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Abstract. We introduce the notion of refined unramified cohomology of algebraic schemes and prove

comparison theorems that identify some of these groups with cycle groups. This generalizes to cycles

of arbitrary codimension previous results of Bloch–Ogus, Colliot-Thélène–Voisin, Kahn, Voisin, and
Ma. We combine our approach with the Bloch–Kato conjecture, proven by Voevodsky, to show that

on a smooth complex projective variety, any homologically trivial torsion cycle with trivial Abel–

Jacobi invariant has coniveau 1. This establishes a torsion version of a conjecture of Jannsen originally
formulated ⊗Q. We further show that the group of homologically trivial torsion cycles modulo algebraic

equivalence has a finite filtration (by coniveau) such that the graded quotients are determined by higher

Abel–Jacobi invariants that we construct. This may be seen as a variant for torsion cycles modulo
algebraic equivalence of a conjecture of Green. We also prove `-adic analogues of these results over any

field k which contains all `-power roots of unity.
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1. Introduction

Unramified cohomology of a smooth variety may be defined as the subgroup of the cohomology of
the generic point given by all classes that have trivial residues at all codimension one points, see [BO74]
and [CT95, 4.1.1(a)]. Bloch–Ogus [BO74] showed that unramified cohomology in degree 3 is related to
the Griffiths group of codimension 2 cycles. Colliot-Thélène–Voisin [CTV12] computed the failure of the
integral Hodge conjecture for codimension 2 cycles on smooth complex projective varieties in terms of
unramified cohomology in degree 3; a similar statement holds for the integral Tate conjecture by Kahn
[Kah12]. A relation between torsion codimension 3 cycles with unramified cohomology in degree 4 is
due to Voisin [Voi12] and Ma [Ma17].

The results in [CTV12, Kah12, Voi12, Ma17] use two main ingredients: the Gersten conjecture
proven by Bloch–Ogus [BO74], which identifies unramified cohomology of smooth varieties with the
global sections of a certain Zariski sheaf, and the Bloch–Kato conjecture, proven in [MS83, Voe11].

This paper arose from the observation that the aforementioned results from [CTV12, Kah12] have
more elementary proofs, not relying on the Gersten conjecture, nor on the Bloch–Kato conjecture, see
Section 3 below for more details. This leads us to the notion of refined unramified cohomology, which
generalizes unramified cohomology. Our arguments work for cycles of arbitrary codimensions, over
arbitrary fields, and even on singular schemes, see Theorems 1.6 and 1.8 below.

Our main results on algebraic torsion cycles that we explain next combine the machinery of refined
unramified cohomology with the Bloch–Kato conjecture [Voe11].

1.1. Torsion cycles and Abel–Jacobi invariants. A cycle z ∈ CHi(X) on a complex variety X has
coniveau j, i.e. z ∈ N j CHi(X), if z is homologically trivial on a closed subset of codimension j. That is,
z ∈ N j if z = ∂γ is the boundary of a locally finite singular chain γ whose support is contained in a closed
algebraic subset of codimension j in X. This yields a finite descending filtration with N0 = CHi(X)hom

and N i−1 = CHi(X)alg, the subgroups of homologically and algebraically trivial cycles, respectively, cf.
[Blo85] and [Tot97, p. 491, Remark 2].



REFINED UNRAMIFIED COHOMOLOGY OF SCHEMES 3

Jannsen showed that on smooth complex projective varieties, Nj CHi(X) := N i−j CHi(X) is a filtra-
tion by adequate equivalence relations, see [Jan00, Theorem 5.6] (stated ⊗Q, but the same arguments
work integrally). In particular, N∗ interpolates naturally between algebraic and homological equivalence,

respectively, and it is multiplicative in a strong sense: N j CHi(X) · CHh(X) ⊂ N j+h CHi+h(X).

Theorem 1.1. Let X be a smooth projective variety over C and let i ≥ 2. A homologically trivial torsion
cycle z ∈ CHi(X)tors has coniveau 1 if and only if Griffiths’ Abel–Jacobi invariant λ(z) ∈ H2i−1(X,Q/Z)
admits a lift to N1H2i−1(X,Q).

The above theorem uses that the torsion subgroup of Griffiths’ intermediate Jacobian J2i−1(X)
identifies canonically to the image of H2i−1(X,Q) in H2i−1(X,Q/Z), cf. [Blo79, p. 116]. The subgroup
N1H2i−1(X,Q) ⊂ H2i−1(X,Q) consists of those classes that vanish away from a divisor.

The case i = 2 may be deduced from [MS83, §18]; the case i ≥ 3 is new. Torsion cycles to which the
above theorem applies are constructed e.g. in [Tot97, SV05, Sch21b].

Corollary 1.2. Let X be a smooth projective variety over C. Then for any positive integer n, the
n-torsion subgroup of CHi(X)tors/N

1 CHi(X)tors is finite.

We illustrate the above corollary in the case of cycles of codimension 3. In this case the coniveau
filtration is of the form N2 ⊂ N1 ⊂ N0 ⊂ CH3(X). The above corollary shows that the n-torsion in
CH3(X) is finite modulo N1. In contrast, it is shown in [Schoe00, RoSr10, Tot16] that the n-torsion
in N2 CH3(X) can be infinite (the torsion classes constructed there are all algebraically trivial, hence
contained in N2). Similarly, using the theory developed in this paper we show in [Sch21b] that at least
for n even, the n-torsion in CH3(X)tors/N

2 is in general infinite. It follows that CH3(X)tors/N
0 and

N0 CH3(X)tors/N
1 are the only graded pieces of CH3(X)tors whose torsion is always finite. In this sense,

Corollary 1.2 is optimal for i = 3. We also note that CHi(X)/N1 CHi(X) is for i = 2 in general not a
finitely generated group, see [Cle83, Voi00] (it is conceivable that the same holds all i ≥ 2).

Another immediate consequence of Theorem 1.1 is as follows.

Corollary 1.3. Let X be a smooth projective variety over C. A homologically trivial torsion cycle
z ∈ CHi(X)tors with trivial Abel–Jacobi invariant has coniveau 1.

Corollary 1.3 proves a torsion analogue of a conjecture of Jannsen (going back to a question of
Esnault) who writes in [Jan00, p. 227, (5)] that “cycles in the kernel of the Abel-Jacobi map should be
homologous to zero on a divisor, at least modulo torsion”. Jannsen shows that his conjecture follows
from deep motivic conjectures: the existence of a Bloch–Beilinson filtration F ∗ (see e.g. [Jan00, §2.1])
together with the standard conjecture B imply F j ⊂ N j−1 at least rationally, see [Jan00, p. 226, (4)].
Jannsen’s conjecture generalizes a conjecture of Nori [Nor93], which predicts that the transcendental
Abel–Jacobi map on codimension 2 cycles modulo algebraic equivalence is injective, see [Tot97, p. 468].

Nowadays essentially all deep conjectures in the theory of algebraic cycles on smooth complex projec-
tive varieties are formulated rationally. For instance, Hodge originally formulated his famous conjecture
integrally, but when Atiyah and Hirzebruch showed that it fails for torsion cycles [AH62], it became
clear that one should phrase it rationally. Nonetheless, investigating instances where the Hodge conjec-
ture may hold integrally remained an active field of research, see e.g. [Voi06, CTV12, BeWi20, Per22].
Similarly, it is natural to investigate to which extent other cycle conjectures may hold integrally, or on
torsion cycles, see e.g. [Tot97, §8]. In view of the many torsion counterexamples to the integral Hodge
conjecture (see e.g. [AH62, Tot97, SV05, BeOt20a]), it may be surprising that the integral Jannsen
conjecture holds by Corollary 1.3 unconditionally on torsion cycles.

The proof of Theorem 1.1 uses a homological interpretation of the transcendental Abel–Jacobi in-
variant on torsion cycles that does not require the smoothness assumption on X. The main point of
this observation is that it allows for 0 ≤ j ≤ i− 2 to define higher Abel–Jacobi invariants

λ
i

j,tr : N j CHi(X)tors
// J
i

j,tr(X)tors,
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by applying suitable Abel–Jacobi mappings on closed subschemes of X. Here,

J
i

j,tr(X)tors := lim //
Z⊂X

HBM
2d−2i+1(Zan,Q/Z)/N1HBM

2d−2i+1(Zan,Q),

where d := dimX, Z ⊂ X runs through all closed subschemes with j = dimX − dimZ and N∗ denotes
Grothendieck’s coniveau filtration on the respective Borel–Moore homology group.

Theorem 1.4. Let X be a separated scheme of finite type over C. Then for all 0 ≤ j ≤ i− 2, we have

N j+1 CHi(X)tors = ker
(
λ
i

j,tr : N j CHi(X)tors → J
i

j,tr(X)tors

)
.

Since N i−1 CHi(X) = CHi(X)alg is divisible, the above theorem implies that the torsion subgroup

of Ai(X) := CHi(X)/ ∼alg admits a finite filtration (by coniveau) such that the graded pieces are
determined by higher Abel–Jacobi invariants. This should be compared to Green’s conjecture [Gre98,
Voi99], which predicts that rational Chow groups of smooth complex projective varieties carry a finite
filtration (expected to be the Bloch–Beilinson filtration) such that the graded quotients are determined
by higher Abel–Jacobi invariants.

Theorem 1.4 admits the following `-adic analogue, concerning the `-power torsion subgroup CHi(X)[`∞]
of CHi(X) := CHdimX−i(X).

Theorem 1.5. Let X be a separated scheme of finite type over a field k and let ` be a prime invertible
in k. Assume that k contains all `-power roots of unity. Then for all 0 ≤ j ≤ i− 2, we have

N j+1 CHi(X)[`∞] = ker
(
λ
i

j,tr : N j CHi(X)[`∞]→ J
i

j,tr(X)[`∞]
)
.

The coniveau filtration on CHi(X)[`∞] as well as the (higher) Abel–Jacobi invariants are defined
analogues to the case of complex schemes above, where we replace ordinary Borel–Moore homology by
its `-adic pro-étale analogue [BS15], see Proposition 6.6 and Definition 7.29 below.

The above theorem proves analogues of Theorems 1.1 and 1.4 over any field k that contains all `-
power roots of unity. This includes in particular an `∞-torsion version of Jannsen’s conjecture over any
field that contains all `-power roots of unity, such as (function fields over) algebraically closed fields.

1.2. Refined unramified cohomology and algebraic cycles. Let X be a separated scheme of finite
type over a field k. We consider the increasing filtration

F0X ⊂ F1X ⊂ · · · ⊂ FdimXX = X, where FjX := {x ∈ X | codim(x) ≤ j},

and codim(x) := dimX − dim({x}). Each FjX may be seen as a pro-object in the category of schemes.
For a given (co-)homology functor Hi(−, A(n)) that admits pullbacks along open immersions of schemes
of the same dimension, the (co-)homology of FjX is defined as direct limit over all open subsets U ⊂ X
with FjX ⊂ U . We then define the associated j-th refined unramified cohomology by

Hi
j,nr(X,A(n)) := im(Hi(Fj+1X,A(n))→ Hi(FjX,A(n))).(1.1)

The Gysin sequence (see (1.4)) shows that the case j = 0 corresponds to classical unramified cohomology.

1.2.1. Complex schemes. Let now k = C. For an abelian group A, let

Hi(X,A(n)) := HBM
2dX−i(Xan, A(dX − n)),(1.2)

where HBM
∗ denotes Borel–Moore homology of the underlying analytic space Xan and A(m) = A ⊗Z

(2πi)mZ denotes the m-th Tate twist. Restriction maps as required above exist in this setting and so
we get refined unramified cohomology groups Hi

j,nr(X,A(n)).
By [Ful98, §19.1], there is a cycle class map

cliX : CHi(X) //H2i(X,Z(i)),
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where CHi(X) := CHdX−i(X). We let Griffi(X) := ker(cliX)/ ∼alg.
If X is smooth and equi-dimensional, then HBM

2dX−i(Xan, A) ' Hi
sing(Xan, A) and the above map

agrees with the usual cycle class map in singular cohomology.

Theorem 1.6. Let X be a separated scheme of finite type over C and define refined unramified coho-
mology as in (1.1) with cohomology theory in (1.2).

(1) There are canonical isomorphisms

coker(cliX)tors '
H2i−1
i−2,nr(X,Q/Z(i))

H2i−1
i−2,nr(X,Q(i))

, Griffi(X) '
H2i−1
i−2,nr(X,Z(i))

H2i−1(X,Z(i))
.

(2) There is a transcendental Abel–Jacobi map

λitr : Griffi(X)tors
//
H2i−1(X,Q/Z(i))

N i−1H2i−1(X,Q(i))
.

If X is a smooth projective variety, this agrees with Griffiths’ transcendental Abel–Jacobi map
[Gri69] restricted to torsion cycles. Its kernel is isomorphic to

ker(λitr) ' H2i−2
i−3,nr(X,Q/Z(i))/GiH2i−2

i−3,nr(X,Q/Z(i))

and its image is given by im(λitr) = N i−1H2i−1(X,Q/Z(i))div/N
i−1H2i−1(X,Q(i)).

In the above theorem, N∗ denotes Grothendieck’s coniveau filtration andH∗(X,Q/Z(i))div ⊂ H∗(X,Q/Z(i))
denotes the divisible subgroup. Moreover, GiH2i−2

i−3,nr(X,Q/Z(i)) denotes the subspace ofH2i−2
i−3,nr(X,Q/Z(i)

generated by classes that admit a lift α ∈ H2i−2(Fi−2X,Q/Z(i)) whose image δ(α) ∈ H2i−1(Fi−2X,Z(i))
via the Bockstein map lifts to H2i−1(X,Z(i)), cf. Definition 5.4 and Lemma 7.18 below.

The above theorem contains the aforementioned results from [BO74, CTV12, Voi12, Ma17] as the
special case where i = 2 in item (1) and i = 3 in (2), and where X is a smooth projective variety. Item
(1) uses Hilbert 90, but not the Bloch–Kato conjecture. Item (2) uses the Bloch–Kato conjecture in
degree 2, proven by Merkurjev–Suslin, but not in higher degrees.

Item (1) in Theorem 1.6 leads to new results on the integral Hodge conjecture for uniruled varieties.
Indeed, Voisin [Voi06] proved that the integral Hodge conjecture holds for smooth complex projective
threefolds X that are uniruled (i.e. Z∗(X)tors = 0) and conjectured that it should fail for codimension
two cycles on rationally connected varieties of dimension at least four. This has later been proven in
[CTV12] (dimX ≥ 6) and in full generality in [Sch19]. Taking products X × Pn with Pn, the examples
in [CTV12, Sch19] also yield counterexamples to the integral Hodge conjecture on unirational varieties
for cycles of codimension greater than two. However, in some sense these non-algebraic Hodge classes
should still be regarded as degree four classes, because they are Gysin pushforwards of non-algebraic
degree four Hodge classes on a subvariety of X × Pn (namely X × {pt.}).

The tools of this paper allow us to go further by studying the integral Hodge conjecture for Hodge
classes (of arbitrary degree) in the following strong sense.

Corollary 1.7. For any integer i ≥ 2, there is a smooth uniruled complex projective variety X such
that the integral Hodge conjecture fails for codimension i-cycles on X in a way that cannot be explained
by the failure on proper subvarieties of X in the following sense: There is a class α ∈ coker(cliX)tors

such that for any closed subscheme Z ⊂ X of codimension j ≥ 1, the class α is not in the image of the
natural map coker(cli−jZ )tors → coker(cliX)tors.

In the above corollary we may take X = Y ×E, where Y is a certain unirational variety of dimension
3i and E is an elliptic curve, see Theorem 10.6 below. The problem of finding a unirational variety X
with the property stated in the corollary remains open for i ≥ 3.
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1.2.2. Arbitrary ground fields. Theorem 1.6 admits an `-adic analogue over any field k in which ` is in-
vertible. The corresponding (co-)homology functor will be the `-adic pro-étale Borel–Moore cohomology,
see [BS15] and Proposition 6.6 below. For instance,

Hi(X,Z`(n)) := Hi−2dX (Xproét, π
!
X Ẑ`(n− dX)),(1.3)

where πX : X → Spec k is the structure map and dX = dimX. We construct in Section 7.2 cycle class
maps

cliX : CHi(X)Z`
//H2i(X,Z`(i)), where CHi(X)Z` := CHdX−i(X)⊗Z Z`,

which for X smooth and equi-dimensional coincide with Jannsen’s cycle class in continuous étale coho-
mology, see Lemma 9.1. Let N∗ be the associated coniveau filtration on CHi(X)Z` and put

Ai0(X)Z` := N0 CHi(X)Z`/N
i−1 CHi(X)Z` .

This is the `-adic Griffiths group of homologically trivial `-adic cycles modulo algebraic equivalence
if k is algebraically closed, and it is the group of homologically trivial `-adic cycles modulo rational
equivalence if k is finitely generated, see [Jan00, Lemmas 5.7 and 5.8] and Lemma 7.5 below. We denote
the torsion subgroup of Ai0(X)Z` by Ai0(X)[`∞].

Theorem 1.8. Let k be a field and let ` be a prime invertible in k. Let X be a separated scheme of
finite type over k and define refined unramified cohomology as in (1.1) with cohomology theory in (1.3).

(1) There are canonical isomorphisms

coker(cliX)[`∞] '
H2i−1
i−2,nr(X,Q`/Z`(i))
H2i−1
i−2,nr(X,Q`(i))

and Ai0(X)Z` '
H2i−1
i−2,nr(X,Z`(i))
H2i−1(X,Z`(i))

.

(2) There is a transcendental Abel–Jacobi map

λitr : Ai0(X)[`∞] //H2i−1(X,Q`/Z`(i))/N i−1H2i−1(X,Q`(i)).

If X is a smooth projective variety and k is algebraically closed, then this map is induced by
Bloch’s Abel–Jacobi map on torsion cycles [Blo79]. Its kernel is isomorphic to

ker(λitr) ' H2i−2
i−3,nr(X,Q`/Z`(i))/G

iH2i−2
i−3,nr(X,Q`/Z`(i))

and its image is given byim(λitr) = N i−1H2i−1(X,Q`/Z`(i))div/N
i−1H2i−1(X,Q`(i)).

The filtration N∗ is the coniveau filtration and G∗ is defined similarly as in Theorem 1.6, see Definition
5.4 and Lemma 7.18 below. Moreover, H2i−1(X,Q`/Z`(i))div ⊂ H2i−1(X,Q`/Z`(i)) denotes the image
of H2i−1(X,Q`(i))→ H2i−1(X,Q`/Z`(i)).

The computation of ker(λitr) uses as before Merkurjev–Suslin’s theorem. The Bloch–Kato conjecture
is not used otherwise (in particular not in item (1)).

The first isomorphism in item (1) generalizes a result of Kahn [Kah12] who proved it for i = 2 and
X smooth projective.

1.3. Comparison to Bloch–Ogus theory and Kato homology. Let X be an algebraic scheme over
a field k and let Hi(−, A(n)) be one of the (co)-homology theories considered above. For a point x ∈ X
with closure Zx := {x} ⊂ X, we let Hi(x,A(n)) = Hi(F0Zx, A(n)). The Gysin sequence (i.e. long exact
sequence of pairs), yields in the colimit a long exact sequence

Hp+q−1(FpX,A(n))
f→ Hp+q−1(Fp−1X,A(n))

∂→
⊕

x∈X(p)

Hq−p(x,A(n− p)) ι∗→ Hp+q(FpX,A(n)),(1.4)

see Lemma 5.8 below. Note that the image of f agrees by definition with the refined unramified
cohomology group Hp−1+q

p−1,nr(X,A(n)), which thus coincides with the kernel of the residue map ∂ above.

