaulay, and hence it is normal. Then since φ : X → Y is finite of degree one, it is
an isomorphism. In particular, X is isomorphic to a hypersurface of degree d, which
concludes the lemma.

1.4 Bounds on Mn and deg Y

The following generalizes a result of Horikawa [13, Lemma 2].

Lemma 1.6. In the notation of Section 1.1, we have the following

(a) Mn ≤ d and n+ 2− dimY ≤ deg Y ≤ d;

(b) if Mn = d, then OX(1) is base point free;

(c) if Mn = d− 1, then OX(1) has exactly one base point. If furthermore char k = 0,
then the general element in |OX(1)| is smooth.
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Proof. By Lemma 1.2, LiMn−i−1F ≥ 0 for all i. Using L = M + F , this shows that

d = Ln ≥ Ln−1M ≥ Ln−2M2 ≥ · · · ≥Mn. (2)

In particular, Mn ≤ d. Moreover, Mn = d implies LiMn−i−1F = 0 for all i and so
OX(1) is base point free by Lemma 1.2. This proves item (b) and the first part of item
(a). To prove the second part of item (a), let y = dimY and let C be a general fibre
of q. Then My = deg Y · C in CHy(W ). By (2), d ≥ Ln−yMy and so the projection
formula shows

d ≥ p∗(Ln−yMy) = deg Y · OX(1)n−y · p∗C.

SinceOX(1) is ample onX and p∗C 6= 0 because C is a general fibre of q,OX(1)n−yp∗C >

0 and so we conclude deg Y ≤ d. The lower bound on deg Y follows from Lemma 1.1,
which concludes the proof of item (a).
It remains to treat the case Mn = d− 1. If d = 1, then for any i ≤ n, the intersection

of general elements D1, . . . , Di ∈ |OX(1)| must be irreducible and reduced, and of
codimension i. This shows that dimB = 0. As a consequence, p∗q∗(H1 · · ·HdimY ) is
irreducible and reduced for any general elements Hi ∈ |OY (1)|. This is a contradiction,
because deg Y ≥ 2 by Lemma 1.1.
We may thus assume d ≥ 2 and so Mn = d − 1 shows that dimY = n, i.e. M is

big and nef. Since Mn = d − 1, the above inequality implies that among the terms
LiMn−i−1F for i = 0, . . . , n − 1, all are in {0, 1} and exactly one equals 1. Since
Mn = d − 1, OX(1) is not base point free and we let b = dimB be the dimension
of the base locus of OX(1). By Lemma 1.2, LbMn−b−1F > 0 and so we must have
LbMn−b−1F = 1.
If b > 0, then it follows that Lb−1Mn−bF = 0 and so

1 = LbMn−b−1F = Lb−1Mn−bF + Lb−1Mn−b−1F 2 = Lb−1Mn−b−1F 2.

This contradicts the Hodge index theorem (see e.g. [22, Theorem 10.1]) applied to the
resolution of an integral surface S ⊂W with class (mL)b−1Mn−b−1 for some m� 0,
because M |S is base point free and big, and F |S a non-zero effective divisor. Hence
b = 0.
Since b = 0 and φ is given by general sections of OX(1), the intersection of n − 1

general elements of |M | maps down to an intersection of n − 1 general elements of
|OX(1)|, and so it must contain the base locus. Therefore, Mn−1F = 1 implies that the
base locus of OX(1) is given by only one point x ∈ X. Moreover, the coefficient of the
exceptional divisor in F that meets the intersection of n− 1 general elements of |M |
is 1 and so a generic element D ∈ |OX(1)| has multiplicity one at x. If additionally
char k = 0, then it follows that D is smooth, as it is smooth away from the base locus
by Bertini’s theorem in characteristic zero. This concludes the proof of the lemma.

1.5 The case when φ is birational

Proposition 1.7. In the notation of Section 1.1, suppose that d ≥ n+2. If φ : X 99K Y
is birational, then φ is an isomorphism.
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Proof. Recall the diagram

W

X Y ⊂ Pn+1

p q

φ

We need to show that deg(q) = 1 implies that φ is an isomorphism.
Let C ⊂W be the intersection of n− 1 general elements of |M |. Since deg(q) = 1,

C ′ := q(C) is a plane curve of degree d′ := Mn and so C ′ is Gorenstein with

deg(KC′) = (−3 + d′)d′.

On the other hand,
KC = (KW + (n− 1)M)|C ,

where KW = (−n − 2 + d)(M + F ) +
∑
aiEi with ai ≥ 1, where Ei denote the

p-exceptional divisors of W . We then get

deg(KC) = (−3 + d)Mn + (−n− 2 + d)F ·Mn−1 +
∑

aiEi ·Mn−1.

Since C is the normalization of C ′, deg(KC) ≤ deg(KC′) and so

(−3 + d)Mn + (−n− 2 + d)F ·Mn−1 +
∑

aiEi ·Mn−1 ≤ (−3 + d′)d′. (3)

On the other hand, F ·Mn−1 ≥ 0 and Ei ·Mn−1 ≥ 0 for all i because M is base
point free. Moreover, Mn = d′ ≤ d by Lemma 1.6. Since −n− 2 + d is non-negative
by assumption and ai ≥ 1 for all i, (3) thus implies (−n − 2 + d)F ·Mn−1 = 0 and
Ei ·Mn−1 = 0 for all i. Hence,

(−3 + d′)d′ ≥ (−3 + d)Mn = (−3 + d)d′.

This implies d = d′, because d ≥ d′ by Lemma 1.6. Hence, φ is a morphism by
Lemma 1.6 and so it is an isomorphism by Lemma 1.5. This concludes the proof of the
proposition.