This shows in particular that Hq
0,nr(X,A(n)) corresponds to traditional unramified cohomology.
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The above sequence gives rise to an exact couple D1
f→ D1

∂→ E1
ι∗→ D1, where

Dp,q
1 = Hp−1+q(Fp−1X,A(n)), and Ep,q1 =

⊕
x∈X(p)

Hq−p(x,A(n− p)),

and f , ∂, and ι∗ have bi-degrees (−1, 1), (0, 0), and (1, 0), respectively. The associated spectral sequence
Ep,q1 =⇒ Hp+q(X,A(n)) is convergent. The derived couple has the form D2 → D2 → E2 → D2, where

D2 =
⊕
p,q

Dp,q
2 , Dp,q

2 = Hp−1+q
p−1,nr(X,A(n)),

is the direct sum of all refined unramified cohomology groups of X.
It follows from Lemma 5.12 below that d1 : E1 → E1 agrees with the differential of the coniveau

spectral sequence from [BO74, §3], but see also Remark 1.9 below. Hence, E2 agrees with the second
page of the coniveau spectral sequence and the derived couple D2 → D2 → E2 → D2 shows that E2 is
up to extensions determined by D2, hence by refined unramified cohomology, see Proposition 7.35 below.
In the special case where X is smooth and equi-dimensional, the Gersten conjecture proven in [BO74]
(see also [CTHK97]) thus implies that the cohomologies Hp(XZar,Hq) of the Zariski sheaf associated
to U � //Hq(U,A(n)) are up to extensions determined by refined unramified cohomology.

Without any smoothness assumption on X, but under the condition that the ground field k has finite
cohomological dimension c, the derived couple D2 → D2 → E2 → D2 yields for A = Z/`r canonical
isomorphisms

Ep,d+c
2

∼ // Hp+d+c
p,nr (X,µ⊗n`r ), d = dimX,

see Corollary 7.36 below. By definition, Ep,d+c
2 agrees with the Kato homology of X (see e.g. [Kat86,

KeSa12, Tia20]), and so we find that the latter is in fact a special instance of refined unramified
cohomology, cf. Remark 7.37 below. We remark that for X smooth projective, Kato homology as well as
traditional unramified cohomology are stable birational invariants of X, see e.g. [CTO89, CTV12, Tia20].

Remark 1.9. One of the key differences of this paper compared to previous work is the observation

that for our purposes, the couple D1 → D1 → E1 → D1 is better suited than the couple D′1
f ′→ D′1 →

E1 → D′1, used in [BO74, §3] to define the coniveau spectral sequence. (Both couples stem from the long
exact sequence of triples, but applied to different geometric situations.) Moreover, we will not pass to
the coniveau spectral sequence (as done e.g. in [Blo79, CTV12, Kah12, Voi12, Ma17]), but work directly
with the above couple, which contains more information.

Remark 1.10. Assume that X is smooth and equi-dimensional. The main result of [BO74] (see also
[CTHK97]) is that the map f ′ : D′1 → D′1 is zero locally on X with the exception of only some trivial
bidegrees; as a consequence, Ep,q2 = 0 locally on X for all p 6= 0. In contrast, the image of f : D1 → D1

is refined unramified cohomology and this invariant in general does not vanish locally on X. In fact, the
local vanishing of Ep,q2 for p 6= 0 implies that f : Dp+1,q−1

2 → Dp,q
2 is an isomorphism locally on X for

all p ≥ 1. It follows that the Zariski sheaf Hij,nr associated to U � //Hi
j,nr(U,A(n)) does not depend on

j ≥ 0, hence agrees with Hi for all j ≥ 0, which is in general nonzero. (This shows in particular that at
least in the smooth case, refined unramified cohomology contains no interesting local information.)

1.4. Homology or cohomology? The results above relied on a twisted Borel–Moore homology theory
HBM
∗ (−, A(n)) with corresponding Borel–Moore cohomology theory Hi(X,A(n)) := HBM

2dX−i(X,A(dX−
n)), see (1.2) and (1.3). We will collect the properties of this functor that are crucial for us in Section
4 below. In sheaf theoretic terms, Borel–Moore cohomology will in practice be the (hyper-)cohomology
of some complex of sheaves. If X is smooth and equi-dimensional, Poincaré duality identifies this
complex to a locally constant sheaf. (For instance, `-adic Borel–Moore pro-étale cohomology is given

by Hi(X,Z`(n)) = Ri Γ(Xproét, π
!
X Ẑ`(n− dX)[−2dX ]), where πX : X → Spec k and π!

X ' π∗X(dX)[2dX ]
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if X is smooth and equi-dimensional of dimension dX , see Section 6.1 below.) The resulting theory
thus coincides on smooth equi-dimensional algebraic schemes with ordinary cohomology, but it differs in
general. In particular, as long as one is interested only in smooth equi-dimensional schemes, Hi(X,A(n))
can be identified with ordinary cohomology in all our applications. (Working with singular schemes is
however important for the proof of several of the main results such as Theorems 1.1, 1.4, and 1.5 even
if the total space is smooth projective.)

The functoriality properties of Borel–Moore cohomology differ from those of ordinary cohomology:
the latter has arbitrary pullbacks but no pushforwards, while the former admits only pullbacks along
étale maps, but has proper pushforwards (which shift the degree), see Section 4 below. The situation
is similar to the distinction between ordinary singular homology and Borel–Moore homology (i.e. finite
versus locally finite singular chains) in topology, which have also different functoriality properties; they
agree for compact analytic spaces but differ in general.

Instead of exploiting the notion of Borel–Moore cohomology, we could of course use the formula
Hi(X,A(n)) = HBM

2dX−i(X,A(dX − n)) to write everything in terms of Borel–Moore homology, which
may be preferred by some readers. The reason we use Borel–Moore cohomology and wrote this pa-
per cohomologically is that in the important special case where X is smooth and equi-dimensional,
Hi(X,A(n)) will coincide with ordinary cohomology in all our applications. This has in particular the
advantage that the formulas that we prove for singular varieties and in arbitrary codimension reduce in
the special case of smooth projective varieties to those in [CTV12, Kah12, Voi12, Ma17], which motivate
this paper. Moreover, the applications of the theory in [Sch21b, Sch22] concern smooth projective vari-
eties and use the identification of Borel–Moore cohomology with ordinary cohomology. This allows one
to make use of cup products, which will be crucial (and which requires a cohomological formulation).
Writing this paper homologically would thus make it significantly harder to read those applications.

After all it is a matter of formal manipulations to rewrite this paper homologically, but note that it
will not be enough to just use Hi(X,A(n)) = HBM

2dX−i(X,A(dX −n)), one should also change the indices
in the filtration F∗X to make the indices in the resulting formulas in Theorems 1.6 and 1.8 appealing.
Unfortunately, the translation between the homological and the cohomological notation is tedious, so
that we restrict ourselves to only one version here.

While only a matter of notation, we do believe that the notion of Borel–Moore cohomology may be
useful also in future.

2. Notation

A field is said to be finitely generated, if it is finitely generated over its prime field. An algebraic
scheme is a separated scheme of finite type over a field. A variety is an integral algebraic scheme. An
open subset of a scheme will always refer to a Zariski open subset, unless specified otherwise. The
dimension of an algebraic scheme is the maximum of the dimensions of its irreducible components.

For an algebraic scheme X, we write X(i) for the set of all points x ∈ X with dim({x}) = i.

We then define X(i) := X(dX−i), where dX = dimX. That is, x ∈ X lies in X(i) if and only if

dimX−dim({x}) = i. Note that this is slightly non-standard, as it does not imply that the codimension
of x defined locally in X is i, but it has the advantage that the Chow group CHi(X) := CHdX−i(X) (see
[Ful98]) is the quotient of

⊕
x∈X(i) [x]Z by rational equivalence, where [x]Z denotes the free Z-module

with generator [x]. We refer to [Ful98, §10.3] for the definition of algebraic equivalence of cycles on
algebraic schemes.

Whenever G and H are abelian groups (or R-modules for some ring R) so that there is a canonical
map H → G (and there is no reason to confuse this map with a different map), we write G/H as a
short hand for coker(H → G). For an abelian group G, we denote by G[`r] the subgroup of `r-torsion
elements, and by G[`∞] :=

⋃
r G[`r] the subgroup of elements that are `r-torsion for some r ≥ 1. We

further write Tors(G) or Gtors for the torsion subgroup of G.
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Let I be a directed index set and let (Gi)i∈I be a direct system of abelian groups. We then denote
by

lim //
i∈I

Gi

the direct limit of this system. Synonymously, we sometimes also call this the (filtered) colimit of (Gi)i∈I
and denote it by colimGi.

3. Warm-up: a simple proof of the Colliot-Thélène–Voisin theorem

Let X be a smooth complex variety. In this section we present as a warm-up a proof of the formula

coker(cl2X)tors ' H3
nr(X,Q/Z)/H3

nr(X,Q),(3.1)

which is due to Colliot-Thélène–Voisin [CTV12]. Their original proof relied on Voevodsky’s proof of the
Bloch–Kato conjecture; Kahn [Kah12] later showed that Bloch–Kato in degree 2, i.e. the Merkurjev–
Suslin theorem, suffices to prove the result. Both approaches use the Gersten conjecture proven by
Bloch–Ogus, which identifies unramified cohomology with the global sections of a certain Zariski sheaf,
see [BO74]. In this section we explain a simpler argument that does not need Bloch–Kato in any degree
and which does not make use of the Gersten conjecture. The proof presented here generalizes easily
to give the result for arbitrary codimension and in fact on possibly singular schemes, see Theorem 7.7
below. This is the starting point of the more general theory presented in the body of the paper.

To fix notation in this section, we denote by Hi(X,A) singular cohomology of the underlying analytic
space Xan with coefficients in an abelian group A. This coincides with Borel–Moore cohomology as
considered in the rest of this paper, because X is smooth and irreducible (hence equi-dimensional).

As above, we define Hi(FjX,A) as the direct limit over Hi(U,A) where U ⊂ X runs through all
(Zariski) open subsets whose complement has codimension at least j + 1. The unramified cohomology
of X is defined by Hi

nr(X,A) = im(Hi(F1X,A)→ Hi(F0X,A)). The Gysin sequence implies that this
agrees with the definition given in [CT95, Theorem 4.1.1(a)] (cf. Lemma 5.8 below). In other words,
an element [α] ∈ Hi

nr(X,A) is represented by a class α ∈ Hi(U,A) for some open subset U ⊂ X whose
complement has codimension at least 2 (such open subsets are called “big”) and two such representatives
yield the same element in Hi

nr(X,A) if they coincide on some dense open subset of X.
Our proof of (3.1) relies on the following lemma.

Lemma 3.1. The natural restriction map is an isomorphism

f :
H3(F1X,Q/Z)

H3(F1X,Q)
∼ // H

3
nr(X,Q/Z)

H3
nr(X,Q)

.

Proof. Since f is clearly surjective, it suffices to prove that it is injective.
Note that H3(F1X,Q) → H3

nr(X,Q) is surjective by definition. Hence, in order to prove the injec-
tivity of f it suffices to show the following: Let U ⊂ X be a big open subset and let α ∈ H3(U,Q/Z)
such that

α|V = 0 ∈ H3(V,Q/Z)

for some dense open subset V ⊂ U . Then we need to show that up to removing a codimension 2 subset
from U , the class α lifts to H3(U,Q). Equivalently, we need to show that the image δ(α) ∈ H4(U,Z)tors

via the Bockstein map (associated to 0→ Z→ Q→ Q/Z→ 0) vanishes after removing a codimension
2 subset from U .

Up to removing a codimension 2 subset from U , we may assume that D := U \ V is smooth of pure
codimension 1 in U . Since α|V = 0, the Gysin sequence shows that there is a class ξ ∈ H1(D,Q/Z)
with α = ι∗ξ, where ι∗ : H1(D,Q/Z) → H3(U,Q/Z) denotes the Gysin pushforward. Identifying the
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respective cohomology groups via Poincaré duality with Borel–Moore homology, it follows directly from
the definitions that the Bockstein map is compatible with ι∗. It thus suffices to show that

δ(ξ) ∈ H2(D,Z)tors

vanishes after removing a codimension 1 subset of D. This in turn is a well-known consequence of
Hilbert 90, see [Blo10, end of Lecture 5], which concludes the proof of the lemma. �

By the above lemma, it suffices to construct an isomorphism

g : coker(cl2X)tors
//H3(F1X,Q/Z)/H3(F1X,Q).(3.2)

Here we note that both sides in (3.2) remain unchanged if we remove from X a closed codimension 3
subset (this is obvious for the right hand side and it follows from the Gysin sequence and purity for
the left-hand side). We will allow ourselves to perform such shrinkings in what follows (this could be
avoided if we were using Borel–Moore cohomology so that we can work with singular schemes). Let
α ∈ H4(X,Z) such that some multiple nα = cl2X(z) is algebraic. Let Z := supp z. Up to removing Zsing

from X, we may assume that Z is smooth. The Gysin sequence then yields

H0(Z,Z) ι∗ // H4(X,Z) //H4(U,Z) ∂ // H1(Z,Z),(3.3)

where ∂ denotes the residue map and the pushforward ι∗ corresponds to the cycle class map. Since
nα = cl2X(z) ∈ im(ι∗), we find that α|U ∈ H4(U,Z)tors is torsion. The Bockstein map δ : H3(U,Q/Z)→
H4(U,Z) induces an isomorphism

δ−1 : H4(U,Z)tors
' // H3(U,Q/Z)/H3(U,Q).

The right hand side in the above isomorphism maps naturally to the right hand side in (3.2) (in fact,
the latter is just the direct limit of the former where one runs through all big open subsets U ⊂ X).
The map g above is then defined by

g(α) := [δ−1(α|U )].

The Gysin sequence implies that this definition is well-defined, i.e. g(α) does not change if we add to α
some algebraic class.

We aim to construct an inverse of g. To this end, let β ∈ H3(U,Q/Z) for some big open subset
U ⊂ X. The class α′ := δ(β) ∈ H4(U,Z) is a torsion class. Let Z = X \ U . Up to shrinking X, we
may assume that Z is smooth of pure codimension 2 in X. Then we have an exact sequence as in (3.3)
and the (trivial) fact that H1(Z,Z) is torsion-free implies that the torsion class α′ ∈ H4(U,Z) lifts to a
class α ∈ H4(X,Z). The fact that α′ is torsion implies that some multiple of α is algebraic and hence
[α] ∈ coker(cl2X)tors. If β lifts to a class in H3(U,Q), then α′ = 0 and so the above construction yields
a map

g′ : H3(F1X,Q/Z)/H3(F1X,Q) // coker(cl2X)tors, [β]
� // [α].

It follows from the construction that g and g′ are inverse to each other. Hence, g is an isomorphism and
the formula in (3.1) is proved.

4. Borel–Moore cohomology

We list here properties of a functor, that we call Borel–Moore cohomology, which allows to run the
arguments from Section 3 (and more). Technically speaking, Borel–Moore cohomology will in all our
applications agree up to shifts with Borel–Moore homology, see also Section 1.4 above. In practice and
in terms of sheaf theory, this means that Borel–Moore cohomology will be the hypercohomology of some
complex of sheaves on some site; the complex in question has by Poincaré duality the property that it
simplifies on smooth equi-dimensional schemes to a locally constant sheaf. In other words, on smooth
equi-dimensional varieties, Borel–Moore cohomology will agree with ordinary cohomology. However, on
singular spaces, Borel–Moore cohomology and ordinary cohomology differ: for Borel–Moore cohomology
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we require pullbacks only along open immersions of equi-dimensional schemes (and not along arbitrary
morphisms), while we require pushforwards along proper morphisms of possibly singular schemes (and
not only for smooth equi-dimensional schemes).

Definition 4.1. Let V be a category of Noetherian schemes such that the morphisms are given by open
immersions U ↪→ X of schemes with dim(U) = dim(X). We call V constructible, if for any X ∈ V, the
following holds:

• if Y ↪→ X is an open or closed immersion, then Y ∈ V;
• if X ∈ V is reduced, then the normalization of X is also in V.

Definition 4.2. Let V be a constructible category of Noetherian schemes as in Definition 4.1. Let R
be a ring and let A ⊂ ModR be a full subcategory of R-modules with R ∈ A. A twisted Borel–Moore
cohomology theory on V with coefficients in A is a family of contravariant functors

V // ModR, X � //Hi
BM (X,A(n)) with i, n ∈ Z and A ∈ A(4.1)

that are covariant in A and such that the following holds, where we write for simplicity

Hi(X,A(n)) := Hi
BM (X,A(n)),

P1 For X,Y ∈ V and any proper morphism f : X → Y of schemes of relative codimension c =
dimY − dimX, there are functorial pushforward maps

f∗ : Hi−2c(X,A(n− c)) //Hi(Y,A(n)),

compatible with pullbacks along morphisms in V.
P2 For any pair (X,Z) of schemes in V with a closed immersion Z ↪→ X of codimension c =

dim(X) − dim(Z) and with complement U with dim(X) = dim(U), there is a Gysin exact
sequence

. . . //Hi(X,A(n)) r // Hi(U,A(n)) ∂ // Hi+1−2c(Z,A(n− c)) ι∗ // Hi+1(X,A(n)) // . . .

where r is induced by functoriality, ∂ is called residue map and ι∗ is induced by proper pushfor-
ward from (P1). The Gysin sequence is functorial with respect to pullbacks along open immer-
sions f : V ↪→ X with dimV = dimX, dim(V ∩ Z) = dimZ, and dim(V \ (V ∩ Z)) = dimV ,
giving rise to a commutative diagram

Hi(X,A(n))
r //

f∗

��

Hi(U,A(n))
∂ //

f∗

��

Hi+1−2c(Z,A(n− c))

f∗

��

ι∗ // Hi+1(X,A(n))

f∗

��

Hi(V,A(n))
r // Hi(V ∩ U,A(n))

∂ // Hi+1−2c(V ∩ Z,A(n− c)) ι∗ // Hi+1(V,A(n))

for all i. Similarly, if f : X ′ → X is proper with Z ′ = f−1(Z) and dimX ′ = dim(X ′ \Z ′), then
the proper pushforward along f induces for all i a commutative diagram

Hi(X ′, A(n))
r //

f∗

��

Hi(U ′, A(n))
∂ //

f∗

��

Hi+1−2c(Z ′, A(n− c))

f∗

��

ι∗ // Hi+1(X ′, A(n))

f∗

��

Hi(X,A(n))
r // Hi(U,A(n))

∂ // Hi+1−2c(Z,A(n− c)) ι∗ // Hi+1(X,A(n)).

P3 For any X ∈ V and x ∈ X, the groups

Hi(x,A(n)) := lim //
∅6=Vx⊂{x}

Hi(Vx, A(n)),(4.2)
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where Vx runs through all (Zariski) open dense subsets of {x} ⊂ X (with the reduced subscheme
structure), satisfy Hi(x,A(n)) = 0 for i < 0. Moreover, there are isomorphisms H0(x,A(0)) '
A that are functorial in A, and for A = R there is a distinguished class [x] ∈ H0(x,R(0)) (called
the fundamental class) such that H0(x,R(0)) = [x]R is freely generated by [x].

Remark 4.3. We warn the reader that even if Specκ(x) ∈ V, the cohomology of a point x ∈ X in (4.2)
may not agree with Hi(Specκ(x), A(n)). This phenomenon is not new but already present in [BO74]
and in any other work where the Bloch-Ogus resolution for non-torsion coefficients is used.

In what follows, we will usually write µ⊗n`r := Z/`r(n).

Definition 4.4. Let V be a constructible category of Noetherian schemes as in Definition 4.1. Let ` be
a prime and let R = Z`. A twisted Borel–Moore cohomology theory on V with coefficients in A ⊂ ModZ`
(see Definition 4.2) is called `-adic, if Z`, Q`, Q`/Z`, and Z/`r for all r ≥ 1 are contained in A, such
that the following holds:

P4 Functoriality in the coefficients induces isomorphisms of functors

lim //
r

Hi(−, µ⊗n`r ) ∼ // Hi(−,Q`/Z`(n)) and Hi(−,Z`(n))⊗Z` Q`
∼ // Hi(−,Q`(n)).

P5 For any X ∈ V, there is a long exact Bockstein sequence

. . . //Hi(X,Z`(n)) ×`
r
// Hi(X,Z`(n)) //Hi(X,µ⊗n`r ) δ //Hi+1(X,Z`(n)) ×`

r
// . . .

where Hi(X,Z`(n)) → Hi(X,µ⊗n`r ) is given by functoriality in the coefficients and where δ is
called the Bockstein map. This sequence is functorial with respect to proper pushforwards and
pullbacks along morphisms in V.

P6 For any X ∈ V and x ∈ X, there is a map ε : κ(x)∗ → H1(x,Z`(1)) such that Hilbert 90 holds
in the sense that the map ε : κ(x)∗ → H1(x, µ⊗1

`r ) induced by reduction modulo `r is surjective.
Moreover, for X ∈ V integral with generic point η, there is a unit u ∈ Z` such that for any
regular point x ∈ X(1), the natural composition

κ(η)∗ ε // H1(η,Z`(1)) ∂ // H0(x,Z`(0)) = [x]Z`,

where ∂ is induced by (P2) and the last equality comes from (P3), sends f to [x](u · νx(f)).
Here, νx denotes the valuation on κ(η) induced by x.

Let X ∈ V be integral and let U ⊂ X be a big open subset, i.e. dim(X \ U) < dimX − 1. Then
H2(U,Z`(1)) ' H2(X,Z`(1)) by (P2) and (P3) (see Corollary 5.10 below). Taking the direct limit
over all U and using H0(x,Z`(0)) = [x]Z` from (P3), we find that the proper pushforwards from (P1)
induce a cycle class map

ι∗ :
⊕

x∈X(1)

[x]Z` //H2(X,Z`(1)).(4.3)

The following two options are of particular interest:

P7.1 If X is integral and regular, the kernel of (4.3) is given by Z`-linear combinations of algebraically
trivial divisors.

P7.2 If X is integral and regular, the kernel of (4.3) is given by Z`-linear combinations of principal
divisors.

Definition 4.5. Let V be a constructible category of Noetherian schemes, see Definition 4.1. An `-adic
twisted Borel–Moore cohomology theory H∗(−, A(n)) on V as in Definition 4.4 is adapted to algebraic
equivalence, if (P7.1) holds, and it is adapted to rational equivalence, if (P7.2) holds.
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In addition to `-adic theories, we will also need the following integral variant. To this end, we perform
in each of the statements (P4)–(P6), (P7.1), and (P7.2) the formal replacement of symbols:

Z`  Z, Q`  Q, `r  r,

and denote the corresponding statements by (P4’)–(P6’), (P7.1’), and (P7.2’), respectively.

Definition 4.6. Let V be a constructible category of Noetherian schemes (see Definition 4.1) and let
R = Z. A twisted Borel–Moore cohomology theory on V with coefficients in A ⊂ ModZ as in Definition
4.2 is called integral, if Z, Q, Q/Z, and Z/r for all r ≥ 1 are contained in A, such that items (P4’)–(P6’)
hold. The theory is adapted to algebraic (resp. rational) equivalence, if item (P7.1’) (resp. (P7.2’))
holds true.

Remark 4.7. It seems natural to add in (P1) the requirement that pushforwards are compatible with
the functoriality in the coefficients. We did not do so because in this paper we will only need this

compatibility for the natural maps Z`
×`→ Z`, Z` → Z/`r, Z` → Q`, and Q` → Q`/Z`, where it follows

from (P4) together with the compatibility of the Bockstein sequence with proper pushforwards formulated
in (P5).

5. Definition of refined unramified cohomology and simple consequences

In this section, we fix a constructible category V of Noetherian schemes, see Definition 4.1. We further
fix a ring R and a twisted Borel–Moore cohomology theory H∗(−, A(n)) on V with coefficients in a full
subcategory A ⊂ ModR, see Definition 4.2. In particular, (P1)–(P3) hold true.

For X ∈ V we write FjX := {x ∈ X | codim(x) ≤ j}, where codim(x) := dim(X) − dim({x}). We
then define

Hi(FjX,A(n)) := lim //
FjX⊂U⊂X

Hi(U,A(n)),

where the direct limit runs through all open subschemes U ⊂ X with FjX ⊂ U . Since the direct limit
functor (i.e. filtered colimits) is exact, many of the properties of H∗(X,A(n)) remain true for FjX in
place ofX. Moreover, form ≥ j, there are canonical restriction mapsHi(FmX,A(n))→ Hi(FjX,A(n)).

Definition 5.1. The j-th refined unramified cohomology of X ∈ V with respect to a twisted Borel–Moore
cohomology theory H∗(−, A(n)) on V with coefficients in a full subcategory A ⊂ ModR, is given by

Hi
j,nr(X,A(n)) := im

(
Hi(Fj+1X,A(n)) //Hi(FjX,A(n))

)
.

5.1. Three filtrations. Following Grothendieck, the coniveau filtration on Hi(X,A(n)) is defined by

N jHi(X,A(n)) := ker(Hi(X,A(n))→ Hi(Fj−1X,A(n))).(5.1)

There is a similar coniveau filtration on refined unramified cohomology, defined as follows.

Definition 5.2. Let X ∈ V. The coniveau filtration N∗ is for h ≤ j + 1 given by

NhHi(FjX,A(n)) := ker
(
Hi(FjX,A(n))→ Hi(Fh−1X,A(n))

)
, and

NhHi
j,nr(X,A(n)) := Hi

j,nr(X,A(n)) ∩NhHi(FjX,A(n)).

Somewhat dually to the coniveau filtration, we have the following filtration, which is also decreasing.

Definition 5.3. Let X ∈ V. The decreasing filtration F ∗ is for m ≥ j given by:

FmHi(FjX,A(n)) := im
(
Hi(FmX,A(n)) //Hi(FjX,A(n))

)
, and

FmHi
j,nr(X,A(n)) := Hi

j,nr(X,A(n)) ∩ FmHi(FjX,A(n)).
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Note that for m ≥ j + 1, FmHi(FjX,A(n)) = FmHi
j,nr(X,A(n)).

Related to F ∗ there is another filtration that will be important for us, and which exists only for
A = Z/`r or A = Q`/Z`. To define it, note that exactness of the direct limit functor ensures that the
Bockstein sequence in (P5) holds for FjX in place of X. In particular, there is a Bockstein map

δ : Hi(FjX,µ
⊗n
`r )→ Hi+1(FjX,Z`(n)).

Definition 5.4. Let X ∈ V. The decreasing filtration G∗ is for m ≥ j given by:

α ∈ GmHi(FjX,µ
⊗n
`r ) ⇐⇒ δ(α) ∈ FmHi+1(FjX,Z`(n)).

We then define

GmHi
j,nr(X,µ

⊗n
`r ) := im(GmHi(Fj+1X,µ

⊗n
`r )→ Hi(FjX,µ

⊗n
`r )).

Using the isomorphism in (P4), we finally let

GmHi
j,nr(X,Q`/Z`(n)) := lim //

r

GmHi
j,nr(X,µ

⊗n
`r ).

Remark 5.5. By definition, F ∗ and N∗ on Hi
j,nr(X,A(n)) are induced by the corresponding filtration

on Hi(FjX,A(n)). We warn the reader that the corresponding assertion does not hold true for G∗.

5.2. Consequence of the Gysin sequence.

Lemma 5.6. Let X t Y ∈ V with dimX = dimY and let A ∈ A. Then the canonical map given by
pullback is an isomorphism:

Hi(X t Y,A(n)) ' // Hi(X,A(n))⊕Hi(Y,A(n)).

Proof. Let iX (resp. iY ) denote the inclusions of X (resp. Y ) into X t Y . By the Gysin sequence (P2),
we have an exact sequence

Hi(X,A(n)) iX∗ // Hi(X t Y,A(n))
i∗Y // Hi(Y,A(n)).

Functoriality of this sequence with respect to proper pushforward and pullbacks along morphisms in V
shows that iX∗ and i∗Y admit splittings. Hence, the above sequence is part of a short exact sequence
that splits, which proves the lemma. �

Lemma 5.7. Let X ∈ V and A ∈ A. Then for any n ∈ Z and m, j ≥ 0, the Gysin sequence in (P2)
induces a long exact sequence

. . . //Hi(Fj+mX,A(n)) //Hi(Fj−1X,A(n)) ∂ // lim //
Z⊂X

codim(Z)=j

Hi+1−2j(FmZ,A(n− j)) ι∗ // . . . ,

where the direct limit runs through all closed reduced subschemes Z ⊂ X of codimension codim(Z) =
dimX − dimZ = j.

Proof. This follows immediately from (P2) by taking direct limits. We explain the details for convenience
of the reader. Let Z ⊂ X be closed with dimZ = dimX− j. Let further W ⊂ Z be closed of dimension
dimW = dimZ −m− 1 = dimX − j −m− 1. By (P2), we get an exact sequence

. . . //Hi(X \W,A(n)) //Hi(X \ Z,A(n)) ∂ // Hi+1−2j(Z \W,A(n− j)) ι∗ // . . . .

We can now consider the index set I that consists of pairs (Z,W ) of closed subsets W ⊂ Z ⊂ X with
dimW = dimZ −m− 1 = dimX − j −m− 1. This is a directed set with respect to the preorder given
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by declaring (Z,W ) ≤ (Z ′,W ′) if and only if Z ⊂ Z ′ and W ⊂ W ′. Taking the direct limit over this
index set, the above long exact sequence yields the sequence

. . . //Hi(Fj+mX,A(n)) //Hi(Fj−1X,A(n)) ∂ // lim //
Z⊂X

codim(Z)=j

Hi+1−2j(FmZ,A(n− j)) ι∗ // . . . ,

which is exact because the direct limit functor is exact. This proves the lemma. �

Lemma 5.8. Let X ∈ V and A ∈ A. Then for any j, n ∈ Z, (P2) induces a long exact sequence

//Hi(FjX,A(n)) //Hi(Fj−1X,A(n)) ∂ //
⊕

x∈X(j)

Hi+1−2j(x,A(n− j)) ι∗ // Hi+1(FjX,A(n)),

where ι∗ (resp. ∂) is induced by the pushforward (resp. residue) map from the Gysin exact sequence
(P2).

Proof. Using additivity from Lemma 5.6, this identifies to the special case m = 0 in Lemma 5.7. �

Corollary 5.9. Let X ∈ V. Then for any n ∈ Z and j,m ≥ 0, the following sequence is exact

lim //
Z⊂X

codim(Z)=j

Hi−2j
m,nr(Z,A(n− j)) ι∗ // Hi

j+m,nr(X,A(n)) //Hi
j−1,nr(X,A(n)),

where the direct limit runs through all closed reduced subschemes Z ⊂ X of codimension codim(Z) =
dimX − dimZ = j.

Proof. The composition of the two arrows in the corollary is zero by Lemma 5.7. Conversely, assume
that α ∈ Hi

j+m,nr(X,A(n)) maps to zero in Hi
j−1,nr(X,A(n)). By Lemma 5.7, α = ι∗ξ for some

ξ ∈ Hi−2j(FmZ,A(n− j)) and some Z ⊂ X of codimension j. Since α is unramified, Lemma 5.8 shows
that

ι∗(∂ξ) = ∂(ι∗ξ) = 0 ∈
⊕

x∈X(j+m+1)

Hi−2j−2m−1(x,A(n− j −m− 1)),(5.2)

where the first equality uses that the Gysin sequence is functorial with respect to proper pushforwards
(see (P2)), so that ι∗ and ∂ commute. But this implies that the class

∂ξ ∈
⊕

x∈Z(m+1)

Hi−2j−2m−1(x,A(n− j −m− 1))

vanishes, as the above right hand side is a subgroup of the right hand side of (5.2), and ι∗ identifies to
the inclusion. Hence, Lemma 5.8 implies ξ ∈ Hi−2j

m,nr(Z,A(n− j)), as we want. This concludes the proof
of the corollary. �

Corollary 5.10. Let X ∈ V and A ∈ A. Then Hi(FjX,A(n)) ' Hi(X,A(n)) for all j ≥ di/2e.

Proof. Since Hi(x,A(n)) vanishes for i < 0 by (P3), Lemma 5.8 implies

Hi(FjX,A(n)) ' Hi(Fj−1X,A(n))

for all j with j > di/2e. This proves the corollary by induction on j, because Hi(FjX,A(n)) =
Hi(X,A(n)) for j ≥ dim(X). �

Corollary 5.11. Let X ∈ V and A ∈ A. Assume that there is a non-negative integer c, such that for
any X ∈ V and x ∈ X(j), H

i(x,A(n)) = 0 for i > j + c and all n. Then Hi(FjX,A(n)) = 0 for all
i > dimX + j + c and all n.
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Proof. Our assumption implies by Lemma 5.8 that Hi(FjX,A(n)) ' Hi(Fj−1X,A(n)) for all j with
i > j + dimX + c. Hence, Hi(FjX,A(n)) ' Hi(F0X,A(n)) for all j with i > j + dimX + c. But
Hi(F0X,A(n)) = 0 for all i > dimX + c by Lemma 5.6 and our assumption, because F0X is the union
of the generic points of the maximal-dimensional components of X. This proves the corollary. �

The following lemma identifies the differential d1 on the E1-page of the coniveau spectral sequence
of Bloch–Ogus [BO74, §3] with the composition ∂ ◦ ι∗.
Lemma 5.12. Let X ∈ V and A ∈ A. Let w ∈ X(p−1) with closure W ⊂ X and let τ : W̃ →W be the
normalization with generic point ηW̃ ∈ W̃ . Then the following diagram commutes for all integers i and
n

Hi(w,A(n)) = Hi(ηW̃ , A(n))
∂ //

� _

��

⊕
w̃∈W̃ (1) H

i−1(w̃, A(n− 1))

τ∗

��⊕
x∈X(p−1) Hi(x,A(n))

∂◦ι∗ //
⊕

x∈X(p) Hi−1(x,A(n− 1)),

where the vertical arrow on the left is the natural inclusion, the vertical arrow on the right is induced
by the proper pushforward maps from (P1), the upper horizontal arrow is induced by the residue map
in (P2) and the lower horizontal arrow is given by⊕

x∈X(p−1)

Hi(x,A(n)) ι∗ // Hi+2p−2(Fp−1X,A(n+ p)) ∂ //
⊕

x∈X(p)

Hi−1(x,A(n− 1)),

where ι∗ resp. ∂ is the pushforward resp. residue map induced by (P2).

Proof. Note that W ∈ V and hence W̃ ∈ V, cf. Definition 4.1. The lemma is thus a direct consequence
of the functoriality of the Gysin sequence (P2) with respect to proper pushforwards (P1), as required
in (P2). �

5.3. Torsion-freeness of the cohomology of points. In this section we fix a prime ` and assume
that the twisted Borel–Moore cohomology theory H∗(−, A(n)) on V is `-adic, see Definition 4.4. It is an
observation of Bloch (see [Blo10, end of Lecture 5]) that properties (P5) and (P6) have the following
important consequence.

Lemma 5.13. Let V be a constructible category of Noetherian schemes as in Definition 4.1. Fix a
prime ` and assume that H∗(−, A(n)) is an `-adic twisted Borel–Moore cohomology theory on V as in
Definition 4.4. Then for any X ∈ V and x ∈ X, Hi(x,Z`(i− 1)) is torsion-free for 1 ≤ i ≤ 2.

Proof. Taking direct limits of abelian groups is exact, so that property (P5) implies that

Hi(x,Z`(i− 1))[`r] ' coker(Hi−1(x,Z`(i− 1)) //Hi−1(x, µ⊗i−1
`r )).

This vanishes for i = 1, as in this case we have by (P5) an exact sequence

H0(x,Z`(0)) ×`
r
// H0(x,Z`(0)) //H0(x, µ⊗0

`r )

which by (P3) identifies to Z`
×`r→ Z` → Z/` and so the last arrow is surjective.

By (P6), there is a surjection ε : κ(x)∗ // //H1(x, µ⊗1
`r ) which factors through H1(x,Z`(1)) and so the

above cokernel also vanishes for i = 2. This concludes the proof. �

Remark 5.14. The above proof shows more generally that Hi+1(x,Z`(i)) is torsion-free if there are
surjections (κ(x)∗)⊗i // //Hi(x, µ⊗i`r ) that factor through Hi(x,Z`(i)). In particular, Hi+1(x,Z`(i)) is
torsion-free if a version of the Bloch–Kato conjecture holds in degree i in the sense that there is a map
KM
i (κ(x)) → Hi(x,Z`(i)) which induces isomorphisms KM

i (κ(x))/`r ' Hi(x, µ⊗i`r ). It follows from
Voevodsky’s proof of the Bloch–Kato conjecture [Voe11] that the theories that we discuss in Proposition
6.6 and 6.9 below have this property.
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6. Examples of Borel–Moore cohomologies

In this section we discuss some examples of functors that satisfy the properties from Section 4. The
results are certainly well-known to experts and we only include them for convenience of the reader.

6.1. `-adic Borel–Moore pro-étale cohomology.

6.1.1. Continuous étale cohomology of Jannsen. Let X be a scheme over a field k and let Ab(Xét)
N be

the abelian category of inverse systems of abelian étale sheaves on the small étale site Xét of X. This
category has enough injectives (see [Jan88]) and we may consider the left exact functor

lim←−◦Γ : Ab(Xét)
N // Ab, (Fr)

� // lim←−
r

Γ(X,Fr).

Jannsen then defines the continuous étale cohomology groups

Hi
cont(X, (Fr)) := Ri(lim←−◦Γ)((Fr)).

These groups are closely related to the corresponding étale cohomology groups via the following canonical
short exact sequence (see [Jan88, §1.6]):

0 // R1 lim←− Hi−1(Xét, Fr) //Hi
cont(Xét, (Fr)) // lim←−H

i(Xét, Fr) // 0,(6.1)

where lim←− denotes the inverse limit functor over r.

By [Jan88, (3.27)], we have the following Kummer exact sequence in Ab(Xét)
N:

0 // (µ`r )r // (Gm,×`)r ×`
r
// (Gm, id)r // 0,(6.2)

where ` is a prime invertible in k. Taking cohomology, the boundary map of the corresponding long
exact sequence yields maps

ε : H0(X,Gm) //H1
cont(X,Z`(1)) and c1 : Pic(X) //H2

cont(X,Z`(1)),(6.3)

where Hi
cont(X,Z`(n)) := Hi

cont(X, (µ
⊗n
`r )r).

6.1.2. Pro-étale cohomology of Bhatt and Scholze. For a scheme X we denote by Xproét the pro-étale
site of X formed by weakly étale maps of schemes U → X (with U of not too big cardinality), see [BS15,
Definition 4.1.1 and Remark 4.1.2]. Since every étale map is weakly étale, there is a natural map of
associated topoi

ν : Shv(Xproét) // Shv(Xét).(6.4)

The pullback ν∗ : D+(Xét)→ D+(Xproét) on bounded below derived categories is fully faithful and the
adjunction id → R ν∗ν

∗ is an isomorphism, see [BS15, Proposition 5.2.6]. For a sheaf F ∈ Ab(Xproét)
of abelian groups on Xproét, one defines

Hi(Xproét, F ) := Ri Γ(Xproét, F ),

where Ri Γ denotes the i-th right derived functor of the global section functor F � // Γ(X,F ).
If the transition maps in the inverse system (Fr) ∈ Ab(Xét)

N are surjective, then there is a canonical
isomorphism

Hi(Xproét, lim ν∗Fr) ' Hi
cont(Xét, (Fr)),(6.5)

see [BS15, §5.6].
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6.1.3. Constructible complexes in the pro-étale topology. We present in this section some parts of the
six functor formalism on constructible complexes of Bhatt and Scholze in the special case of algebraic
schemes, i.e. separated schemes of finite type over a field, which suffices for our purposes. In Remark
6.3 below we add some comments on the more general setting from [BS15].