2 Reduction to lower-dimensional cases for quintics

The main reduction in the proof of Theorem 0.2 is the following result, due to Mori,
which allows us to restrict to low-dimensional cases provided we can find smooth
hyperplane sections in |OX(1)|, see [23, Theorem 3.6].

Theorem 2.1 (Mori). Let X be a normal projective variety of dimension n ≥ 3 over
a field k, equipped with an ample line bundle OX(1). Let Z ∈ |OX(1)| and suppose that
the global sections of OX(1)|Z embed Z as a hypersurface in Pnk . Then X is isomorphic
to a hypersurface in Pn+1

k such that OX(1) corresponds to the pullback of OPn+1
k

(1).
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As shown in Horikawa’s examples [13], even in characteristic zero it is not true that
under our given assumptions the linear system |OX(1)| is base point free, so we cannot
apply Proposition 2.1 directly. In particular, it is not clear that |OX(1)| contains smooth
elements. However, we at least have the following result of Höring–Voisin [14, Theorem
1.6], which builds on work of Kawamata [16] and Floris [7].

Theorem 2.2 (Höring–Voisin). Let k be an algebraically closed field of characteristic
zero. Let X be a smooth Fano variety of dimension n and index n− 3 over k, and let
OX(1) be the ample line bundle such that −KX = OX(n − 3). Suppose further that
h0(X,OX(1)) ≥ n− 2 and let Z be a general intersection of n− 3 divisors of |OX(1)|.
Then Z is a threefold with isolated canonical singularities.

Note however that in the above result, Z might fail to be Q-factorial (see [14, Example
2.12] for an example when n = 4). Even though we will not use this here, note that the
assumption h0(X,OX(1)) ≥ n− 2 is automatically satisfied in Theorem 2.2, see [11].
The main observation of this section is the following.

Proposition 2.3. In the notation of Theorem 2.2, assume that n ≥ 5. Then a general
element D ∈ |OX(1)| is smooth.

Proof. We use ideas from [14, Theorem 1.6]. Let k be an algebraically closed field of
characteristic zero and letX be a smooth Fano variety of dimension n ≥ 5 and index n−3

over k, as in Theorem 2.2. In particular, −KX = OX(n− 3) and h0(X,OX(1)) ≥ n− 2.
Let D1, . . . , Dn−2 be general elements of the linear system |OX(1)| on X and let

Zi := X ∩D1 ∩ · · · ∩Di.

By Theorem 2.2, Zn−3 is a Gorenstein threefold with canonical singularities and
trivial canonical bundle. The pair (Zn−3, Zn−2) is therefore log canonical by a result
of Kawamata [16, Proposition 4.2]. Applying repeatedly inversion of adjunction (see
e.g. [20, Theorem 7.5]), the pair (X,

∑n−2
i=1 Di) is thus seen to be log canonical near

Zn−3.
For a contradiction, we assume that every element in |OX(1)| is singular. In particular,

each Di is singular. By Bertini’s theorem, the singular locus of Di must be contained in
the base locus of OX(1) and hence in the singular locus of Zn−3. Since Zn−3 has only
isolated singularities by Theorem 2.2, we find that Di has only isolated singularities as
well. Let x be such a singular point. Since for all i, the divisor Di is a general element
of |OX(1)|, x is a singular point of Di for all i. Let τ : X ′ → X be the blow-up of X in
x with exceptional divisor E. Since X is smooth, KX′ = τ∗KX + (n− 1)E. Since X is
smooth and Di is singular at x, we see that τ∗Di = D′i + aiE for some ai ≥ 2, where
D′i denotes the proper transform of Di. We thus find

KX′ +
n−2∑
i=1

D′i = τ∗(KX +
n−2∑
i=1

Di) + (n− 1)E −
n−2∑
i=1

aiE.

Since n ≥ 5 and ai ≥ 2 for all i, the discrepancy of E with respect to the pair
(X,

∑n−2
i=1 Di) is thus given by

n− 1−
n−2∑
i=1

ai ≤ n− 1− 2(n− 2) = −n+ 3 ≤ −2.
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This shows that (X,
∑n−2

i=1 Di) is not log canonical near Zn−3, a contradiction. This
concludes the proof of the proposition.

With the above proposition, we can prove the main theorem of this section, which
reduces Theorem 0.2 to a question about threefolds and fourfolds.

Theorem 2.4. Suppose Theorem 0.2 holds in dimension 3 and 4. Then it holds in any
dimension ≥ 3.

Proof. We prove the theorem by induction on the dimension. Let X be as in Theorem
0.2 and assume that n = dimX ≥ 5 and that we know Theorem 0.2 in lower dimensions.
By Kodaira vanishing, χ(X,OX(1)) = h0(X,OX(1)) ≥ n+ 2. Hence, Proposition 2.3
implies that a general element D ∈ |OX(1)| is smooth. If OD(1) denotes the restriction
of OX(1) to D, then we have

OD(1)n−1 = 5, χ(D,OD(1)) = h0(D,OD(1)) ≥ n+ 1 and KD = OD(4− n).

Hence, D satisfies the assumptions of Theorem 0.2 and so it is isomorphic to a quintic
hypersurface by assumption. But then by the Lefschetz hyperplane theorem, PicD is
generated by a line bundle whose self-intersection is 5 and so we find that OD(1) must
be the hyperplane bundle. It thus follows from Theorem 2.1 that the global sections
of OX(1) embed X as a quintic hypersurface in Pn+1

k , as we want. This concludes the
proof of the theorem.

3 Quintic threefolds

In this section we aim to prove Theorem 0.2 in dimension three. In fact, thanks to
resolution of singularities in dimension three [5, p. 1839], which ensures the existence
of the diagram (1), we are able to settle the case where the ground field has arbitrary
characteristic.