Let X be an algebraic scheme over a field k and recall ν from (6.4). For a prime ` invertible in k, let

Ẑ`(n) := lim ν∗µ⊗n`r ∈ Ab(Xproét)(6.6)

and write Ẑ` := Ẑ`(0). Note that Ẑ` is a sheaf of rings on Xproét and Ẑ`(n) are Ẑ`-modules, which
are in fact locally free (e.g. they are free on the pro-étale covering Xk → X). We may then consider

the derived category D(Xproét, Ẑ`) of the abelian category Mod(Xproét, Ẑ`) of sheaves of Ẑ`-modules on

Xproét. A complex K ∈ D(Xproét, Ẑ`) is constructible, if it is complete, i.e. K
'→ R lim(K⊗L

Ẑ`
Z/`r), and

K ⊗L
Ẑ`

Z/`r ' ν∗Kr for a constructible complex Kr ∈ D(Xét,Z/`r), see [BS15, Definition 6.5.1]. The

full subcategory spanned by constructible complexes is denoted by Dcons(Xproét, Ẑ`) ⊂ D(Xproét, Ẑ`).
Constructible complexes are bounded, see [BS15, Lemma 6.5.3].

For a morphism f : X → Y of algebraic schemes, R f∗ respects constructibility and is right adjoint

to f∗comp : Dcons(Yproét, Ẑ`) → Dcons(Xproét, Ẑ`), which is given by pullback followed by (derived)

completion, see [BS15, Lemma 6.7.2]. There is also a functor R f! : Dcons(Xproét, Ẑ`)→ Dcons(Yproét, Ẑ`)
(see [BS15, Definition 6.7.6]) with a right adjoint f ! : Dcons(Yproét, Ẑ`)→ Dcons(Xproét, Ẑ`), see [BS15,
Lemma 6.7.19]. If f is proper, R f! = R f∗ (by definition).

To explain the construction of f ! in [BS15], note that the pullback

ν∗ : Dcons(Xét,Z/`r) ' // Dcons(Xproét,Z/`r)(6.7)

is an equivalence (see paragraph after [BS15, Definition 6.5.1]). Using this, we will freely identify
complexes on the two sides with each other. For instance, we will freely identify µ⊗n`r on Yét with its

pullback ν∗µ⊗n`r to Yproét. Let now K ∈ Dcons(Yproét, Ẑ`) with truncation Kr = K ⊗L
Z` Z/`

r and let

f !
r : Dcons(Yét,Z/`r) → Dcons(Xét,Z/`r) be the exceptional pullback on the étale site, induced by f ,

cf. [SGA4.3, Exposé XVIII]. Since any constructible complex of sheaves of Z/`r-modules on Xproét is

also a constructible complex of Ẑ`-modules on Xproét, we may by (6.7) identify f !
rKr with an object in

Dcons(Xproét, Ẑ`). By [BS15, Lemma 6.7.18], the natural reduction maps Kr → Km for m ≤ r make
(f !
rKr) into a projective system and so, following Bhatt–Scholze (see [BS15, Lemma 6.7.19]), one may

define

f !K := R lim f !
rKr ∈ Dcons(Xproét, Ẑ`).(6.8)

The above construction implies that many properties known from the étale site carry over to the pro-étale
site.

Lemma 6.1. Let f : X → Y be a morphism between algebraic schemes over a field k and let ` be a

prime invertible in k. Then the following holds in Dcons(Xproét, Ẑ`):

(1) If f is weakly étale or a closed immersion, then f∗comp ' f∗;
(2) If f is étale, then f ! ' f∗ ' f∗comp;

(3) If g : Y → Z is another morphism, then there is a natural isomorphism of functors f !g! ' //

(g ◦ f)!;
(4) If f is smooth of pure relative dimension d, then there is a canonical isomorphism of functors

f∗comp(d)[2d] ' // f !, where f∗comp(n) := f∗comp(−⊗Ẑ` Ẑ`(n)).
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(5) Let f be smooth of pure relative dimension d. Then for any étale map j : U → X, the diagram

(f ◦ j)∗comp(d)[2d]
' // (f ◦ j)!

j∗compf
∗
comp(d)[2d]

' //

OO

j∗compf
! ' j!f !

OO

commutes, where the horizontal maps are induced by the canonical isomorphisms from item (4)
and the vertical arrows are induced by the canonical maps given by functoriality of f∗comp and

f !.

Proof. Item (1) follows from [BS15, Remark 6.5.10]. Item (2) follows from this together with the fact

that for any K ∈ Dcons(Yproét, Ẑ`),

f∗compK
' // R lim f∗rKr = R lim f !

rKr = f !K

because f !
r = f∗r since f is étale, see [SGA4.3, XVIII, Proposition 3.1.8(iii)].

Let K ∈ Dcons(Zproét, Ẑ`) with truncations Kr = K ⊗L
Ẑ`

Z/`r ∈ Dcons(Yét,Z/`r). By (6.7) and the

construction of f ! from (6.8), there is a natural map

f !g!K = R lim f !
r(R lim g!

rKr) = R lim(f !
r ◦ g!

r(Kr))
' // R lim((gr ◦ fr)!Kr) = (g ◦ f)!K

induced by the natural isomorphism f !
r ◦ g!

r
∼→ (gr ◦ fr)!, given by adjunction and R(gr)! R(fr)!

'→
R(gr ◦ fr)!. This proves (3).

Let K ∈ Dcons(Yproét, Ẑ`) with truncations Kr = K ⊗L
Ẑ`

Z/`r ∈ Dcons(Yét,Z/`r). Assume that

f is smooth of pure relative dimension d. By Poincaré duality on the étale site, there are canonical
identifications f !

r = f∗r (d)[2d], see [SGA4.3, XVIII, Théorème 3.2.5] (cf. [Ver67, §4.4]). We thus get a
canonical isomorphism

f∗compK(d)[2d] ' // R lim f∗rKr(d)[2d] = R lim f !
rKr = f !K.

This holds functorially in K and so we get an isomorphism f∗comp(d)[2d]
'→ f !, which proves (4).

By item (2), j∗comp ' j! and so the commutativity of the diagram in item (5) follows from the fact that
the isomorphism in (4) is compatible with respect to compositions of smooth maps. The latter follows
by construction of f ! from the analogous result for constructible complexes on the étale site and hence
from [SGA4.3, XVIII, diagram above Théorème 3.2.5]. This concludes the proof of the lemma. �

Let f : X → Y be a morphism between algebraic k-schemes. By adjunction, there are natural
transformations

Trf : R f!f
! // id and θf : id // R f∗f

∗
comp(6.9)

between functors on Dcons(Yproét, Ẑ`). For K ∈ Dcons(Yproét, Ẑ`), the above maps are defined by asking
(see [BS15, Lemmas 6.7.2 and 6.7.19]) that the following diagrams commute:

K

��

θf
// R f∗f

∗
compK

��

R limKr

R lim(θfr )
// R lim(R fr∗f

∗
rKr),

R f!f
!K

��

Trf
// K

��

R lim R fr!f
!
rKr

R lim(Trfr )
// R lim(Kr),

(6.10)

whereKr = K⊗L
Ẑ`
Z/`r ∈ Dcons(Yét,Z/`r), f•r , fr• denote the corresponding functors onDcons(Yét,Z/`r)

(resp. Dcons(Xét,Z/`r)) induced by f , and where as before we identify Kr with ν∗Kr, using the equiv-
alence (6.7).
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For K ∈ Dcons(Yproét, Ẑ`), θf induces pullback maps

f∗ : Ri Γ(Yproét,K) // Ri Γ(Xproét, f
∗
compK).(6.11)

If f is proper, then R f! = R f∗ and so Trf induces a pushforward map

f∗ : Ri Γ(Xproét, f
!K) // Ri Γ(Yproét,K).(6.12)

Lemma 6.2. Let K ∈ Dcons(Yproét, Ẑ`) with truncations Kr = K ⊗L
Ẑ`

Z/`r ∈ Dcons(Yét,Z/`r). Then

for any morphism f : X → Y between algebraic k-schemes, the following diagram commutes with exact
rows:

0 // R1 lim Ri−1 Γ(Xét, f
∗
rKr) // Ri Γ(Xproét, f

∗
compK) // lim Ri Γ(Xét, f

∗
rKr) // 0

0 // R1 lim Ri−1 Γ(Yét,Kr) //

R1 lim(f∗r )

OO

Ri Γ(Yproét,K) //

f∗

OO

lim Ri Γ(Yét,Kr)

lim(f∗r )

OO

// 0.

If f is proper, then the following commutes with exact rows as well:

0 // R1 lim Ri−1 Γ(Xét, f
!
rKr) //

R1 lim((fr)∗)

��

Ri Γ(Xproét, f
!K) //

f∗
��

lim Ri Γ(Xét, f
!
rKr)

lim((fr)∗)

��

// 0

0 // R1 lim Ri−1 Γ(Yét,Kr) // Ri Γ(Yproét,K) // lim Ri Γ(Yét,Kr) // 0.

Proof. The horizontal lines are parts of short exact sequences given by the composed functor spectral
sequence of R lim ◦R Γ, where we note that R lim has cohomological dimension ≤ 1 on abelian groups.
The lemma follows thus immediately from the commutative diagrams in (6.10). �

Remark 6.3. Bhatt–Scholze’s six functor formalism on constructible complexes of Ẑ`-sheaves on the
pro-étale site works more generally for quasi-excellent quasi-compact quasi-separated schemes over Z[1/`]
and separated finitely presented maps between them, see [BS15, §6.7]. Lemmas 6.1 and 6.2 remain true
in this set-up (with the same proofs).

Remark 6.4. Related to Bhatt–Scholze’s pro-étale theory [BS15], there is Ekedahl’s `-adic formalism
[Eke90], which leads to a six functor formalism (see [Eke90, Theorem 6.3]) that is closer in spirit to
Jannsen’s continuous étale cohomology groups. We prefer to use Bhatt–Scholze’s theory, as it allows to
work with actual sheaves on a site, while Ekedahl’s formalism as well as Jannsen’s theory involve inverse
systems of sheaves. The resulting triangulated categories agree under suitable finiteness assumptions,
see [BS15, §5.5].

6.1.4. Properties (P1)–(P6), (P7.1), and (P7.2). Let k be a field and let ` be a prime that is invertible
in k. Let V be the category whose objects are separated schemes of finite type over k and where the
morphisms are open immersions of schemes of the same dimension. For X ∈ V of dimension d with
structure morphism πX : X → Spec k, we define

Hi(X,µ⊗n`r ) := Ri−2d Γ(Xproét, π
!
Xµ
⊗n−d
`r ) ∈ ModZ` ,(6.13)

Hi(X,Z`(n)) := Ri−2d Γ(Xproét, π
!
X Ẑ`(n− d)) ∈ ModZ` ,(6.14)

Hi(X,Q`/Z`(n)) := lim //
r

Hi(X,µ⊗n`r ), and Hi(X,Q`(n)) := Hi(X,Z`(n))⊗Z` Q`,(6.15)

where Ẑ`(n) denotes the sheaf on Xproét defined in (6.6). By item (2) in Lemma 6.1 and (6.11), the
cohomology groups in (6.13)–(6.15) are contravariantly functorial with respect to morphisms in V (in
fact with respect to arbitrary étale maps U → X with dimU = dimX).
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Lemma 6.5. Assume that X ∈ V is equi-dimensional and smooth over k. Then there are canonical
isomorphisms

Hi(X,µ⊗n`r ) ' Ri Γ(Xproét, µ
⊗n
`r ) ' Hi

cont(Xét, (µ
⊗n
`r , id)s) ' Hi(Xét, µ

⊗n
`r ),

and

Hi(X,Z`(n)) ' Ri Γ(Xproét, Ẑ`(n)) ' Hi
cont(X, (µ

⊗n
`r )r),

which are compatible with respect to pullbacks along open immersions.

Proof. Since π : X → Spec k is smooth of pure dimension d, there is a canonical isomorphism (πX)∗comp(d)[2d]
'→

π!
X , see item (4) in Lemma 6.1. This isomorphism is compatible with respect to pullbacks along open

immersions by item (5) in Lemma 6.1. This yields the first isomorphism in each row of the lemma. The
comparison to continuous étale cohomology follows from (6.5) and that to étale cohomology for finite
coefficients from (6.1), because R lim1 vanishes on constant inductive systems. This concludes the proof
of the lemma. �

The main result of this section is the following.

Proposition 6.6. Let k be a field and let ` be a prime that is invertible in k. Let A ⊂ ModZ` be
the full subcategory of Z`-modules containing Z`, Q`, Q`/Z`, and Z/`r for all r ≥ 1. Let V be the
category of separated schemes of finite type over k with morphisms given by open immersions U ↪→ X
with dimU = dimX. Let the cohomology functor (4.1) be given by (6.13)–(6.15). Then (P1)–(P5)
from Definitions 4.2 and 4.4 hold true. If k is perfect, then (P6) holds true as well. Moreover,

• property (P7.1) holds if k is algebraically closed;
• property (P7.2) holds if k is the perfect closure of a finitely generated field.

In the terminology of Definitions 4.2, 4.4, and 4.5, the above proposition says that H∗(−, A(n)) is a
twisted Borel–Moore cohomology theory on V that is `-adic if k is perfect and it is adapted to algebraic
equivalence if k is algebraically closed, while it is adapted to rational equivalence, if k is the perfect
closure of a finitely generated field.

Proof of Proposition 6.6. Item (P4) is clear (by definition). Since the direct limit functor as well as
⊗Z`Q` is exact, it suffices to prove the remaining properties for A = Z/`r and A = Z`.

Step 1. Item (P1).

Let X,Y ∈ V and let f : X → Y be a proper morphism of schemes with c = dimY − dimX. The
existence of the pushforward f∗ : Hi−2c(X,A(n − c)) → Hi(Y,A(n)) follows from (6.12) and item (3)
in Lemma 6.1. Functoriality in f (i.e. (f ◦ g)∗ = f∗g∗) follows from the functoriality of the trace map
(which by (6.9) may either be deduced from the corresponding statement on the étale site, or directly
from item (3) in Lemma 6.1). Compatibility of f∗ with pullbacks along open immersions may by Lemma
6.2 be checked in the case where A = Z/`r on the étale site of X, which is well-known (and holds in fact
for arbitrary étale maps in place of open immersions), see [BO74, (1.2.2) and §2.1]. This proves (P1).

Step 2. Item (P2).

Let X ∈ V and let i : Z ↪→ X be a closed immersion with complement j : U ↪→ X. Let c =
dimX − dimZ. By [BS15, Lemma 6.1.16], there is an exact triangle

R i∗i
!π!
X

Tri // π!
X

θj // R j∗j
∗
compπ

!
X ,

where we used j∗ ' j∗comp (see Lemma 6.1). By Lemma 6.1, j∗comp ' j!, π!
Z
'→ i!π!

X and π!
U
'→ j∗compπ

!
X .

Hence, the above triangle identifies to an exact triangle

R i∗π
!
Z

// π!
X

// R j∗π
!
U .
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Applying R Γ(Xproét,−), the corresponding long exact sequence yields the Gysin sequence claimed in
(P2). The map ι∗ in the Gysin sequence from item (P2) coincides by construction with the proper
pushforward with respect to the inclusion Z ↪→ X. Functoriality with respect to open immersions
follows by Lemma 6.2 from the case A = Z/`r on the étale site which is well-known (and holds in fact
for arbitrary étale maps), see e.g. [BO74, (1.1.2), Lemma 1.4, and (2.1)]. Similarly, functoriality with
respect to proper pushforwards follows by Lemma 6.2 from the case of finite coefficients A = Z/`r on
the étale site, which is well-known, see e.g. [BO74, (1.2.4) and (2.1)]. This proves (P2).

Step 3. Item (P3).

By the topological invariance of the pro-étale topos (see [BS15, Lemma 5.4.2]), we may replace X be
the base change to the perfect closure kper of k, and x by the unique point in Xkper that lies over it via
the natural map Xkper → X (where we use that the latter is a universal homeomorphism). After this
reduction step, we may assume that k is perfect.

Note that Hi(x,A(n)) in (4.2) is defined as a direct limit where it suffices to run only through the
cohomology of regular (hence smooth, since k is perfect) schemes, so that the vanishing Hi(x,A(n)) = 0
for i < 0 as well as the canonical isomorphism H0(x,A(0)) ' A which is functorial in A follows from
Lemma 6.5. The fundamental class [x] ∈ H0(x,Z`(0)) corresponds via the canonical isomorphism

H0(x,Z`(0)) ' Z` to 1 ∈ Z`. More precisely, let U ⊂ {x} be dense and smooth over k. By Lemma 6.5,
the canonical isomorphism in item (4) of Lemma 6.1 induces a canonical isomorphism

H0(U,Z`(0)) ' H0(Uproét, Ẑ`(0))

which is compatible with respect to restrictions to open subsets. The class of H0(U,Z`(0)) induced by

the unit section of the pro-étale sheaf Ẑ`(0) yields a canonical fundamental class [U ] ∈ H0(U,Z`(0))
with H0(U,Z`(0)) = [U ]Z`. This class is compatible with respect to restrictions to open subsets (see
item (5) in Lemma 6.1), hence induces a canonical class [x] ∈ H0(x,Z`(0)) in the limit. This proves
(P3).

Step 4. Item (P5).

There is a canonical short exact sequence

0 // Ẑ`(n) ×`
r
// Ẑ`(n) // µ⊗n`r

// 0

of sheaves on (Spec k)proét. Applying π!
X , we arrive at the exact triangle

π!
X Ẑ`(n) ×`

r
// π!
X Ẑ`(n) // π!

Xµ
⊗n
`r .(6.16)

The Bockstein sequence in (P5) is (up to some shifts) the long exact sequence associated to this triangle
after applying R Γ(Xproét,−). Functoriality of the exceptional pullback π!

X shows that the Bockstein
sequence is functorial with respect to pullbacks along morphisms in V and with respect to proper
pushforwards from (P1). This proves (P5).

Step 5. Item (P6) for k perfect.

Let X ∈ V and let x ∈ X(1). In the direct limit (4.2) that defines Hi(x,A(n)), we may restrict

ourselves to regular (hence smooth, as k is perfect) dense open subsets Vx ⊂ {x}, so that Lemma 6.5
identifies Hi(Vx, A(n)) canonically with continuous étale cohomology. The map ε : κ(x)∗ → H1(x,Z`(1))
is then induced by the Kummer sequence in continuous étale cohomology, see (6.3). Surjectivity of
the reduction ε : κ(x)∗ → H1(x, µ`r ) follows from the Kummer sequence in étale cohomology and
Grothendieck’s Hilbert theorem 90, which implies that

lim //
F0X⊂U⊂X

H1
ét(U,Gm) ' lim //

F0X⊂U⊂X
Pic(U) = 0.
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Let X ∈ V be integral of dimension d with generic point η and let x ∈ X(1) be a regular point with
closure i : D ↪→ X. We claim that the composition ∂ ◦ ε : κ(η)∗ → H0(x,Z`(0)) = [x]Z` satisfies

∂ ◦ ε(f) = [x](−νx(f)),

where νx denotes the valuation on κ(η) induced by x. It suffices to check this after reduction modulo
`r for r ≥ 1. It follows from [SGA4 1

2 , p. 147, (cycle), Lemme 2.3.6] that the fundamental class [x] ∈
H0(x, µ⊗0

`r ) that we defined above via Poincaré duality (i.e. via item (4) in Lemma 6.1) is induced by
the cycle class

cl`r (D) ∈ H2
D(Xét, µ`r ) = H2(Dét, i

!
rµ`r ) ' H2−2d(Dét, π

!
Dµ
⊗1−d
`r )

from [SGA4 1
2 , p. 138, (cycle), Définition 2.1.2]. The claim in question follows therefore from the anti-

commutativity of the diagram in [SGA4 1
2 , p. 138, (cycle), (2.1.3)]. This concludes the proof of (P6).