Theorem 3.1. Let k be an algebraically closed field (of arbitrary characteristic). Let
X be a smooth projective threefold with PicX/ ∼num= Z[OX(1)] for an ample line
bundle OX(1) with

OX(1)3 = 5, h0(X,OX(1)) ≥ 5 and KX = OX .

Then X is isomorphic to a quintic hypersurface in P4
k.

To prove the above theorem, we consider the rational map φ : X 99K Y ⊂ P4 given
by five general sections of OX(1) and use the notation from Section 1.1. By Lemmas 1.1
and 1.4, dimY ∈ {2, 3} and dimB ∈ {0, 1}. We consider these cases in what follows.

3.1 dimY = 2 and dimB = 0

Let C be a general fiber of q; so C is a curve. Note that

5 = L3 = LM2 + LMF + L2F = LM2 = (deg Y )(OX(1) · p∗C)
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The surface Y has degree ≥ 3 by Lemma 1.1. So we must have that OX(1) · p∗C = 1.
By Lemma 1.2, M2F > 0 and so there is a component F0 ⊂ F with M2F0 > 0. We

let x ∈ X be the image of F0 in X (F0 maps to B and hence to a point in X by Lemma
1.1). Note also that x is a base point of OX(1).
Since OX(1) · p∗C = 1, we see that for any general element S ∈ |OX(1)|, there is

a curve in X which intersects S with multiplicity one in x. Hence S is smooth at x.
Let now S1, S2 ∈ |OX(1)| be general elements. Since S1 is general, there is a general
fibre C1 of q with p∗C1 ⊂ S1. Moreover, as we have seen above, x is a smooth point
of S1. Since OX(1) · p∗C1 = 1, we then find that the curves p∗C1 and S1 ∩ S2 meet
with multiplicity one at the smooth point x ∈ S1. This shows that T = S1 ∩ S2 is a
curve in X with multiplicity one at x. However, since φ is given by 5 general sections of
OX(1), T can be written as p∗(q∗H ∩ q∗H ′) for general hyperplanes H,H ′ ∈ |OP4(1)|.
Since the component F0 of F lies above x and dominates Y , we find that T must have
multiplicity at least M2F0 ≥ deg(Y ) ≥ 3 at x, a contradiction.

3.2 dimY = 2 and dimB = 1

With notation as in the previous case, we can write

OX(1)2 = (deg Y )p∗C +B.

Intersecting both sides with OX(1), we find that 3 ≤ deg Y ≤ 4, because OX(1) ·B > 0,
since dimB = 1 and OX(1) is ample.
If deg Y = 3, then Y is a (possibly singular) cubic scroll. Hence, Y is covered by lines

and so we conclude by Lemma 1.3.
If deg Y = 4, we use the classification of surfaces of degree 4 in P4, see [29] or [26,

Theorem 8]. This implies that Y is either

(i) A projection of a quartic scroll in P5 to P4;

(ii) A projection of the Veronese surface to P4;

(iii) An intersection of two quadrics; or

(iv) A cone over a quartic curve in P3.

In cases (i) and (iv), Y is a surface ruled by lines and we conclude by Lemma 1.3.
Similarly, in (ii), let V ⊂ P5 be the Veronese surface and let p : V 99K Y be the

projection. Recall that V ' P2 embedded by the complete linear system |OP2(2)|.
Hence, there is a linear series W ⊂ |OP2(2)| of codimension one such that the induced
map φW : P2 → P4 has Y as image. Consider the subspace W ′ ⊂ |OP2(2)| that is given
by decomposable divisors, i.e. by sums of two lines. Since W is a linear subspace of
codimension one and since each line on P2 moves in a 2-dimensional linear series, we
conclude that W ∩W ′ contains at least a one-dimensional family of decomposable
divisors where both components move. Since the hyperplane sections of Y are exactly
given by the elements of W , this contradicts Lemma 1.3, as we want.
In case (iii), we use the following well-known characterization of quadrics over

algebraically closed fields of arbitrary characteristic.
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Lemma 3.2. Let k be an algebraically closed field and let Q ⊂ Pn+1
k be a quadric

hypersurface. Assume that X is integral. Then Q is the cone over a smooth quadric
Q0. Moreover, if Q is smooth, then there are homogeneous coordinates x0, . . . , xn+1,
such that Q is given by

∑m−1
i=0 xixi+m = 0 if n + 2 = 2m for some integer m, or∑m−1

i=0 xixi+m + x2n+1 = 0 if n+ 2 = 2m+ 1 for some integer m.

In the setting of the above lemma, we will say as usual that Q has rank r if Q is a
cone over a smooth quadric of dimension r − 2.
To settle case (iii), let now Y be the intersection of two quadrics Q1, Q2. We note first

that the pencil spanned by Q1 and Q2 contains a singular quadric Q0. In particular, Q0

contains a 1-dimensional family of planes Pt. Each plane Pt must intersect Y in a conic
curve Ct, and each Ct lies in a pencil of hyperplane sections Ht so that Ht = Ct + C ′t
for a residual conic curve C ′t. If the residual conic C ′t moves on Y , then we are done
via Lemma 1.3. Otherwise, C ′t must be the base locus of the family of planes Pt ⊂ Q0

and so Q0 has rank three and C ′t is given by the singular line ` of Q0 (counted with
multiplicity two). Since Q0 has rank three, intersecting it with a general hyperplane H
containing ` gives a quadric of rank two. In particular, H|Y decomposes into a union
of ` (with multiplicity two) and two lines. Hence Y is ruled by lines, and we are again
done by Lemma 1.3.