By Lemma 5.8 and Corollary 5.10 (which apply because we have proven (P1)–(P6) already), the
proper pushforward map from (P1) together with H0(x,Z`(0)) = [x]Z` from (P3) yields for any X ∈ V
a canonical map

ι∗ :
⊕

x∈X(1)

[x]Z` //H2(F1X,Z`(1)) ' H2(X,Z`(1)),

as claimed in (4.3). If X is a smooth variety, then there is a canonical isomorphism H2(X,Z`(1)) '
H2
cont(X,Z`(1)) (see Lemma 6.5) and so we may compare ι∗ to the first Chern class map c1 from (6.3),

as follows.

Lemma 6.7. Let k be a field and let X be a smooth k-variety. For any Weil divisor D ∈
⊕

x∈X(1) [x]Z,
we have

(1) ι∗D = c1(OX(D)), where ι∗ is the cycle class map from (4.3) and c1 is from (6.3).
(2) c1(OX(D)) = 0 if and only if OX(D) ∈ Pic(X) is contained in the subgroup of `-divisible

elements of Pic(X).

Proof. The first assertion is [Jan88, Lemma 3.26]. For the second assertion, note that the Kummer
sequence (6.2) yields an exact sequence

H1(Xét, (Gm,×`)r) // Pic(X) c1 // H2
cont(X,Z`(1)).

Functoriality of the extension in (6.1) shows that the image of the first map above is given by subgroup
of `-divisible elements of Pic(X) (cf. [Jan88, Remark 6.15]), which concludes the proof of the lemma. �

Step 6. Item (P7.1) for k algebraically closed.

Let us now assume that k is algebraically closed and let X be a regular (hence smooth, as k = k)
variety over k. Note that (P7.1) is well-known in the case where X is smooth projective, and we will
deduce the general case from this statement in what follows. We denote by NS(X) = Pic(X)/ ∼alg

the group of divisors modulo algebraic equivalence on X. Since k is algebraically closed, the subgroup
of algebraically trivial divisors in Pic(X) is `-divisible. By Lemma 6.7, the first Chern class map from
(6.3) descends to a map c1 : NS(X)⊗ Z` → H2(X,Z`(1)) and, again by Lemma 6.7, it suffices to show

that this is injective. Let X be a projective normal compactification of X and let τ : X
′ → X be an

alteration (i.e. a projective generically finite morphism with regular source) of degree prime to `, which

exists by [ILO14, Exposé X, Théorème 2.1]. Since k is algebraically closed, X
′

is smooth. Putting
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X ′ := τ−1(X), we get a commutative diagram

NS(X
′
)⊗ Z`

c1 //

restr.

��

H2(X
′
,Z`(1))

restr.

��

NS(X ′)⊗ Z`

(τ |X′ )∗
��

c1 // H2(X ′,Z`(1))

(τ |X′ )∗
��

NS(X)⊗ Z`
c1 // H2(X,Z`(1)).

We claim that it suffices to show that the horizontal arrow in the middle is injective. To see this, let
α ∈ NS(X) ⊗ Z`. Then c1(τ∗α) = τ∗c1(α) and so injectivity of the horizontal arrow in the middle
implies c1(α) 6= 0 unless τ∗α = 0 which in turn implies τ∗τ

∗α = deg τ · α = 0 and so α = 0 since deg τ
is coprime to `.

By the localization sequence, the kernel of NS(X
′
) ⊗ Z` → NS(X ′) ⊗ Z` is generated by classes of

divisors supported on X
′ \ X. Similarly, the Gysin sequence (see (P2)) shows that the kernel of the

restriction map H2(X
′
,Z`(1))→ H2(X ′,Z`(1)) is generated by the cycle classes of these divisors. Since

the first horizontal map in the above diagram is injective by [Mil80, p. 216, V.3.28], while the restriction

map NS(X
′
)→ NS(X ′) is surjective (see [Ful98, Proposition 1.8]), this shows that the horizontal arrow

in the middle of the above diagram is injective, as we want. This proves (P7.1).

Step 7. Item (P7.2) for k the perfect closure of a finitely generated field.

We will use the following well-known lemma.

Lemma 6.8. Let X be a separated scheme of finite type over a field k of characteristic p > 0 and let
E/k be a purely inseparable extension. Then the flat pullback map CHi(X)[1/p]→ CHi(XE)[1/p] is an
isomorphism.

Proof. The argument is well-known; we recall it for convenience. By a standard limit argument, it
suffices to treat the case where E/k is a finite extension of degree ps for some s. Let f : XE → X
be the canonical map. Then f∗ ◦ f∗ = ps · id and so f∗ is injective after inverting p. Since f is a
universal homeomorphism, we have that for any subvariety Z ⊂ XE : f∗f∗[Z] = m[Z] for some m ≥ 1
and f∗ ◦ f∗ = ps · id implies that m must be a p-power. Hence, f∗ is surjective after inverting p, as we
want. �

Let now k be the perfect closure of a finitely generated field k0 ⊂ k, and let X be a regular (hence
smooth) variety over k. By Lemma 6.7, it suffices to show that the map

c1 ⊗ Z` : Pic(X)⊗Z Z` //H2(X,Z`(1))(6.17)

induced by c1 from (6.3) is injective, where we note that the right hand side identifies to continuous
étale cohomology by Lemma 6.5. Using the existence of prime to ` alterations, the same argument as
in Step 6 reduces us to the case where X is smooth projective over k. At this point the argument is
similar to [Jan88, Remark 6.15].

Since X is defined over some finitely generated field, we may assume (up to enlarging k0) that
X = X0 ×k0 k for some smooth k0-variety X0.

Assume for the moment that X0 is geometrically integral. By Grothendieck’s theorem, the Picard
functor on X0 is then represented by the Picard scheme PicX0/k, see e.g. [Kl05, Theorem 9.4.8]. In
particular, Pic(X0) is given by the group of k0-rational points of PicX0/k. The quotient of PicX0/k by
the identity component is always a finitely generated group scheme (the Néron-Severi group). Moreover,
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the identity component is an abelian variety over k0 and since k0 is finitely generated, its group of k0-
rational points is finitely generated by Néron’s Mordell–Weil theorem [Nér52]. It follows that Pic(X0)
is a finitely generated abelian group.

In general, X0 will split into a finite union of geometrically integral smooth projective varieties after a
finite extension of the base field. The above argument together with a pull and push argument then shows
that in general, Pic(X0) contains an n-torsion subgroup T for some n ≥ 1 such that Q := Pic(X0)/T is
a finitely generated abelian group. We consider the short exact sequence 0 → T → Pic(X0) → Q → 0.
Since Q is finitely generated and T is n-torsion, this sequence remains exact if we apply either the `-adic
completion functor or ⊗ZZ`. Comparing the two resulting short exact sequences, we find that

lim←−
r

(Pic(X0)/`r) ' // Pic(X0)⊗Z Z`.(6.18)

The usual Kummer sequence on the étale site yields compatible injections Pic(X0)/`r ↪→ H2(X0, µ
⊗1
`r ),

i.e. an injection of projective systems. Applying the inverse limit functor, this yields by (6.18) an in-
jection Pic(X0) ⊗Z Z` ↪→ limH2(X0, µ

⊗1
`r ). By (6.1) and the construction of c1 in (6.3), this injection

factors through

c1 ⊗ Z` : Pic(X0)⊗Z Z` //H2(X0,Z`(1))

and so the latter must be injective as well. It follows that (6.17) is injective, because c1 is functorial with
respect to pullbacks, and the canonical pullback maps yield isomorphisms Pic(X0)⊗ZZ` ' Pic(X)⊗ZZ`
(see Lemma 6.8) and H2(X0,Z`(1)) ' H2(X,Z`(1)) (see [BS15, Lemma 5.4.2]), since k/k0 is purely
inseparable by assumption. This concludes the proof of (P7.2) and hence finishes the proof of the
proposition. �

6.2. Borel–Moore cohomology of complex analytic spaces. If X is a complex algebraic scheme
with underlying analytic space Xan and A is an abelian group, then one may (and we will) define its
Borel–Moore homology HBM

i (Xan, A) analogous to singular homology with values in A, but with locally
finite chains instead of finite ones, see [Bre97, Theorem V.12.14 and Corollary V.12.21]. An alternative
sheaf theoretic definition of the same group can be found in [BM60], [Bre97, Chapter V]; a definition in
terms of relative singular cohomology is given in [Ful98, Example 19.1.1] and the references therein. If

X is smooth and equi-dimensional of dimension dX , then HBM
i (Xan, A) ' H2dX−i

sing (Xan, A) by Poincaré

duality, see [Bre97, Chapter V, Section 9].

Proposition 6.9. Let V be the category whose objects are separated schemes of finite type over C
and whose morphisms are given by open immersions of schemes of the same dimension. Let further
A = ModZ and put A(n) := A⊗Z (2πi)nZ for all A ∈ A and n ∈ Z. Let then

Hi(X,A(n)) := HBM
2dX−i(Xan, A(dX − n)),

where the right hand side denotes Borel–Moore homology of the underlying analytic space, and where
dX = dimX. Then H∗(−, A(n)) defines an integral twisted Borel–Moore cohomology theory that is
adapted to algebraic equivalence, see Definition 4.6.

Proof. Property (P1’) follows from covariant functoriality of Borel–Moore homology with respect to
proper maps, and item (P2’) is a consequence of the long exact sequence of pairs in Borel–Moore homol-
ogy, see e.g. [Ful98, §19.1] and the references therein. If X is smooth and integral, then Hi(X,A(n)) '
Hi
sing(Xan, A(n)). In particular, H0(X,A(0)) ' A and there is a canonical class

[X] ∈ H0
sing(Xan,Z(0)) = Z,

which corresponds to 1 ∈ Z. This proves (P3’), as in the direct limit (4.2), it suffices to run through

smooth integral varieties Vx ⊂ {x}.
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It remains to prove that (P4’)–(P6’) and (P7.1’) hold, where we recall that these properties are
formally deduced from (P4)–(P6) and (P7.1) by the replacement of symbols Z`  Z, Q`  Q, and
`r  r.

Item (P4’) is clear and item (P5’) follows from the long exact sequence associated to the coefficient

sequence 0 → Z(1)
×r→ Z(1) → Z/r(1) → 0; functoriality of the Bockstein sequence with respect to

pullbacks and pushforwards in Borel–Moore (co-)homology are well-known and left to the reader.
For property (P6’), note that in the direct limit (4.2) it suffices to run through regular (Zariski) open

subsets V := Vx of the closure of x in X. In this case, Hi(V,A(n)) identifies to singular cohomology
and so the exponential sequence yields a map H0(Van,O∗Van

) → H1(V,Z(1)). Taking direct limits, and

using that algebraic functions are holomorphic, we get a map ε : κ(x)∗ → H1(x,Z(1)). For any positive
integer r, this induces by reduction modulo r a map

ε : κ(x)∗ → H1(x,Z/r(1))

and we need to prove that this is surjective.
Consider the following commutative diagram of sheaves on Van (cf. [CTV12, §3.1]):

0 // Z(1) //

e
1
r
−

��

OVan

e
1
r
−

��

e− // O∗Van

=

��

// 0

0 // µr // O∗Van

(−)r
// O∗Van

// 0.

The rows in the above diagram are exact and we get a boundary map β : H0(Van,O∗Van
) → H1(V, µr).

Taking the direct limit over all (Zariski) open dense V ⊂ {x} and restricting β to algebraic functions,
we get a map β : κ(x)∗ → H1(x, µr). Commutativity of the above diagram shows that β identifies to

ε under the isomorphism Z/r(1) → µr, 1 ⊗ (2πi)
� // e

2πi
r . It thus suffices to show that β is surjective.

This follows by comparing the sequence above with the Kummer sequence 0 → µr → Gm → Gm → 0
on the étale site Vét and using that H1(Van, µr) ' H1(Vét, µr) (see e.g. [Mil80, p. 117, III.3.12]) and

lim //
∅6=V⊂{x}

H1(Vét,Gm) = 0,

because H1(Vét,Gm) ' Pic(V ) by Grothendieck’s Hilbert 90 theorem. We have thus shown that ε is
surjective. Finally, let X ∈ V integral with generic point η and a regular point x ∈ X(1). We claim that
the natural composition

κ(η)∗ ε // // H1(η,Z(1)) ∂ // H0(x,Z(0)) = [x]Z,

where ∂ is induced by (P2’), maps f to [x](−νx(f)), where νx denotes the valuation on κ(η) induced by
x. It suffices to check this modulo an arbitrary prime power, which, thanks to the comparison between
étale cohomology and singular cohomology with finite coefficients (see [Mil80, p. 117, III.3.12]), follows
from Step 5 in the proof of Proposition 6.6. This concludes the proof of (P6’).

Finally, property (P7.1’) is well-known in the case where X is smooth projective and follows for
arbitrary smooth X by choosing a smooth compactification (using resolution of singularities) by a similar
argument as in Step 6 of the proof of Proposition 6.6. This concludes the proof of the proposition. �

7. Comparison theorems to algebraic cycles

In this section, we fix a prime ` and an `-adic twisted Borel–Moore cohomology theory H∗(−, A(n))
on a constructible category of Noetherian schemes V with coefficients in a full subcategory A ⊂ ModZ` ,
see Definition 4.4. In particular, (P1)–(P6) hold true. The main result is that this set-up allows to
compute several cycle groups efficiently.
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7.1. `-adic Chow groups. We use the notation CHi(X)Z` := CHi(X)⊗Z Z`.

Lemma 7.1. For any X ∈ V, there is a canonical isomorphism

CHi(X)Z` '
⊕

x∈X(i) [x]Z`
im
(⊕

x∈X(i−1) κ(x)∗ ⊗Z Z` ε //
⊕

x∈X(i−1) H1(x,Z`(1)) ∂◦ι∗ //
⊕

x∈X(i) [x]Z`
) ,

where ε is induced by the map from (P6), and where ∂ ◦ ι∗ denotes the composition⊕
x∈X(i−1)

H1(x,Z`(1)) ι∗ // H2i−1(Fi−1X,Z`(1)) ∂ //
⊕
x∈X(i)

H0(x,Z`(0)) =
⊕
x∈X(i)

[x]Z`,

where ι∗ and ∂ are induced by (P2) and the last equality uses (P3).

Proof. We recall our convention that for a Noetherian scheme X, X(j) denotes the set of points x ∈ X
of dimension dim({x}) = dim(X) − j. In particular, CHi(X)Z` is the quotient of

⊕
x∈X(i) [x]Z` by

the Z`-submodule generated by cycles that are given by the pushforward of a principal divisor on the
normalization of some subvariety W ⊂ X with dimW = dimX − i + 1. The lemma follows therefore
directly from Lemma 5.12 and the second part of (P6). This concludes the proof. �

In view of Lemma 7.1, it is natural to make the following definition.

Definition 7.2. For X ∈ V, we define

Ai(X)Z` :=

⊕
x∈X(i) [x]Z`

im
(⊕

x∈X(i−1) H1(x,Z`(1)) ∂◦ι∗ //
⊕

x∈X(i) [x]Z`
) .

By Lemma 7.1, there is a canonical surjection

CHi(X)Z`
// //Ai(X)Z` .

We compute the kernel of this surjection in Lemma 7.4 below.

7.2. Cycle class maps and coniveau filtration. By Corollary 5.10, H2i(X,Z`(i)) ' H2i(FiX,Z`(i)).
The Gysin sequence from Lemma 5.8 yields therefore a map

ι∗ :
⊕
x∈X(i)

[x]Z` //H2i(X,Z`(i)),

which is zero on the image of ∂ :
⊕

x∈X(i−1) H1(x,Z`(1))→
⊕

x∈X(i) [x]Z`. It thus follows from Lemma
7.1 and Definition 7.2 that there is a well-defined cycle class map

cliX : CHi(X)Z`
//H2i(X,Z`(i))(7.1)

which factors through the canonical surjection CHi(X)Z`
// //Ai(X)Z` . We then define

CHi
0(X)Z` := ker(cliX).

Since the category V is constructible, Z ∈ V for any closed subscheme Z ⊂ X. Using this, we can
define the coniveau filtration N∗ on CHi(X)Z` as follows.

Definition 7.3. A class z ∈ CHi(X)Z` has coniveau j, i.e. z ∈ N j CHi(X)Z` , if and only if it is

homologically trivial on a closed subscheme of codimension j. More precisely, z ∈ N j CHi(X)Z` if and

only if there is a closed subscheme ι : Z ↪→ X with j = dimX − dimZ and a cycle z′ ∈ CHi−j
0 (Z)Z`

with z = ι∗z
′ ∈ CHi(X)Z` .
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For the case when X is not equi-dimensional, we recall from Section 2 that X(i) := X(d−i) and so

CHi(X)Z` is the group of `-adic cycles of dimension d− i, where d = dimX.

The coniveau filtration N∗ on CHi(X)Z` is of the following form

N i = 0 ⊂ N i−1 ⊂ N i−2 ⊂ · · · ⊂ N1 ⊂ N0 = CHi
0(X)Z` ⊂ CHi(X)Z` .

This definition is related to the groups Ai(X)Z` from Definition 7.2, as follows.

Lemma 7.4. Let X ∈ V. Then Ai(X)Z` = CHi(X)Z`/N
i−1 CHi(X)Z` .

Proof. We need to show that a codimension i-cycle on X has coniveau i−1 if and only if it is represented
by a cycle in

im

 ⊕
x∈X(i−1)

H1(x,Z`(1)) ∂◦ι∗ //
⊕
x∈X(i)

[x]Z`

 .(7.2)

For Z ∈ V the Gysin sequence (P2) yields a residue map

∂ : H1(F0Z,Z`(1)) //
⊕
z∈Z(1)

[z]Z`.

The compatibility of the Gysin sequence with proper pushforwards yields a commutative diagram

H1(F0Z
red,Z`(1)) //

��

⊕
z∈(Zred)(1) [z]Z`

=

��

H1(F0Z,Z`(1)) //
⊕

z∈Z(1) [z]Z`

where Zred denotes the reduced scheme that underlies Z. If Z ⊂ X is closed so that U = X \Z satisfies
dimU = dimX, then the comparison of the Gysin sequences for the pairs (X,Z) and (X,Zred) shows
by the five lemma that the pushforward map Hi(Zred, A(n)) → Hi(Z,A(n)) is an isomorphism. This
argument remains valid if we replace Z by some dense open subset Z◦ ⊂ Z and X by X \ (Z \ Z◦). It
follows that in the above diagram the vertical arrow on the left is an isomorphism for all Z ⊂ X closed
with dim(X \ Z) = dimX. The image in (7.2) therefore agrees with

im

⊕
Z⊂X

H1(F0Z,Z`(1)) ∂◦ι∗ //
⊕
x∈X(i)

[x]Z`

 ,

where Z ⊂ X runs through all closed subschemes Z ⊂ X with i − 1 = dimX − dimZ and ι : Z ↪→ X
denotes the inclusion.