3.3 dimY = 3

When Y is a threefold in P4, we note that

5 = L3 = L2M ≥ LM2 ≥M3 = (deg q)(deg Y ). (4)

Once again, deg Y ≥ 2 by Lemma 1.1. Also we may assume deg q ≥ 2 by Proposition
1.7. This leaves the case (deg Y,deg q) = (2, 2). In particular, M3 = 4 and so Lemma
1.6 shows that the base locus B consists of a single point.1

Since deg Y = 2, Y is a quadric. Since Y is integral, it must either be smooth, or the
cone over a smooth conic, or the cone over a smooth quadric surface, cf. Lemma 3.2.
If Y is the cone over a smooth conic in P2, then it is ruled by P2’s and we conclude

by Lemma 1.3.
If Y is the cone over a smooth quadric surface Q ⊂ P3, then the union of two lines in

different rulings of Q yields a hyperplane section of Q with two movable components.
Taking the cone over this divisor, we find a hyperplane section of Y which has two
movable components and so we get a contradiction using Lemma 1.3.
If Y is a smooth quadric, the classH2 is divisible by two in CH2(Y ). Since dim(B) = 0,

we have OX(1)2 = p∗q
∗H2 on X, and so we conclude that this class is divisible by two

as well, which contradicts the fact that OX(1)3 = 5.
This concludes the proof of Theorem 3.1.
1 If char k = 0, a general section of OX(1) is smooth by Lemma 1.6, but we cannot use this to

conclude inductively, because because of the Horikawa examples in dimension 2 [13].
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4 Quintic fourfolds

We now prove Theorem 0.2 for fourfolds (over an algebraically closed field k of char-
acteristic zero). The strategy of proof follows the argument for the three-dimensional
case, but some additional difficulties arise in dimension four. We use the notation of
Section 1.1 and consider the diagram

W

X Y ⊂ P5

p q

φ

By Lemmas 1.1, 1.4 and 1.6, we have

dimY ∈ {2, 3, 4}, 6− dimY ≤ deg Y ≤ 5 and dimB ∈ {0, 1, 2}.

We deal with these cases in what follows.

4.1 dimY = 2 and deg Y = 4

In this case Y is a surface of minimal degree in P5 and so, using [6], we see that it
is either a cone over a rational normal curve in P4, the Veronese surface, P1 × P1

(embedded via O(1, 1)), or a quartic scroll. In each case, the hyperplane divisor H can
be written as the sum of two movable divisors on Y , which once again contradicts
Lemma 1.3.

4.2 dimY = 2 and deg Y = 5

Let S be a general fibre of q. Since dimB ≤ 2 by Lemma 1.1,

OX(1)2 = deg(Y )p∗S +R

for an effective codimension two class R. Since deg(Y ) = 5, OX(1)4 = 5 and OX(1)

is ample, we conclude R = 0. Hence, OX(1)2 = 5p∗S and so 5 = OX(1)4 = 25(p∗S)2,
which is a contradiction.

4.3 dimY = 3 and deg Y = 3

In this case Y is a threefold of minimal degree in P5. If it is smooth, then it is the Segre
cubic threefold P1 × P2. If Y is singular, then it is a cone over a surface of minimal
degree in P4, which is ruled by lines, cf. Section 3.2. In either case Y is covered by
2-planes and we get a contradiction from Lemma 1.3.

4.4 dimY = 3 and dimB = 0

Let C be a general fibre of q (so C is a smooth curve). Since the base locus B is
assumed to be zero-dimensional, we have OX(1)3 = deg(Y )p∗C and so deg(Y ) = 5

and OX(1) · p∗C = 1. The same argument as in the case of threefolds now applies, see
Section 3.1.
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4.5 dimY = 3 and deg Y = 5

Let C be a general fibre of q. Since dimB ≤ 2 by Lemma 1.1, we have L3F = 0 and so

5 = L4 = LM3 + LM2F + L2MF.

Here we have LM3 = deg(Y )(OX(1) · p∗C) ≥ 5, because OX(1) is ample, p∗C 6= 0 (as
C is a general fibre of q) and deg Y = 5 by our assumptions. Since the remaining terms
are non-negative by Lemma 1.2, we find LM2F = 0 and L2MF = 0. By Lemmas 1.1
and 1.2, this implies dimB = 0 and so we conclude via the case treated in Section 4.4.

4.6 dimY = 3, deg Y = 4 and dimB = 2

As in the previous case, we find

5 = L4 = LM3 + LM2F + L2MF.

Moreover, LM3 = deg Y ·(OX(1) ·p∗C), where C is a general fibre of q. Since deg Y = 4,
we thus get

LM3 = 4.

Hence, LM2F + L2MF = 1 and so Lemma 1.2 shows

LM2F = 0 and L2MF = 1,

because dimB = 2.
Let now S be the intersection of a general element of |M | with a general element of
|rL| for some r � 0. Then S is a smooth surface on W . We let f , m and l denote the
restrictions of F , M and L to S. Then we have

m2 = rLM3 = 4r, lf = rL2MF = r and mf = rLM2F = 0.

Since m is a nef divisor on S, m2 = 4r shows that it is big and nef. Moreover, f is an
effective divisor on S and we have mf = 0 and f2 = (l −m)f = lf = r > 0, which
contradicts the Hodge index theorem on S. This concludes the present case.

4.7 dimY = 3, deg Y = 4 and dimB = 1

Since Y is a threefold, M4 = 0. Moreover, L2F = 0 because dimB = 1. We thus find
5 = L4 = FM3 + LM2F . Here, FM3 = LM3 = deg Y · (OX(1) · p∗C), where C is a
general fibre of q. Hence,

FM3 = 4, OX(1) · p∗C = 1 and LM2F = 1.

Since M3 = 4C, we have OX(1)3 = 4p∗C + B. Since OX(1)4 = 5, we conclude that
OX(1) ·B = 1 and so B is given by an integral curve on X.
We write F = F ′ + F ′′, where F ′ denotes the union of all components that map to

points on X, while F ′′ denotes the union of all components that dominate B. Then,
LM2F = LM2F ′′ = 1. Take a smooth divisor D ∈ |OX(m)| for m � 0 so that the
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intersection D ∩ B is transversal, i.e. consists of m distinct points. Then on W , the
2-cycle p∗D ·F is represented by m fibers of F ′′ → B. In particular, this shows that the
class LF is represented by an effective cycle, namely the fiber over a general point of B.
Since LM2F = 1, we find that this cycle is mapped to a plane in Y ⊂ P5; that is, there
is exactly one component of LF which is not contracted via q∗ and this component
is mapped to a plane in Y . Since Y is a threefold, this plane cannot move on Y (by
Lemma 1.3). It follows that none of the components of F ′′ dominate Y . Hence, if
F0 ⊂ F is a component which dominates Y , then F0 ⊂ F ′, i.e. F0 maps to a point in
X. Since M3 = deg(Y )C = 4C on W , the equality FM3 = 4 shows that there is a
unique such component F0 and we denote its image in X by x ∈ X.
Let D ∈ |OX(1)| be a general element. Since OX(1) · p∗C = 1, D must be smooth at

x. Let S ∈ |OX(1)|D| be the intersection of D with another general element of |OX(1)|.
Then, as in Section 3.1, the fact that OX(1) · p∗C = 1 implies that S is smooth at
x. Finally, let K ∈ |OX(1)|S | be the intersection of S with a third general element of
|OX(1)|. Then, as before, OX(1) · p∗C = 1 implies that K is smooth at x. On the other
hand, K = B + 4p∗C has multiplicity at least 4 at x and so it is not smooth at x. This
contradiction establishes the case dimY = 3, deg Y = 4 and dimB = 1, as we want.

4.8 dimY = 4

By Theorem 2.2, a general element D of |OX(1)| is a canonical threefold with trivial
canonical bundle. Let D′ ∈ |M | be the proper transform of D. Then D′ is a resolution
of D and so h0(D′,KD′) = h0(D,KD) = 1, because D has canonical singularities.
Applying [17, Proposition 2.1] to D′, we find that

(M |D′)3 ≥ 2h0(D′,M |D′)− 6.

Since h0(W,M) = h0(X,OX(1)) ≥ 6 by assumption, we have h0(D′,M |D′) ≥ 5 and so
the above inequality shows M4 ≥ 4. Hence, the generic element D ∈ |OX(1)| is smooth
by Lemma 1.6. Finally, by the three-dimensional case, D is a quintic threefold, and so
we conclude by Proposition 2.1.
This completes the proof of Theorem 0.2 in the case of fourfolds. The general

statement follows therefore from Theorem 2.4 and the three-dimensional case proven
in Theorem 3.1 above.

4.9 Proof of Corollary 0.3

Proof of Corollary 0.3. Let X be a projective manifold of dimension n ≥ 3 which
deforms to a quintic hypersurface Y ⊂ Pn+1

C via a sequence of Kähler deformations.
Then b2(X) = b2(Y ) = 1 and so any fibre in the above sequence of deformations is a
projective manifold. It follows easily that the ample generator OX(1) of PicX must
deform to the ample generator OY (1) of PicY . In particular,

OX(1)n = OY (1)n = 5.

Moreover, since Euler characteristics are constant in flat families,

χ(X,OX(1)) = χ(Y,OY (1)) = n+ 2.
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Finally, KX deforms to KY and so KX = OX(−n+2). Hence, Theorem 0.2 applies and
we find that X is isomorphic to a quintic hypersurface. This proves the corollary.

Remark 4.1. Corollary 0.3 says that a complex projective manifold X which deforms
to a quintic hypersurface Y via a sequence of Kähler deformations must itself be a
quintic hypersurface. We do not know if the corresponding statement holds true if X
and Y are only deformation equivalent as complex manifolds (and n is even). Here
one would have to rule out the situation where the ample generator of PicX deforms
to the anti-ample generator of PicY . Since the top self-intersection of an ample line
bundle is positive, this could only happen in the case where n is even.

5 Septic threefolds

In this section, we prove the following theorem.

Theorem 5.1. Let k be an algebraically closed field (of arbitrary characteristic) and let
X be a smooth projective threefold over k with PicX/ ∼num= Z[OX(1)] for an ample
line bundle OX(1) with

OX(1)3 = 7, h0(X,OX(1)) ≥ 5 and KX = OX(2).

Then X is isomorphic to a septic threefold in P4
k.

As before, we use resolution of singularities in dimension three over arbitrary alge-
braically closed fields [5, p. 1839], which ensures the existence of the diagram

W

X Y ⊂ P4

p q

φ

where φ is the rational map given by five general sections of OX(1), and where
L = p∗OX(1) = M + F for a base point free divisor M = q∗H and a divisorial fixed
part F of p∗OX(1). By Lemma 1.4, dimY ∈ {2, 3} and we will deal with these cases
separately in the following subsections.