Let us now fix a subscheme Z ⊂ X with i − 1 = dimX − dimZ. Since the Gysin sequence (P2) is
functorial with respect to proper pushforwards, we get from Lemma 5.8 a commutative diagram

H1(F0Z,Z`(1))

ι∗

��

∂ //
⊕

z∈Z(1) [z]Z`� _

ι∗

��

cl1Z // H2(Z,Z`(1))

ι∗

��

H2i−1(Fi−1X,Z`(i))
∂ //

⊕
x∈X(i) [x]Z`

cliX // H2i(X,Z`(i)),

with exact rows. Exactness of the first row shows that the `-adic cycles that are homologically trivial
on Z are exactly those in the image of ∂ in the left upper corner. This description together with the
commutativity of the square on the left implies the lemma. �
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By the above lemma, Ai(X)Z` = CHi(X)Z`/N
i−1 CHi(X)Z` . The following lemma computes this

quotient (and hence N i−1 CHi(X)Z`) in the cases where (P7.1) and (P7.2) hold, respectively; the
result is essentially due to Jannsen, see [Jan00, Lemmas 5.7 and 5.8] where it is proven ⊗Q`.

Before we state the next result, we refer the reader to [Ful98, §10.3] for the definition of algebraic
equivalence of algebraic cycles.

Lemma 7.5. For X ∈ V, the following holds:

(1) If (P7.1) holds, then

N i−1 CHi(X)Z` = CHi(X)alg ⊗Z Z` and Ai(X)Z` = (CHi(X)/ ∼alg)⊗Z Z`.

(2) If (P7.2) holds, then N i−1 CHi(X)Z` = 0 and Ai(X)Z` = CHi(X)⊗Z Z`.

Proof. We aim to describe the image of⊕
x∈X(i−1)

H1(x,Z`(1)) ι∗ // H2i−1(Fi−1X,Z`(1)) ∂ //
⊕
x∈X(i)

[x]Z`.

By Lemma 5.12, the image is generated by the images of the maps

H1(F0W
′,Z`(1)) ∂ //

⊕
w∈(W ′)(1)

[w]Z` τ∗ //
⊕
x∈X(i)

[x]Z`,

whereW ⊂ X runs through all closed subvarieties of codimension dimX−dimW = i−1 and τ : W ′ →W
denotes the normalization. By Lemma 5.8, the image of ∂ above is given by the kernel of

ι∗ :
⊕

w∈(W ′)(1)

[w]Z` //H2(F1W
′,Z`(1)) ' H2(W ′,Z`(1)),(7.3)

where the last isomorphism is due to Corollary 5.10. Since W ′ is normal, it is regular in codimension
one and so we may in (7.3) up to shrinking W ′ assume that W ′ is regular. The kernel of (7.3) then
coincides with the Z`-module spanned by algebraically trivial divisors on W ′ if (P7.1) holds, and it
coincides with the Z`-module spanned by principal divisors if (P7.2) holds. This description proves the
lemma. �

7.3. The cokernel of the cycle class map.

Definition 7.6. For X ∈ V, we define

Zi(X)Z` := coker
(
cliX : CHi(X)Z`

//H2i(X,Z`(i))
)
,

and Zi(X)[`r] := Zi(X)Z` [`
r], where the cycle class map cliX is from (7.1).

The following result generalizes Colliot-Thélène–Voisin’s computation of the failure of the integral
Hodge conjecture for codimension two cycles on smooth complex projective varieties from [CTV12]. The
argument follows the same lines as in Section 3 above.

Theorem 7.7. For any X ∈ V, there are canonical isomorphisms:

Zi(X)[`r] ' H2i−1
i−2,nr(X,µ

⊗i
`r )/H2i−1

i−2,nr(X,Z`(i)),(7.4)

Zi(X)[`∞] ' H2i−1
i−2,nr(X,Q`/Z`(i))/H

2i−1
i−2,nr(X,Q`(i)).(7.5)

The image of H2i(X,Z`(i))[`r] → Zi(X)[`r] corresponds via the isomorphism in (7.4) to the subspace
generated by the image of H2i−1(X,µ⊗i`r )→ H2i−1

i−2,nr(X,µ
⊗i
`r ). Similarly, the image of H2i(X,Z`(i))[`∞]→

Zi(X)[`∞] corresponds via the isomorphism in (7.5) to the subspace generated by the image of

H2i−1(X,Q`/Z`(i))→ H2i−1
i−2,nr(X,Q`/Z`(i)).

Before we turn to the proof of the above theorem we need the following:
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Lemma 7.8. Let X ∈ V. Then the natural map

H2i−1(Fi−1X,µ
⊗i
`r )

H2i−1(Fi−1X,Z`(i))
//
F i−1H2i−1(Fi−2X,µ

⊗i
`r )

F i−1H2i−1(Fi−2X,Z`(i))
=

H2i−1
i−2,nr(X,µ

⊗i
`r )

H2i−1
i−2,nr(X,Z`(i))

is an isomorphism.

Proof. Since the above map is clearly surjective, it suffices to show that it is injective. Since

F i−1H2i−1(Fi−2X,Z`(i)) = im(H2i−1(Fi−1X,Z`(i))→ H2i−1(Fi−2X,Z`(i))),
it thus suffices to show that any element

α ∈ ker
(
H2i−1(Fi−1X,µ

⊗i
`r ) //H2i−1(Fi−2X,µ

⊗i
`r )
)

satisfies
δ(α) = 0 ∈ H2i(Fi−1X,Z`(i)),

which by (P5) implies that α lifts to an integral class. By Lemma 5.8, α = ι∗ξ for some

ξ ∈
⊕

x∈X(i−1)

H1(x, µ⊗1
`r ).

Since δ commutes with ι∗ by functoriality of the Bockstein sequence in (P5), we find δ(α) = ι∗(δ(ξ)).
On the other hand,

δ(ξ) ∈
⊕

x∈X(i−1)

H2(x,Z`(1))

is `r-torsion by property (P5), while the above direct sum is torsion-free by Lemma 5.13. Hence,
δ(α) = 0, which concludes the proof of the lemma. �

Proof of Theorem 7.7. By Lemma 5.8, we have an exact sequence⊕
x∈X(i)

[x]Z` ι∗ // H2i(X,Z`(i)) //H2i(Fi−1X,Z`(i)) //
⊕
x∈X(i)

H1(x,Z`(0)).

By Lemma 5.13, the last term in this sequence is torsion-free and so

Zi(X)[`r] ' H2i(Fi−1X,Z`(i))[`r].
By property (P5), the Bockstein map thus induces an isomorphism

Zi(X)[`r] '
H2i−1(Fi−1X,µ

⊗i
`r )

H2i−1(Fi−1X,Z`(i))
.(7.6)

By Lemma 7.8, we then get a canonical isomorphism

Zi(X)[`r] '
H2i−1
i−2,nr(X,µ

⊗i
`r )

H2i−1
i−2,nr(X,Z`(i))

,

which proves (7.4).
Let now α ∈ H2i−1(Fi−1X,µ

⊗i
`r ) with image

[α] ∈
H2i−1(Fi−1X,µ

⊗i
`r )

H2i−1(Fi−1X,Z`(i))
.

By Corollary 5.10, H2i−1(FiX,µ
⊗i
`r ) ' H2i−1(X,µ⊗i`r ) and so [α] lifts to F iH2i−1(Fi−1X,µ

⊗i
`r ) if and

only if δ(α) ∈ H2i(Fi−1X,Z`(i))[`r] lifts to an `r-torsion class in H2i(X,Z`(i)). Hence, the image of the
`r-torsion classes H2i(X,Z`(i))[`r] inside Zi(X)[`r] correspond via (7.6) to the subspace

F iH2i−1(Fi−1X,µ
⊗i
`r )

H2i−1(Fi−1X,Z`(i))
⊂

H2i−1(Fi−1X,µ
⊗i
`r )

H2i−1(Fi−1X,Z`(i))
,
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where we recall that F iH2i−1(Fi−1X,µ
⊗i
`r ) ⊂ H2i−1(Fi−1X,µ

⊗i
`r ) is the image of H2i−1(X,µ⊗i`r ), see

Corollary 5.10. Combining this with the isomorphism in Lemma 7.8, we find that the image of
H2i(X,Z`(i))[`r] → Zi(X)[`r] corresponds via the isomorphism in (7.4) to the subspace generated
by the image of H2i−1(X,µ⊗i`r )→ H2i−1

i−2,nr(X,µ
⊗i
`r ), as claimed.

By (P4), the identity (7.5) as well as the assertion on the image of H2i(X,Z`(i))[`∞] → Zi(X)[`∞]
follow from what we have proven above by taking direct limits over r. This concludes the proof of the
theorem. �

The above proof has the following consequence, that we want to record here.

Corollary 7.9. Let X ∈ V and α ∈ H2i−1(Fi−1X,µ
⊗i
`r ). Then

δ(α) ∈ im(H2i(X,Z`(i))→ H2i(Fi−1X,Z`(i))).
Proof. By Lemma 5.8, we have an exact sequence⊕

x∈X(i)

[x]Z` ι∗ // H2i(X,Z`(i)) //H2i(Fi−1X,Z`(i)) //
⊕
x∈X(i)

H1(x,Z`(0)).

For any α ∈ H2i−1(Fi−1X,µ
⊗i
`r ), the class δ(α) ∈ H2i(Fi−1X,Z`(i)) is torsion and so Lemma 5.13

implies that it maps to zero in
⊕

x∈X(i) H1(x,Z`(0)). �

7.4. The `-adic Griffiths group. Recall from (7.1) that the cycle class map cliX : CHi(X)Z` →
H2i(X,Z`(i)) factorizes through Ai(X)Z` from Definition 7.2. We denote the induced cycle class map

on Ai(X)Z` by c̃l
i

X .

Definition 7.10. For X ∈ V, we define

Ai0(X)Z` := ker
(

c̃l
i

X : Ai(X)Z`
//H2i(X,Z`(i))

)
.

By Lemma 7.5, Ai0(X)Z` coincides with the `-adic Griffiths group of homologically trivial Z`-cycles
modulo algebraic equivalence if (P7.1) holds, while it is given by the kernel of the cycle class map
CHi(X)Z` → H2i(X,Z`(i)) if (P7.2) holds.

Using the definition of Ai(X)Z` from Section 7.1, we get

Ai0(X)Z` =
ker
(
ι∗ :

⊕
x∈X(i) [x]Z` //H2i(X,Z`(i))

)
im
(
∂ ◦ ι∗ :

⊕
x∈X(i−1) H1(x,Z`(1)) //

⊕
x∈X(i) [x]Z`

) .(7.7)

The following result is motivated by Bloch–Ogus’ computation of the second Griffiths group of a smooth
complex projective variety in [BO74, (7.5)].

Proposition 7.11. For X ∈ V, there is a canonical isomorphism

Ai0(X)Z` ' H
2i−1
i−2,nr(X,Z`(i))/H

2i−1(X,Z`(i)).
Proof. By Lemma 5.8 and Corollary 5.10, we have exact sequences

H2i−1(X,Z`(i)) //H2i−1(Fi−1X,Z`(i)) ∂ //
⊕
x∈X(i)

[x]Z` ι∗ // H2i(X,Z`(i))

and ⊕
x∈X(i−1)

H1(x,Z`(1)) ι∗ // H2i−1(Fi−1X,Z`(i)) //H2i−1(Fi−2X,Z`(i)).

This shows by (7.7) that Ai0(X)Z` is isomorphic to

im

(
H2i−1(Fi−1X,Z`(i))
H2i−1(X,Z`(i))

//
H2i−1(Fi−2X,Z`(i))
H2i−1(X,Z`(i))

)
,

which proves the proposition by definition of H2i−1
i−2,nr(X,Z`(i)). �
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Combining Theorem 7.7 and Proposition 7.11, we obtain the following.

Corollary 7.12. Let X ∈ V. Then there is a canonical short exact sequence

0 //Ai0(X)Z` ⊗ Z/`r //
H2i−1
i−2,nr(X,µ

⊗i
`r )

H2i−1(X,µ⊗i`r )
//

Zi(X)[`r]

H2i(X,Z`(i))[`r]
// 0.

Proof. By Proposition 7.11, there is an exact sequence

Ai0(X)Z` ⊗ Z/`r //
H2i−1
i−2,nr(X,µ

⊗i
`r )

H2i−1(X,µ⊗i`r )
//

H2i−1
i−2,nr(X,µ

⊗i
`r )

H2i−1
i−2,nr(X,Z`(i))⊕H2i−1(X,µ⊗i`r )

// 0.

By Theorem 7.7, Zi(X)[`r] ' H2i−1
i−2,nr(X,µ

⊗i
`r )/H2i−1

i−2,nr(X,Z`(i)). One checks that the natural map

H2i−1(X,µ⊗i`r )→ Zi(X)[`r] is induced by the Bockstein morphism and so its image coincides with the
image of the natural map H2i(X,Z`(i))[`r]→ Zi(X)[`r]. We thus get an exact sequence

Ai0(X)Z` ⊗ Z/`r //
H2i−1
i−2,nr(X,µ

⊗i
`r )

H2i−1(X,µ⊗i`r )
//

Zi(X)[`r]

H2i(X,Z`(i))[`r]
// 0(7.8)

and it remains to show that the first arrow is injective. For this, let z ∈
⊕

x∈X(i) [x]Z` with ι∗z = 0 and

let [z] ∈ Ai0(X)Z` . By Lemma 5.8, there is a class α ∈ H2i−1(Fi−1X,Z`(i)) with ∂α = z. The map in
question sends [z] to the image of α in

F i−1H2i−1(Fi−2X,µ
⊗i
`r )

H2i−1(X,µ⊗i`r )
=
H2i−1
i−2,nr(X,µ

⊗i
`r )

H2i−1(X,µ⊗i`r )
.

If this vanishes, then there is a class ξ ∈
⊕

x∈X(i−1) H1(x, µ⊗1
`r ) such that

∂(α+ ι∗ξ) = 0 ∈
⊕
x∈X(i)

[x]Z/`r,

where α denotes the image of α in H2i−1(Fi−1X,µ
⊗i
`r ). By property (P6), we can pick a lift ξ′ ∈⊕

x∈X(i−1) H1(x,Z`(1)) of ξ and find that

∂(α+ ι∗ξ
′) ∈

⊕
x∈X(i)

[x]Z`

is zero modulo `r. The above cycle and z = ∂α have the same class in Ai(X)Z` and so z has trivial
image in Ai0(X)Z`/`

r. This shows that the first map in (7.8) is injective and so the exact sequence from
the corollary follows. This concludes the proof. �

The following result gives a geometric interpretation of the extension

Ei`r :=
H2i−1
i−2,nr(X,µ

⊗i
`r )

H2i−1(X,µ⊗i`r )

from Corollary 7.12.

Lemma 7.13. For X ∈ V, there is a canonical isomorphism

Ei`r (X) ' ker(c̄l
i
X : Ai(X)Z`/`

r //H2i(X,µ⊗i`r )),

where c̄l
i
X denotes by reduction modulo `r of the cycle class map c̃l

i

X : Ai(X)Z` → H2i(X,Z`(i)).
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Proof. By Lemma 5.8, we have exact sequences

H2i−1(X,µ⊗i`r ) //H2i−1(Fi−1X,µ
⊗i
`r ) ∂ //

⊕
x∈X(i)

[x]Z/`r ι∗ // H2i(X,µ⊗i`r )

and ⊕
x∈X(i−1)

H1(κ(x), µ⊗1
`r ) ι∗ // H2i−1(Fi−1X,µ

⊗i
`r ) //H2i−1(Fi−2X,µ

⊗i
`r ).

Combining these two sequences, we find that Ei`r (X) is isomorphic to

coker

∂ ◦ ι∗ :
⊕

x∈X(i−1)

H1(κ(x), µ⊗1
`r ) // ker

ι∗ :
⊕
x∈X(i)

[x]Z/`r → H2i(X,µ⊗i`r )

 .

By (P5) and (P6), H1(κ(x),Z`(1))/`r ' H1(κ(x), µ⊗1
`r ) and so the above cokernel injects into

Ai(X)Z`/`
r = coker

 ⊕
x∈X(i−1)

H1(x,Z`(1)) ∂◦ι∗ //
⊕
x∈X(i)

[x]Z`

 /`r,

cf. Definition 7.2. Moreover, a class z ∈ Ai(X)Z` with reduction [z] ∈ Ai(X)Z`/`
r satisfies [z] ∈ Ei`r if

and only if

c̃l
i

X(z) ∈ ker(H2i(X,Z`(i))→ H2i(X,Z`(i))/`r)
where we use that H2i(X,Z`(i))/`r ↪→ H2i(X,µ⊗i`r ) by (P5). This concludes the proof of the lemma,
because

H2i(X,Z`(i))/`r //H2i(X,µ⊗i`r )

is injective by (P5). �

7.5. A transcendental Abel–Jacobi map on torsion cycles. We write for simplicity Ai0(X)[`r] :=

Ai0(X)Z` [`
r], where Ai0(X)Z` denotes the kernel of the cycle class map c̃l

i

X : Ai(X)Z` → H2i(X,Z`(i)),
see Definition 7.10.

In this section we show that there is a canonical map

λitr : Ai0(X)[`∞] //
H2i−1(X,Q`/Z`(i))
N i−1H2i−1(X,Q`(i))

,(7.9)

where we recall that N jHi(X,A(n)) = ker(Hi(X,A(n))→ Hi(Fj−1X,A(n))). Our result is motivated

by Bloch’s Abel–Jacobi map on CHi(X)[`∞] constructed in [Blo79] in the case where X is smooth
projective over an algebraically closed field. We compare the two constructions in Section 8 below. We
will see that for k = k̄ and when H∗ denotes Borel–Moore pro-étal cohomology (see Proposition 6.6),
then the above map is the transcendental Abel–Jacobi map on torsion cycles, i.e. the smallest quotient
of Bloch’s map that descends to a map on

Ai0(X)[`∞] =
N0 CHi(X)Z`
N i−1 CHi(X)Z`

[`∞].

(The adjective transcendental stems from the fact that N i−1 CHi(X)Z` = CHi(X)alg ⊗Z Z` is the space
of algebraically trivial `-adic cycles in this case.) We will call the above map the transcendental Abel–
Jacobi map, regardless of the ground field and the Borel–Moore cohomlogy theory chosen.

Lemma 5.8 and Corollary 5.10, we have an exact sequence

H2i−1(X,Z`(i)) //H2i−1(Fi−1X,Z`(i)) ∂ //
⊕
x∈X(i)

[x]Z` ι∗ // H2i(X,Z`(i)).(7.10)
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Let now [z] ∈ Ai0(X)[`r] for some r and some z ∈
⊕

x∈X(i) [x]Z`. Then ι∗z = c̃l
i

X(z) = 0 by the definition

of c̃l
i

X and so we may choose a lift α ∈ H2i−1(Fi−1X,Z`(i)) via (7.10). This is well-defined up to classes
that come from H2i−1(X,Z`(i)). Since [z] is `r-torsion, (7.7) implies that ∂(`rα − ι∗ξ) = 0 for some
ξ ∈

⊕
x∈X(i−1) H1(x,Z`(1)). Hence there is a class β ∈ H2i−1(X,Z`(i)) with

β = `rα− ι∗ξ ∈ F iH2i−1(Fi−1X,Z`(i)).(7.11)

By (P4), β/`r ∈ H2i−1(X,Q`(i)). Using functoriality of H∗(−, A(n)) in the coefficients, we may
consider the image of that class in H2i−1(X,Q`/Z`(i)) and define (7.9) via

λitr([z]) := [β/`r] .(7.12)

Lemma 7.14. The map λitr given by (7.12) is well-defined.

Proof. Let us first fix a representative z of [z]. Then λitr([z]) does not depend on the choice of α, as
this would change β by a class in `r · H2i−1(X,Z`(i)). Also, the class ξ is well-defined up to classes
ζ ∈

⊕
x∈X(i−1) H1(x,Z`(1)) with ∂(ι∗ζ) = 0. This changes β by

ι∗ζ ∈ F iH2i−1(Fi−1X,Z`(i)) ' H2i−1(X,Z`(i))

and hence by a class in N i−1H2i−1(X,Z`(i)). In particular,

[β/`r] ∈ H2i−1(X,Q`/Z`(i))
N i−1H2i−1(X,Q`(i))

remains unchanged.
Finally, if we replace z by a cycle z′ that represents the same class in Ai0(X)Z` , then, by (7.7),

z − z′ = ∂ι∗ζ for some ζ ∈
⊕

x∈X(i−1) H1(x,Z`(1)). But then we can replace α by α − ι∗ζ and ξ by
ξ − `r · ζ, so that the class β does not change at all via this process. This proves the lemma. �

The following alternative description of λitr is useful.