5.1 dimY = 2

If dimB = 0, then the proof of Section 3.1 carries over verbatim, and we get a
contradiction. Hence, dimB = 1 by Lemma 1.1.
Since Y ⊂ P4 is non-degenerate, it has degree at least 3 by Lemma 1.1. If deg Y = 3,

then, as before, Y is a surface of minimal degree and so it is covered by lines, which is
impossible by Lemma 1.3. If deg Y = 4, then the argument of Section 3.2 applies, and
shows that this is impossible. We may therefore assume deg Y ≥ 5. We then have

7 = L3 = LM2 + LMF

where LM2 = deg Y · (OX(1) · p∗C), where C denotes a general fibre of q. Since
deg Y ≥ 5, we conclude that OX(1) · p∗C = 1 and LMF = 7− deg Y ≤ 2.
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If deg Y = 7, then LMF = 0 and so Lemma 1.2 implies dimB = 0, which contradicts
our earlier observation that B must be one-dimensional. Hence, deg Y < 7 and so
LMF > 0. Since LMF ≤ 2, the effective curve class LF on W maps to a curve K ⊂ Y
which is either a line or a conic in P4. In any case, there is a 1-dimensional family of
hyperplanes that contain K and hence the residual divisor K ′ = H −K on Y has a
component which moves in a family of dimension at least one. Hence, if K moves on
the surface Y , we get a decomposition of H satisfying Lemma 1.3 and we are done.
Therefore, we can assume that the curve class q∗LF does not move and we conclude

that any component F0 of F which dominates Y must map to a point on X. Since
OX(1) · p∗C = 1, and FM2 = LM2 = deg Y (as M3 = 0), there is exactly one
such component F0 and we denote its image in X by x. It follows that OX(1)2 =

deg Y · p∗C +B has multiplicity at least deg Y at x and so we get a contradiction as
in Sections 3.1 and 4.7. Indeed, a general element S ∈ |OX(1)| will be smooth at x,
because S · p∗C = 1. Since S is general, there is another general fibre C ′ of q such
that p∗C ′ ⊂ S and so OX(1) · p∗C ′ = 1 implies that a general element of |OX(1)|
restricted to S is smooth at x; that is, the intersection of two general elements of
|OX(1)| must be smooth at x, which is a contradiction to the above observation that
any such intersection has multiplicity at least deg(Y ) ≥ 2 at x. This finishes the proof
in the case dim(Y ) = 2.

5.2 dimY = 3

Since dimY = 3, M3 = deg q ·deg Y . By Lemmas 1.1 and 1.6, we thus get 2 ≤M3 ≤ 7.
We will deal with these cases in what follows.

5.2.1 M3 ∈ {2, 3, 5, 7}

If M3 = 7, then we conclude via Lemmas 1.6 and 1.5. If M3 = 2, 3 or 5, then deg q = 1

because M3 = deg q · deg Y and deg Y ≥ 2 (as it is not contained in a hyperplane).
Hence, q is birational and we conclude via Proposition 1.7.

5.2.2 M3 = 6

Since M3 = 6, OX(1) has zero-dimensional base locus by Lemma 1.6. Moreover,
6 = M3 = deg q · deg Y with deg Y ≥ 2 and deg q ≥ 2 by Proposition 1.7. Hence
(deg q,deg Y ) is either (2, 3) or (3, 2). If Y is a quadric, then (using that dimB = 0)
we can conclude as in Section 3.3. We are therefore left with the first case, that is, Y is
a cubic threefold and deg(q) = 2.
By Lemma 1.6, OX(1) has a single base point with multiplicity one and so we may

assume that W is the blow-up of X in a single point with exceptional divisor F ∼= P2.
In particular,

7 = L3 = M3 +M2F

and so M2F = 1, which implies that F maps (isomorphically) onto a plane P in Y .
Let H = P + S be a general hyperplane section of Y which contains P . Then S is a
quadric surface whose generic point is a smooth point of Y . We can find a pencil of
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quadric hypersurfaces in P4 that contain S. Let Q be the restriction of a general such
quadric to Y . Then Q = S + S′ for a degree four surface S′ whose generic point is also
a smooth point of Y . On W , we get 2M = q∗Q = q∗S + q∗S′, where q∗S denotes the
union of components that map to S and q∗S′ denotes the remaining components.
Since Q does not contain the plane P , q∗S and q∗S′ do not contain F and so no

component of q∗S or q∗S′ is contracted by p∗. Since PicX is generated by OX(1), the
divisors q∗S and q∗S′ on W need therefore both map down to elements of |OX(1)| on
X. (In particular, since all elements of |OX(1)| are irreducible, q∗S and q∗S′ must be
irreducible as well, which justifies our notation.) Hence, we must have linear equivalences
q∗S = M + bF and q∗S′ = M + cF for some integers b and c. Since S and S′ lie
generically in the smooth locus of Y and since a smooth point on Y pulls back to a
zero cycle of degree two on W , we compute the intersection with M2 as follows:

q∗S ·M2 = 2 deg(S) = 4 and q∗S′ ·M2 = 2 deg(S′) = 8.

Since M3 = 6 and M2F = 1, we conclude from this that b = −2 and c = 2. But then
let ` ⊂ F be a general line in F ∼= P2. We have F · ` = −1. Moreover, ` = −F 2 and so
we find

M · ` = −MF 2 = −MLF +M2F = 1.

This implies that
q∗S′ · ` = (M + 2F ) · ` = −1.

That is, q∗S′ contains `, which is absurd, as it implies that q∗S′ contains F and so S′

would need to contain P . This concludes the case M3 = 6.

5.2.3 M3 = 4

As M3 = deg Y · deg q and deg q = 1 is impossible by Proposition 1.7, we reduce to
the case when deg q = deg Y = 2. By the argument in Section 3.3 we may further
assume that Y is a smooth quadric threefold. Hence, the class H2 is divisible by two
in CH2(Y ). If dim(B) = 0, we have OX(1)2 = p∗q

∗H2 on X, and so we conclude that
this class is divisible by two as well, which contradicts the condition that OX(1)3 = 7.
Hence we must have dimB > 0 and so Lemma 1.1 implies dimB = 1.
We have

7 = L3 = LFM + FM2 +M3.