Lemma 7.15. Let X ∈ V and let [z] ∈ Ai0(X)Z` be an `r-torsion class. By Proposition 7.11, [z] is
represented by a class α ∈ H2i−1

i−2,nr(X,Z`(i)) such that `r · α lifts to a class β ∈ H2i−1(X,Z`(i)). Then

λitr([z]) = [β/`r] ∈ H2i−1(X,Q`/Z`(i))
N i−1H2i−1(X,Q`(i))

.

Proof. By the proof of Proposition 7.11, α lifts to a class α′ ∈ H2i−1(Fi−1X,Z`(i)) such that ∂α′ = z ∈⊕
x∈X(i) [x]Z` is a representative of [z] ∈ Ai0(X)Z` . Since [z] is `r-torsion, the construction of λitr shows

that there is a class β′ ∈ H2i−1(X,Z`(i)) and ξ ∈
⊕

x∈X(i−1) H1(x,Z`(1)) such that

β′ = `r · α′ + ι∗ξ

and

λitr([z]) = [β′/`r] ∈ H2i−1(X,Q`/Z`(i))
N i−1H2i−1(X,Q`(i))

.

Since β and β′ both restrict to the same class on Fi−2X, we find that

β/`r − β′/`r ∈ N i−1H2i−1(X,Q`(i)).

Hence, λitr([z]) = [β/`r], which concludes the proof of the lemma. �
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7.6. The image of the transcendental Abel–Jacobi map on torsion cycles. For X ∈ V we write

Hi(X,Q`/Z`(n))div := im(Hi(X,Q`(n))→ Hi(X,Q`/Z`(n))),

which is a divisible subgroup of Hi(X,Q`/Z`(n)); if the torsion subgroup of Hi+1(X,Z`(n)) is finitely
generated, then Hi(X,Q`/Z`(n))div is in fact the maximal divisible subgroup of Hi(X,Q`/Z`(n)). For
j ≥ 0, we consider the coniveau filtration

N jHi(X,Q`/Z`(n))div := ker(Hi(X,Q`/Z`(n))div → Hi(Fj−1X,Q`/Z`(n))).

The following result computes the image of λitr. It is motivated by the description of the image of the
Abel–Jacobi map on CH2(X)tors for smooth projective varieties over algebraically closed fields, due to
Bloch and Merkurjev–Suslin, see [MS83, §18.4].

Proposition 7.16. For X ∈ V, the transcendental Abel–Jacobi map λitr from Lemma 7.14 satisfies

im(λitr) =
N i−1H2i−1(X,Q`/Z`(i))div

N i−1H2i−1(X,Q`(i))
.

Proof. Let [z] ∈ Ai0(X)[`∞] and let α ∈ H2i−1(Fi−1X,Z`(i)) with ∂α = z. Assume that `r · [z] = 0.
Then, as we have seen above, there are classes ξ ∈

⊕
x∈X(i−1) H1(x,Z`(1)) and β ∈ H2i−1(X,Z`(i))

such that (7.11) holds true. By definition, λitr([z]) = [β/`r] is the class represented by the image of
β/`r ∈ H2i−1(X,Q`(i)). This shows in particular

im(λitr) ⊂
H2i−1(X,Q`/Z`(i))div
N i−1H2i−1(X,Q`(i))

=
im(H2i−1(X,Q`(i))→ H2i−1(X,Q`/Z`(i)))

N i−1H2i−1(X,Q`(i))
.

Next, note that ι∗ξ vanishes on Fi−2X and so (7.11) implies that

[β/`r] = [α] = 0 ∈ H2i−1(Fi−2X,Q`/Z`(i))
because α is an integral class. Hence,

im(λitr) ⊂
N i−1H2i−1(X,Q`/Z`(i))div

N i−1H2i−1(X,Q`(i))
,

as we want.
Conversely, let

γ ∈ N i−1H2i−1(X,Q`/Z`(i))div.
By Lemma 5.8,

γ ∈ im

 ⊕
x∈X(i)

H1(x,Q`/Z`(1))→ H2i−1(Fi−1X,Q`/Z`(i))

 .

Since H1(x,Q`(1))→ H1(x,Q`/Z`(1)) is surjective by (P4) and (P6), we conclude (using again (P4))
that there is a class ξ ∈

⊕
x∈X(i) H1(x,Z`(1)) and a positive integer r such that γ lifts to the class

1

`r
· ι∗ξ ∈ H2i−1(Fi−1X,Q`(i)).

Since γ lifts to a rational class by assumption, (P4) implies there is a class β ∈ H2i−1(X,Z`(i)) and

a positive integer r′ such that γ lifts to β/`r
′ ∈ H2i−1(X,Q`(i)). Up to replacing r and r′ by their

maximum (and ξ resp. β by a suitable multiple), we may assume that r = r′. Let then

α′ := β/`r − ι∗ξ/`r ∈ H2i−1(Fi−1X,Q`(i)).
Note that the image of α′ in H2i−1(Fi−1X,Q`/Z`(i)) vanishes. By (P4) and (P5), it follows that α′ lifts
to a class α ∈ H2i−1(Fi−1X,Z`(i)). We then find that there is a torsion class τ ∈ H2i−1(Fi−1X,Z`(i))
such that

`rα = β − ι∗ξ + τ ∈ H2i−1(Fi−1X,Z`(i)).
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Since τ is torsion, there is a positive integer s such that `s · τ = 0 and we get

`sβ = `r+sα+ `sι∗ξ ∈ H2i−1(Fi−1X,Z`(i)).

Let z := ∂α with associated class [z] ∈ Ai0(X). Then the above identity shows that [z] is `r+s-torsion
with associated transcendental Abel–Jacobi invariant

λitr([z]) = [`sβ/`r+s] = [β/`r] = [γ] ∈ H2i−1(X,Q`/Z`(i))/N i−1H2i−1(X,Q`(i)).

Hence, [γ] ∈ im(λitr), which concludes the proof of the proposition. �

7.7. The kernel of the transcendental Abel–Jacobi map on torsion cycles.

Definition 7.17. For X ∈ V, we define

T i(X)[`∞] := ker

(
λitr : Ai0(X)[`∞] //

H2i−1(X,Q`/Z`(i))
N i−1H2i−1(X,Q`(i))

)
where λitr is the transcendental Abel–Jacobi map defined in Section 7.5. We further let T i(X)[`r] ⊂
T i(X)[`∞] denote the subgroup of `r-torsion elements.

Recall the filtrations F ∗ and G∗ from Definitions 5.3 and 5.4.

Lemma 7.18. Let X ∈ V. Then

GiH2i−2
i−3,nr(X,µ

⊗i
`r ) ⊂ H2i−2

i−3,nr(X,µ
⊗i
`r )

is the subspace of classes α ∈ H2i−2
i−3,nr(X,µ

⊗i
`r ) that admit a lift α′ ∈ H2i−2(Fi−2X,µ

⊗i
`r ) such that

δ(α′) ∈ H2i−1(Fi−2X,Z`(i)) lifts to H2i−1(X,Z`(i)).

Proof. This is an immediate consequence of the definition and the fact that

F iH2i−1(Fi−2X,Z`(i)) = im(H2i−1(X,Z`(i))→ H2i−1(Fi−2X,Z`(i))),

because H2i−1(FiX,Z`(i)) ' H2i−1(X,Z`(i)) by Corollary 5.10. �

The following result is motivated by [Voi12] and [Ma17], where T 3(X)[`∞] is computed for smooth
projective varieties over k = C.

Theorem 7.19. Let X ∈ V and assume that for any x ∈ X, H3(x,Z`(2)) is torsion-free. Then there
are canonical isomorphisms

T i(X)[`∞] ' H2i−2(Fi−2X,Q`/Z`(i))
GiH2i−2(Fi−2X,Q`/Z`(i))

'
H2i−2
i−3,nr(X,Q`/Z`(i))

GiH2i−2
i−3,nr(X,Q`/Z`(i))

.

The above theorem will be deduced from the following two propositions below.

Proposition 7.20. For any X ∈ V, there is a canonical isomorphism

T i(X)[`∞] ' H2i−1(Fi−2X,Z`(i))[`∞]

F iH2i−1(Fi−2X,Z`(i))[`∞]
.

Proof. Let [z] ∈ Ai0(X)[`r] for some r. By construction and Lemma 7.14, λitr([z]) = 0 if and only if
for some classes α ∈ H2i−1(Fi−1X,Z`(i)), ξ ∈

⊕
x∈X(i−1) H1(x,Z`(1)) and β ∈ H2i−1(X,Z`(i)) with

z = ∂α and

β = `rα− ι∗ξ ∈ H2i−1(Fi−1X,Z`(i)),(7.13)

we have that β/`r ∈ H2i−1(X,Q`/Z`(i)) admits a lift

γ ∈ N i−1H2i−1(X,Q`(i)) = ker(H2i−1(X,Q`(i))→ H2i−1(Fi−2X,Q`(i))).
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This means that
β/`r = γ + ε ∈ H2i−1(X,Q`(i))

for some ε ∈ H2i−1(X,Z`(i)). Replacing α by α − ε, we may assume that ε = 0 and so β/`r ∈
N i−1H2i−1(X,Q`(i)).

By Lemma 5.8, there is an exact sequence⊕
x∈X(i−1)

H1(x,Z`(1)) ι∗ // H2i−1(Fi−1X,Z`(i)) f //H2i−1(Fi−2X,Z`(i)),

where f denotes the canonical restriction map. Since β/`r ∈ N i−1H2i−1(X,Q`(i)), we find that
λitr([z]) = 0 implies that the image f(α) ∈ H2i−1(Fi−2X,Z`(i)) of α is torsion. We claim that the
map

ϕ : T i(X)[`∞] //
H2i−1(Fi−2X,Z`(i))[`∞]

F iH2i−1(Fi−2X,Z`(i))[`∞]
, [z] � // ϕ([z]) := [f(α)]

is well-defined. Here we emphasize that the class α ∈ H2i−1(Fi−1X,Z`(i)) used in the definition of
ϕ([z]) is not an arbitrary representative that satisfies ∂α = z, but it is chosen in such a way that β from
(7.13) satisfies β/`r ∈ N i−1H2i−1(X,Q`(i)).

To prove that ϕ is well-defined, let us first fix z. Then the condition ∂α = z shows that α is unique
up to classes in H2i−1(X,Z`(i)) and so [f(α)] is independent of the choice of α for fixed z as we quotient
out F iH2i−1(Fi−2X,Z`(i))[`∞] in the above formula. If z′ and z have the same class in Ai(X)Z` , then,
by (7.7), z − z′ = ∂ι∗ζ for some ζ ∈

⊕
x∈X(i−1) H1(x,Z`(1)). The class α′ := α − ι∗ζ then satisfies

∂(α− ι∗ζ) = z′ and, by (7.13),

β = `rα′ − ι∗(ξ − ζ) ∈ H2i−1(Fi−1X,Z`(i)).
Since β/`r ∈ N i−1H2i−1(X,Q`(i)), we find that α′ may be used to compute ϕ([z′]), that is, ϕ([z′]) =
f(α′). By exactness of the above sequence, f(α′) = f(α) and so ϕ([z′]) = ϕ([z]). This proves that ϕ is
well-defined, as claimed. It remains to see that ϕ is an isomorphism.

To see that ϕ is injective, assume that in the above construction, f(α) lifts to a class inH2i−1(X,Z`(i)).
Then, by Lemma 5.8, there is a class ε ∈

⊕
x∈X(i−1) H1(x,Z`(1)) such that

α− ι∗ε ∈ H2i−1(Fi−1X,Z`(i))
lifts to H2i−1(X,Z`(i)). Since ∂α and ∂(α− ι∗ε) = 0 have the same image in Ai0(X)Z` , it follows that

[z] = [∂α] = [∂(α− ι∗ε)] = 0 ∈ Ai0(X)Z` ,

as we want.
Next, we claim that ϕ is surjective. For this, let γ ∈ H2i−1(Fi−2X,Z`(i))[`r]. Then

∂γ ∈
⊕

x∈X(i−1)

H2(x,Z`(1))

is torsion and so it must vanish by Lemma 5.13. Hence, γ = f(α) for some α ∈ H2i−1(Fi−1X,Z`(i)).
The cycle z = ∂α is then homologically trivial (i.e. lies in the kernel of cliX) by exactness of (7.10). The
class [z] ∈ Ai0(X)Z` of z is `r-torsion, because f(`rα) = 0 and so `rα = ι∗ξ (and hence `rz = ∂ι∗ξ)
for some ξ ∈

⊕
x∈X(i−1) H1(x,Z`(1)). In particular, 0 = `rα − ι∗ξ and so λitr([z]) = 0 by construction

in Section 7.5. Hence, [z] ∈ T i(X)[`r]. By definition of ϕ above, we have ϕ([z]) = f(α) = γ. This
concludes the proof of the proposition. �

Proposition 7.21. Let X ∈ V and assume that for any x ∈ X, H3(x,Z`(2)) is torsion-free. Then the
natural map

H2i−2(Fi−2X,µ
⊗i
`r )

GiH2i−2(Fi−2X,µ
⊗i
`r )

//
H2i−2
i−3,nr(X,µ

⊗i
`r )

GiH2i−2
i−3,nr(X,µ

⊗i
`r )
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is an isomorphism.

Proof. The map in question is surjective by definition.
Let now α ∈ H2i−2(Fi−2X,µ

⊗i
`r ) so that the image α′ ∈ H2i−2(Fi−3X,µ

⊗i
`r ) of α is contained in

GiH2i−2
i−3,nr(X,µ

⊗i
`r ). By Lemma 7.18, this means that there is a lift α′′ ∈ H2i−2(Fi−2X,µ

⊗i
`r ) of α′ such

that

δ(α′′) ∈ H2i−1(Fi−2X,Z`(i))
lifts to a class β ∈ H2i−1(X,Z`(i)). Then α− α′′ lies in the kernel of

H2i−2(Fi−2X,µ
⊗i
`r ) //H2i−2(Fi−3X,µ

⊗i
`r ).

Lemma 5.8 thus implies that

α− α′′ = ι∗ξ ∈ H2i−2(Fi−2X,µ
⊗i
`r )

for some ξ ∈
⊕

x∈X(i−2) H2(x, µ⊗2
`r ). The class

δ(ι∗ξ) = ι∗(δ(ξ)) ∈
⊕

x∈X(i−2)

H3(x,Z`(2))

is torsion by property (P5) and so it vanishes, because H3(x,Z`(2)) is torsion-free by assumption. This
shows that δ(α) = δ(α′′). Since δ(α′′) extends to the class β ∈ H2i−1(X,Z`(i)), the same holds for δ(α)
and so

α ∈ GiH2i−2(Fi−2X,µ
⊗i
`r ).

This proves that the map in question is injective, as we want. �

Remark 7.22. The torsion-freeness assumption in the proposition (resp. in Theorem 7.19) will in all
applications be satisfied by Merkurjev–Suslin’s theorem [MS83], i.e. by the Bloch–Kato conjecture in
degree 2, see Remark 5.14.

Proof of Theorem 7.19. We claim that the Bockstein map

δ : H2i−2(Fi−2X,µ
⊗i
`r ) //H2i−1(Fi−2X,Z`(i))

from property (P5) induces an isomorphism

H2i−2(Fi−2X,µ
⊗i
`r )

GiH2i−2(Fi−2X,µ
⊗i
`r )
' H2i−1(Fi−2X,Z`(i))[`r]
F iH2i−1(Fi−2X,Z`(i))[`r]

.(7.14)

By (P5), the image of δ is H2i−1(Fi−2X,Z`(i))[`r] and so it suffices to show that

δ−1
(
F iH2i−1(Fi−2X,Z`(i))[`r]

)
= GiH2i−2(Fi−2X,µ

⊗i
`r ),

which is exactly the definition of Gi (see Definition 5.4). This proves the above claim. Taking direct
limits and using (P4), we get an isomorphism

H2i−2(Fi−2X,Q`/Z`(i))
GiH2i−2(Fi−2X,Q`/Z`(i))

' H2i−1(Fi−2X,Z`(i))[`∞]

F iH2i−1(Fi−2X,Z`(i))[`∞]

The first isomorphism in Theorem 7.19 follows therefore from Proposition 7.20. The second isomorphism
follows from Proposition 7.21 by taking direct limits. This concludes the proof of the theorem. �

Corollary 7.23. For any X ∈ V there are subgroups T i0 (X)[`r] ⊂ T i(X)[`r] with T i(X)[`∞] =⋃
r T i0 (X)[`r] and a canonical isomorphism

T i0 (X)[`r] '
H2i−2(Fi−2X,µ

⊗i
`r )

GiH2i−2(Fi−2X,µ
⊗i
`r )
'

H2i−2
i−3,nr(X,µ

⊗i
`r )

GiH2i−2
i−3,nr(X,µ

⊗i
`r )

.
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Proof. By Proposition 7.20, there is a canonical isomorphism

T i(X)[`∞] ' H2i−1(Fi−2X,Z`(i))[`∞]

F iH2i−1(Fi−2X,Z`(i))[`∞]
.

Using this isomorphism, we define

T i0 (X)[`r] :=
H2i−1(Fi−2X,Z`(i))[`r]
F iH2i−1(Fi−2X,Z`(i))[`r]

.

Hence, T i0 (X)[`r] ⊂ T i(X)[`∞] is a subgroup of `r-torsion elements and so T i0 (X)[`r] ⊂ T i(X)[`r]. Note
also that T i(X)[`∞] =

⋃
r T i0 (X)[`r]. The corollary thus follows from (7.14) and Proposition 7.21. �

For the final result of this subsection, we will need the following definition, where for X ∈ V we let

δ̃ : Hi(X,µ⊗n`r ) //Hi+1(X,µ⊗n`r )

be the composition of the Bockstein map δ from (P5) with the reduction modulo `r map

Hi+1(X,Z`(n)) //Hi+1(X,µ⊗n`r )

given by functoriality in the coefficients.

Definition 7.24. For any X ∈ V, we define a decreasing filtration G̃∗ on Hi(FjX,µ
⊗n
`r ) by

α ∈ G̃mHi(FjX,µ
⊗n
`r ) ⇐⇒ δ̃(α) ∈ FmHi+1(FjX,µ

⊗n
`r ).

Moreover,

G̃mHi
j,nr(X,µ

⊗n
`r ) := im(G̃mHi(Fj+1X,µ

⊗n
`r )→ Hi(FjX,µ

⊗n
`r )).

It follows directly from the definition that GmHi(FjX,µ
⊗n
`r ) ⊂ G̃mHi(FjX,µ

⊗n
`r ).

Proposition 7.25. For any X ∈ V, the kernel of the canonical surjection

T i0 (X)[`r] '
H2i−2(Fi−2X,µ

⊗i
`r )

GiH2i−2(Fi−2X,µ
⊗i
`r )

// //
H2i−2(Fi−2X,µ

⊗i
`r )

G̃iH2i−2(Fi−2X,µ
⊗i
`r )

is given by all classes in T i0 (X)[`r] that are `r-divisible in Ai(X)Z` .

Proof. By Proposition 7.11, there is a canonical isomorphism

Ai0(X)Z` ' H
2i−1
i−2,nr(X,Z`(i))/H

2i−1(X,Z`(i)).