Since M3 = 4, we find LFM + FM2 = 3. Also, as dimB = 1, we have LFM > 0 by
Lemma 1.2.
Let us now show that LFM = 1 and FM2 = 2. To this end, note that M2 = 2q∗`,

where ` denotes the class of a line on the smooth quadric threefold Y . In particular,
this implies that FM2 is even. If FM2 = 0, then let T ∈ |M | be a general element and
let l, f,m be the restrictions of L,F,M to T . Then f is an effective curve class with
mf = 0 and f2 = lf > 0. This contradicts the Hodge index theorem [22, Theorem 10.1],
applied to a resolution of singularities of T (which exists as T is a surface), because f
is effective and M |T is base point free and big. Hence, FM2 ≥ 2. As LFM +FM2 = 3,
this proves the claim.
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Let ` denote a general line on Y . Then M2 = 2q∗`. Since FM2 = 2, we find that
F · q∗` = 1. Therefore, F contains exactly one component which is not contracted via
q and we denote that component by F0 ⊂ F . Since Y is a smooth quadric threefold,
FM2 = F0M

2 = 2 implies that q∗F0 is a hyperplane section of Y , and the morphism
q|F0 : F0 → Y is generically injective.
Let H1 and H2 denote general hyperplane sections of Y . Since M2F0 = 2, the

curve C := q∗(H1H2) meets F0 at two general points w and w′ (via q these points
are mapped to the intersection of the quadric surface q∗F0 with H1 and H2) and we
let x := p(w) ∈ X. The image of w in Y is a general point of q(F0). The divisor
Di := p∗q

∗Hi is a general element of |OX(1)| and we have

D1D2 = p∗C +B.

By construction, x lies on the above 1-cycle and we claim that it is in fact a singular
point of p∗C +B. Indeed, if F0 maps to a curve in X, then it maps to a component
of B and so x lies on B and on p∗C, which proves the claim. Otherwise, F0 maps to
a point on X and so we conclude that p∗C must have multiplicity two at x, because
F0 ·M2 = 2. We have thus seen that x is a singular point of the intersection D1D2 of
two general elements of |OX(1)|.
We will now show that this is a contradiction. To this end, recall that x = p(w),

where w is a general point on F0 ⊂ W . Let ` be a general line on Y which passes
through q(w) (since q∗F0 is a hyperplane section of Y , and q(w) ∈ q∗F0 is a general
point, ` is in fact a general line on Y ).
Let H ∈ |OY (1)| be a general hyperplane section. Then S := p∗q

∗H is a general
element of |OX(1)| and so p∗S = q∗H + F ∈ |L|. Using the projection formula, we get

S · p∗q∗` = p∗(p
∗S · q∗`) = p∗((q

∗H + F ) · q∗`).

Using this, we conclude further

S · p∗q∗` = p∗(q
∗(H · `)) + p∗(Fq

∗`) = p∗(q
∗(H · `)) + p∗w,

because ` passes through q(w) and so Fq∗` = w, where we note that the latter
intersection consists of a single reduced point because Fq∗` = 1

2FM
2 = 1. Here,

p∗(q
∗(H · `)) is an effective zero cycle of degree two which has no base point if we

move the hyperplane H; since H is general, this zero cycle does therefore not contain
x = p(w). That is, S · p∗q∗` has multiplicity one at x and so S must be smooth at x.
Since Y is a smooth quadric, the general hyperplane section H ∈ |OY (1)| from above

is a smooth quadric surface and so it is covered by lines. In particular, we find a line
`′ ⊂ H through the point q(w) and we note that the 1-cycle p∗q∗`′ lies on S.
Let H ′ ∈ |OY (1)| be another general hyperplane section and let D := p∗q

∗H ′ ∈
|OX(1)|. Since H ′ is general, p∗D = q∗H ′ + F and restricting this equality to the
surface S̃ = q∗H ⊂W (which is the proper transform of S), we find

p|∗
S̃

(D|S) = q|∗
S̃

(H ′|H) + F |
S̃
.

Let us denote by T = D|S the restriction of D to S. Intersecting this (Cartier) divisor
with the 1-cycle p∗q∗`′ on S, we thus get

T ·p∗q∗`′ = p∗(p|∗S̃(D|S)·q∗`′) = p∗(q|∗S̃(H ′|H)·q∗`′+F |
S̃
·q∗`′) = p∗(q

∗(H ′·`′))+p∗(F ·q∗`′),
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where in the last equality we used that q∗`′ is a 1-cycle on W that lies on S̃. Moreover,
since `′ passes through q(w), find that

p∗(F · q∗`′) = p∗w = x

Since H ′ is general, p∗(q∗(H ′ · `′)) is a zero cycle that is supported on general points of
p∗q
∗`′ and so the above computation shows that T · p∗q∗`′ contains x with multiplicity

one. That is, T is smooth at x. On the other hand, T = p∗C +B by construction and
this curve is singular at x, as we have shown above. This contradiction concludes the
proof of Theorem 5.1.

6 Proof of Theorem 0.1

To apply our results to Question 1, we will use the following key lemma.

Lemma 6.1. Let X be a smooth projective variety of dimension n ≥ 3 over a field k.
Assume that X is a smooth specialization of a hypersurface of prime degree d in Pn+1.
We denote by Xk the base change of X to the algebraic closure of k. Then the following
holds:

(a) Xk is the smooth specialization of a hypersurface of degree d in Pn+1.

(b) If Xk is isomorphic to a hypersurface of degree d ≥ 2, then X is isomorphic to a
hypersurface of degree d.

(c) Assume k = k. Then PicX/ ∼num= Z[OX(1)] for an ample line bundle OX(1)

with

OX(1)n = d, h0(X,OX(1)) ≥ n+ 2 and KX = OX(−n− 2 + d).

Proof. Let A be a local ring with residue field κ and let κ′ be a field extension
of κ. By inflation of local rings, there is a local A-algebra B with residue field κ′,
see [2, Appendice, Corollaire du Théorème 1]. This immediately implies item (a) of the
lemma.
To prove item (b), note first that we can choose a sequence of smooth specializations

over discrete valuation rings to pass from a smooth hypersurface of degree d to X.
Applying the specialization homomorphism on Picard groups repeatedly, we find that
X admits a line bundle OX(1) with OX(1)n = d. Assuming that Xk is isomorphic to
a hypersurface of degree d, the Lefschetz hyperplane theorem (see [12, Exposé XII,
Corollaire 3.7]) implies that its Picard group is infinite cyclic and generated by an
ample line bundle OXk

(1) with OXk
(1)n = d. Hence, OXk

(1) must be the base change
of OX(1).
By upper semicontinuity, OX(1) has at least n+ 2 sections. Since OXk

(1) has exactly
n+ 2 sections (as d ≥ 2), we find a basis of H0(Xk,OXk

(1)) which is defined over k. In
particular, the embedding Xk ↪→ Pn+1

k
that is induced by the global sections of OXk

(1)

can be defined over k and so X is isomorphic to a hypersurface of degree d in Pn+1
k , as

claimed.
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To prove item (c), we use once again the Lefschetz hyperplane theorem, asserting
that the Picard group of a smooth projective hypersurface (over any field) of dimension
n ≥ 3 is freely generated by the restriction of O(1), see [12, Exposé XII, Corollaire 3.7].
Since X is the smooth specialization of a smooth hypersurface, we get as in the proof
of part (b) an ample line bundle OX(1) ∈ PicX as specialization of O(1). In particular,
OX(1)n = d, h0(X,OX(1)) ≥ n+2 by upper semicontinuity and KX = OX(−n−2+d).
Next recall that PicX/ ∼num is a finitely generated group (see [24, p. 145, Théorème
2]) which is torsion free and so it is a finitely generated free group. Using the Kummer
sequence, we see that the rank of this group is bounded from above by the rank
of H2

ét(X,Z`) for all primes ` 6= p. By the smooth base change theorem for étale
cohomology [25, VI.4.2], H2

ét(X,Z`) = Z` and so we find that PicX/ ∼num∼= Z. Since
OX(1)n = d is a prime number, we see that even up to numerical equivalence, OX(1)

can not be a non-trivial multiple of another line bundle and so PicX/ ∼num= [OX(1)]Z,
as we want. This concludes the lemma.

Proof of Theorem 0.1. Let X be a smooth projective variety of dimension n over k
which is the smooth specialization of a hypersurface of degree d, satisfying assumption
(b), (a) or (c) of Theorem 0.1. By item (a) of Lemma 6.1, Xk is the specialization of a
hypersurface of degree d and so it satisfies item (c) of Lemma 6.1. By Theorems 0.2, 5.1
and 3.1, it follows that Xk is isomorphic to a hypersurface of degree d. It thus follows
from item (b) of Lemma 6.1 that X is isomorphic to a hypersurface of degree d as well.
This concludes the theorem.

7 The families of Horikawa, Griffin and Reid

It is interesting to compare the proof of Theorem 0.2 with Horikawa’s families of quintic
surfaces. As mentioned in the introduction, Horikawa proved that the moduli space
of minimal complex algebraic surfaces with invariants pg = 4, q = 0 and K2

X = 5 has
two 40-dimensional components I and II. The component I correspond to quintic
surfaces, while for II the canonical system |KX | has a single base point, and the
rational map φ|KX | : X 99K P3 is generically finite of degree 2 onto a quadric Q. These
two components intersect in a 39-dimensional locus corresponding to surfaces of the
second type where Q is a quadric cone.
Griffin [10] wrote down explicit equations for the corresponding degeneration of quintic

surfaces. These families where later generalized by Reid [27], who gave specializations in
any dimension n ≥ 2. For the sake of completeness, we briefly outline his construction.
Let P = P(1n+2, 2, 32) be weighted projective space with homogeneous coordinates

x0, . . . , xn+1 (of degree 1), y2 (of degree 2) and z1, z2 (of degree 3). Consider the family
X ⊂ P× A1

t defined by the 4× 4 Pfaffians of the skew-symmetric matrix

Mt =



0 t y1 x1 x2 z1
−t 0 y2 x2 x3 z2
−y1 −y2 0 z1 z2 a

−x1 −x2 −z1 0 tb by1
−x2 −x3 −z2 −tb 0 by2
−z1 −z2 −a −by1 −by2 0


20



where a = A5(x0, . . . , xn+1, y2), b = B2(x0, . . . , xn+1, y2) and y1 = Y1,2(x0, . . . , xn+1, y2)

are general forms of degree 5, degree 2 and bidegree (1,2) in the xi, y2 respectively.
Then f : X → A1

t is a flat family of n-folds with KX|A1 = OX (n − 3). Moreover, for
t 6= 0, Xt is isomorphic to a quintic hypersurface, whereas the special fiber X = X0 is
a non-hypersurface, as |OX(1)| is not base point free. In fact, the base locus consists
of a single point x ∈ X in the smooth locus of X. If W is the blow-up of X at x, the
morphism q : W → Pn+1 is generically a double cover of the rank 3 quadric x1x3 = x22
(compare this with Section 3.3).
According to [27], X has terminal singularities with ordinary double points in

dimension ≤ n− 3. In particular, X is a smooth surface of general type when n = 2,
and a Calabi-Yau threefold with finitely many double points when n = 3.
In our proof of Theorem 0.2, these examples are ruled out in Section 3.3, via the use

of Lemma 1.3. That is, we rely on the fact that if X is smooth, then each Weil divisor
is Cartier and (at least up to numerical equivalence) a multiple of OX(1), which must
fail for the singular examples constructed by Reid above.
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