The natural inclusion

T i0 (X)[`r] ↪→ Ai0(X)Z`

corresponds via the isomorphism in Corollary 7.23 to the map

H2i−2(Fi−2X,µ
⊗i
`r )

GiH2i−2(Fi−2X,µ
⊗i
`r )

//
H2i−1
i−2,nr(X,Z`(i))
H2i−1(X,Z`(i))

, [α]
� // [δ(α)].

Here the fact that δ(α) ∈ H2i−1(Fi−2X,Z`(i)) lies in F i−1H2i−1(Fi−2X,Z`(i)) follows from Lemma 5.8,
because δ(α) is torsion while

⊕
x∈X(i−1) H2(x,Z`(i)) is torsion-free by Lemma 5.13.

Let now [α] ∈ T i0 (X)[`r] with α ∈ H2i−2(Fi−2X,µ
⊗i
`r ). As we have seen above, the class

δ(α) ∈ H2i−1(Fi−2X,Z`(i))

admits a lift

δ(α)′ ∈ H2i−1(Fi−1X,Z`(i)).(7.15)
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By Lemma 5.8, the lift is unique up to classes coming from
⊕

x∈X(i−1) H1(κ(x),Z`(1)). Moreover, there
is an exact sequence

H2i−1(X,Z`(i)) //H2i−1(Fi−1X,Z`(i)) ∂ //
⊕
x∈X(i)

[x]Z`.

The class

∂(δ(α)′) ∈
⊕
x∈X(i)

[x]Z`

is unique up to an element of the image of

∂ ◦ ι∗ :
⊕

x∈X(i−1)

H1(x,Z`(1)) //
⊕
x∈X(i)

[x]Z`.

The cokernel of the above map is isomorphic to Ai(X)Z` , see Definition 7.2. Since ∂ is trivial on classes
that lift to H2i−1(X,Z`(i)), we get a well-defined map

H2i−2(Fi−2X,µ
⊗i
`r )

GiH2i−2(Fi−2X,µ
⊗i
`r )

//Ai(X)Z` , [α]
� // [∂(δ(α)′)].

This map identifies via the isomorphism in Corollary 7.23 to the inclusion T i0 (X)[`r] ↪→ Ai(X)Z` .
Let us first assume that

[∂(δ(α)′)] ∈ Ai(X)Z`

is divisible by `r. Then up to a suitable choice of the lift δ(α)′, we may assume that ∂(δ(α)′) is zero
modulo `r. By Lemma 5.8, there is an exact sequence

H2i−1(X,µ⊗i`r ) //H2i−1(Fi−1X,µ
⊗i
`r ) ∂ //

⊕
x∈X(i)

[x]Z/`r.

We thus conclude that the reduction δ̃(α)′ modulo `r of δ(α)′ lifts to a class in H2i−1(X,µ⊗i`r ). Since

δ̃(α)′ is a lift of δ̃(α), this implies α ∈ G̃iH2i−1(Fi−2X,µ
⊗i
`r ).

Conversely, assume that α ∈ H2i−2(Fi−2X,µ
⊗i
`r ) lies in G̃iH2i−2(Fi−2X,µ

⊗i
`r ). That is,

δ̃(α) ∈ H2i−1(Fi−2X,µ
⊗i
`r )

lifts to a class in H2i−1(X,µ⊗i`r ). Consider the lift δ(α)′ ∈ H2i−1(Fi−1X,Z`(i)) of δ(α) from above. The

reduction δ(α)′ ∈ H2i−1(Fi−1X,µ
⊗i
`r ) modulo `r of the lift δ(α)′ is a lift of δ̃(α). Since δ̃(α) lifts to

H2i−1(X,µ⊗i`r ), Lemma 5.8 implies that there is a class

ξ ∈
⊕

x∈X(i−1)

H1(x, µ`r ),

such that

∂
(
δ(α)′ − ι∗ξ

)
= 0 ∈

⊕
x∈X(i)

[x]Z/`r.

Since ξ lifts by (P6) to a class in
⊕

x∈X(i−1) H1(κ(x),Z`(1)), and because ∂
(
δ(α)′

)
is the reduction

modulo `r of ∂(δ(α)′), we conclude that

[∂(δ(α)′)] ∈ Ai(X)Z`

is zero modulo `r. Hence, the class [α] ∈ T i0 (X)[`r] is divisible by `r in Ai(X)Z` , as we want. This
concludes the proof of the proposition. �
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7.8. More on the coniveau filtration on Chow groups. Recall the coniveau filtration N∗ on
CHi(X)Z` from Definition 7.3. By Lemma 7.4,

Ai(X)Z` = CHi(X)Z`/N
i−1 CHi(X)Z` and Ai0(X)Z` = N0 CHi(X)Z`/N

i−1 CHi(X)Z` .

It follows that N∗ induces a filtration on Ai0(X)Z` , given by

N jAi0(X)Z` = N j CHi(X)Z`/N
i−1 CHi(X)Z`

for 0 ≤ j ≤ i− 1. Note that N i−1Ai0(X)Z` = 0. We thus have a finite decreasing filtration of the form

0 = N i−1 ⊂ N i−2 ⊂ N i−3 ⊂ . . . N1 ⊂ N0 = Ai0(X)Z` .

Let f : X → Y be a proper morphism of schemes X,Y ∈ V and let c = dimY − dimX. The
definition of Ai(X)Z` and Ai0(X)Z` (see Definition 7.2 and 7.10) together with the functoriality of the
Gysin sequence (P2) with respect to the pushforward maps from (P1) implies that there are natural
pushforward maps

f∗ : Ai(X)Z`
//Ai+c(Y )Z` and f∗ : Ai0(X)Z`

//Ai+c0 (Y )Z` .

Using these maps, we get the following description of the above filtration on Ai0(X)Z` .

Lemma 7.26. Let X ∈ V. The coniveau filtration N∗ on Ai0(X)Z` is given by

N jAi0(X)Z` = im

(
lim //
Z⊂X

Ai−j0 (Z)Z` → Ai0(X)Z`

)
,

where Z ⊂ X runs through all closed subschemes with dimZ = dimX − j.

The following lemma shows that the coniveau filtration on algebraic cycles is surprisingly well-
behaved.

Lemma 7.27. For X ∈ V, the canonical pushforward maps

lim //
Z⊂X

N0 CHi−j(Z)Z`
//N j CHi(X)Z` and lim //

Z⊂X
Ai−j0 (Z)Z`

//N jAi0(X)Z`

are isomorphisms, where Z ⊂ X runs through all closed subschemes with dimZ = dimX − j.

Proof. Both pushforward maps in question are surjective by definition, cf. Lemma 7.26. Moreover,
injectivity is trivial unless 0 ≤ j ≤ i− 1, which we will assume from now on.

We first prove injectivity of the first map. Let z ∈ CHi−j(Z)Z` be a cycle that is rationally equivalent
to zero on X. Then there is a closed subscheme W ⊂ X with i − 1 = dimX − dimW such that z is
rationally equivalent to zero on Z ∪W . Since j ≤ i− 1, we find that the subscheme Z ∪W appears in
the direct limit in question, which settles the injectivity of the first map in the lemma.

Injectivity of the second map is similar. �

For the following proposition, recall the definition of the coniveau filtration N∗ on refined unramified
cohomology from Definition 5.2.

Proposition 7.28. For X ∈ V, the isomorphism from Proposition 7.11 induces an isomorphism

N jAi0(X)Z`
' //

N jH2i−1
i−2,nr(X,Z`(i))

N jH2i−1(X,Z`(i))
.

Proof. By Proposition 7.11, there is a canonical isomorphism

Ai0(X)Z` ' H
2i−1
i−2,nr(X,Z`(i))/H

2i−1(X,Z`(i)).
By Corollary 5.9, for any 0 ≤ j ≤ i− 1, there is a canonical exact sequence

lim
//
H

2(i−j)−1
i−j−2,nr(Z,Z`(i− j))

ι∗ // H2i−1
i−2,nr(X,Z`(i)) //H2i−1

j−1,nr(X,Z`(i)),
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where the direct limit runs through all closed reduced subschemes Z ⊂ X of dimension dimZ =
dimX − j. Here the first map is induced by the pushforward map with respect to Z ↪→ X and the
second map is the canonical restriction map.

The above sequence induces a sequence

lim
//

H
2(i−j)−1
i−j−2,nr(Z,Z`(i− j))

H2(i−j)−1(Z,Z`(i− j))
ι∗ //

H2i−1
i−2,nr(X,Z`(i))
H2i−1(X,Z`(i))

//
H2i−1
j−1,nr(X,Z`(i))
H2i−1(X,Z`(i))

,

and one directly checks that this sequence remains exact. By Proposition 7.11, the first arrow in this
sequence identifies to the natural map

lim
//
Ai−j0 (Z)Z`

ι∗ // Ai0(X)Z` .

It follows from the functoriality of the Gysin sequence with respect to proper pushforwards (see (P2))
that this map agrees with the pushforward of cycles induced by Z ↪→ X. Hence the image of the above
map is given by N jAi0(X)Z` . The above exact sequence thus yields a canonical isomorphism

N jAi0(X)Z` ' ker

(
H2i−1
i−2,nr(X,Z`(i))
H2i−1(X,Z`(i))

//
H2i−1
j−1,nr(X,Z`(i))
H2i−1(X,Z`(i))

)
.

By definition of the coniveau filtration (see Definition 5.2), we thus get

N jAi0(X)Z` ' im

(
N jH2i−1

i−2,nr(X,Z`(i)) //
H2i−1
i−2,nr(X,Z`(i))
H2i−1(X,Z`(i))

)
.

The kernel of the above map is given by the image of N jH2i−1(X,Z`(i)) and so

N jAi0(X)Z` '
N jH2i−1

i−2,nr(X,Z`(i))
N jH2i−1(X,Z`(i))

as we want. This concludes the proof of the proposition. �

7.9. Higher transcendental Abel–Jacobi mappings. The coniveau filtration N∗ on CHi(X)Z` in-
duces a filtration N∗ on

Ai0(X)Z` = N0 CHi(X)Z`/N
i−1 CHi(X)Z`

and hence on the torsion subgroup Ai0(X)[`∞] ⊂ Ai0(X)Z` . The goal of this section is to show that the
graded pieces of this filtration are detected by higher Abel–Jacobi invariants. To this end it will be
convenient to consider

J
i

tr(X)[`∞] := H2i−1(X,Q`/Z`(i))/N1H2i−1(X,Q`(i)).

Here we use a bar in our notation to emphasize that we are quotiening out N1H2i−1(X,Q`(i)) and not
N i−1H2i−1(X,Q`(i)), as in the construction of λitr in Section 7.5. For i ≥ 2, we haveN i−1H2i−1(X,Q`(i)) ⊂
N1H2i−1(X,Q`(i)) and so λitr induces a canonical map

λ̄itr : Ai0(X)[`∞] // J
i

tr(X)[`∞],(7.16)

where we note that Ai0(X)Z` = 0 for i ≤ 1 by Lemma 7.4.

Definition 7.29. For 0 ≤ j ≤ i, we define the j-th higher transcendental `∞-torsion intermediate
Jacobian of X by

J
i

j,tr(X)[`∞] := lim //
Z⊂X

J
i−j
tr (Z)[`∞],

where Z ⊂ X runs through all subschemes with dimZ = dimX − j.
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It follows from Lemma 7.27 that the map λ̄i−jtr from (7.16), applied to the subschemes Z ⊂ X with
dimZ = dimX − j, yields in the limit a canonical higher Abel–Jacobi map

λ̄ij,tr : N jAi0(X)[`∞] // J
i

j,tr(X)[`∞].(7.17)

Note that J
i

0,tr(X)[`∞] = J
i

tr(X)[`∞] and λ̄i0,tr = λ̄itr. The following theorem computes the kernel of

λ̄ij,tr

Theorem 7.30. Let X ∈ V and assume that the twisted `-adic Borel–Moore cohomology theory H∗ on
V has the property that for all Z ⊂ X with dimZ = dimX − j, the group H2(i−j)−1(F0Z,Z`(i− j)) is
torsion-free. Then for any j ≥ 0, we have ker

(
λ̄ij,tr

)
= N j+1Ai0(X)[`∞].

Proof. By Lemma 7.27 and the construction of λ̄ij,tr via direct limits, it suffices by induction to show
that

ker
(
λ̄itr
)

= N1Ai0(X)[`∞].

To this end, let [z] ∈ Ai0(X)[`∞] and let α ∈ H2i−1
i−2,nr(X,Z`(i)) be a representative of [z] via the

isomorphism in Proposition 7.11. Let r ≥ 1 such that `r[z] = 0 ∈ Ai0(X)[`∞]. Then `r ·α lifts to a class
β ∈ H2i−1(X,Z`(i)). By Lemma 7.15,

λ̄itr([z]) = [β/`r] ∈ H2i−1(X,Q`/Z`(i))
N1H2i−1(X,Q`(i))

.

Assume now that λ̄itr([z]) = 0. Since H2i−1(F0X,Z`(i)) is torsion free by assumption, the preimage of
N1H2i−1(X,Q`(i)) via the natural mapH2i−1(X,Z`(i))→ H2i−1(X,Q`(i)) is given byN1H2i−1(X,Z`(i)).
Hence, (P4) and the assumption [β/`r] = 0 implies that there is a class β′ ∈ N1H2i−1(X,Z`(i)) and a
positive integer r′ such that

β/`r = β′/`r
′
∈ H2i−1(X,Q`/Z`(i)).

Up to replacing r and r′ by their maximum and β, resp. β′ by a suitable multiple, we may assume that
r = r′. We then consider the class

γ := β − β′ ∈ H2i−1(X,Z`(i)).

Since r = r′, γ/`r = 0 ∈ H2i−1(X,Q`/Z`(i)). Hence there is a class δ ∈ H2i−1(X,Z`(i)) and a torsion
class τ ∈ H2i−1(X,Z`(i)) with

γ = `rδ + τ.

Since τ is torsion, there is a positive integer s such that `sτ = 0. Hence,

`sβ = `sβ′ + `r+sδ

is a lift of `r+sα ∈ H2i−1
i−2,nr(X,Z`(i)). Since β′ ∈ N1, we deduce that the image of `r+sα inH2i−1(F0X,Z`(i))

agrees with the image of `r+sδ. Replacing α by α − δ (which does not change the class [z] that α
represents, because ∂δ = 0), we may assume that δ = 0 and we find that the image of `r+sα in
H2i−1(F0X,Z`(i)) vanishes. The latter is torsion-free by assumption and so we conclude that the image
of α in H2i−1(F0X,Z`(i)) vanishes. By Proposition 7.28, this implies [z] ∈ N1Ai0(X)[`∞], as we want.
This concludes the proof of the theorem. �

Remark 7.31. The torsion-freeness condition in the above theorem will in our applications be satisfied
by the Bloch–Kato conjecture, proven by Voevodsky, see Remark 5.14.
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7.10. The second piece of the coniveau filtration. In [Voi12, Ma17], Voisin and Ma showed that
T 3(X)[`∞] is related to unramified cohomology up to an error term given by the torsion subgroup of
H5(X,Z`(3))/N2H5(X,Z`(3)). The next result shows that this error term is exactly what is captured
by the G∗-filtration on traditional unramified Q`/Z`-cohomology from Definition 5.4. In particular,
the statement in Theorem 7.19 specializes in the case of codimension three cycles on smooth complex
projective varieties to the result in [Voi12, Ma17].

Proposition 7.32. For X ∈ V, there is a canonical surjection

ϕ :

(
Hi(X,Z`(n))

N2Hi(X,Z`(n))

)
tors

// //
Gdi/2eHi−1

0,nr(X,Q`/Z`(n))

Hi−1
0,nr(X,Q`(n))

which maps the image of Hi(X,Z`(n))tors on the left onto the image of Hi−1(X,Q`/Z`(n)) on the right.
If Hi−2(x,Z`(n)) is torsion-free for all x ∈ X(1), then ϕ is an isomorphism.

Remark 7.33. By Remark 5.14, Voevodsky’s proof of the Bloch–Kato conjecture implies that Hi−2(x,Z`(i−
3)) is torsion-free for the cohomology theories in Proposition 6.6 and 6.9, so that the surjection in the
above proposition will be an isomorphism for n = i− 3 in those cases, but we will not use this result in
the remainder of this paper.

Proof of Proposition 7.32. Recall thatN2Hi(X,Z`(n)) = ker(Hi(X,Z`(n))→ Hi(F1X,Z`(n))). Hence,(
Hi(X,Z`(n))

N2Hi(X,Z`(n))

)
tors

' // Tors
(
F di/2eHi(F1X,Z`(n)))

)
,(7.18)

because Hi(Fdi/2eX,Z`(n))) ' Hi(X,Z`(n))) by Corollary 5.10.
By (P4) and exactness of the direct limit functor, the integral Bockstein sequence (P5) yields in the

limit r →∞ a Bockstein sequence

. . . //Hi(X,Z`(n)) //Hi(X,Q`(n)) //Hi(X,Q`/Z`(n)) δ //Hi+1(X,Z`(n)) // . . . ,

where by slight abuse of notation we denote the boundary map still by δ. By the description of Q`-
cohomology in (P4), the image of δ agrees with the torsion subgroup of Hi+1(X,Z`(n)). Using exactness
of the direct limit functor once again, we find that the above sequence remains exact for FjX in place
of X. By definition of G∗ in Definition 5.4, δ induces therefore an exact sequence

Hi−1(F1X,Q`(n)) //Gdi/2eHi−1(F1X,Q`/Z`(n)) // Tors(F di/2eHi(F1X,Z`(n)))) // 0.

From this we conclude a canonical isomorphism

Gdi/2eHi−1(F1X,Q`/Z`(n))/Hi−1(F1X,Q`(n)) ' // Tors(F di/2eHi(F1X,Z`(n))))

induced by δ. Combining this with (7.18), we get the surjection ϕ as claimed in the proposition.
It remains to analyse the kernel of the canonical map

Gdi/2eHi−1(F1X,Q`/Z`(n))

Hi−1(F1X,Q`(n))
//
Gdi/2eHi−1(F0X,Q`/Z`(n))

Hi−1(F1X,Q`(n))
.

To this end, let α ∈ Gdi/2eHi−1(F1X,Q`/Z`(n)) be a class that vanishes on F0X. By Lemma 5.8,

α = ι∗ξ, for some ξ ∈
⊕

x∈X(1)

Hi−3(x,Q`/Z`(n− 1)).

If Hi−2(x,Z`(n)) is torsion-free for all x ∈ X(1), then δ(ξ) = 0 and so δ(α) = 0 by functoriality of the
Bockstein sequence (see (P5)). Hence, α lifts to a class in Hi−1(F1X,Q`(n)) and so it vanishes in the
above quotient. This concludes the proof of the proposition. �

Remark 7.34. A version of Proposition 7.32 has been proven independently by Ma [Ma20].
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7.11. Comparison to Bloch–Ogus theory and to Kato homology. In this section we define

Ej,i+j2 (X,A(n)) :=
ker(∂ ◦ ι∗ : ⊕x∈X(j)Hi(x)→ ⊕x∈X(j+1)Hi−1(x))

im(∂ ◦ ι∗ : ⊕x∈X(j−1)Hi+1(x)→ ⊕x∈X(j)Hi(x))
,(7.19)

where H∗(x) is a short hand for H∗(x,A(n − c)), where c = codim(x) = dimX − dim({x}). If X is
smooth and equi-dimensional over a field k and H∗ satisfies the properties of Bloch–Ogus in [BO74,

§1] (see e.g. [BO74, §2]), then Ej,i+j2 (X,A(n)) ' Hj(X,Hi+jX (A(n))) identifies by [BO74] to the j-th
cohomology of the Zariski sheaf associated to U � //Hi+j(U,A(n)).

Proposition 7.35. For any X ∈ V, there is a canonical long exact sequence

. . .→ Hi+2j−1
j−1,nr (X,A(n))→ Hi+2j−1

j−2,nr (X,A(n))→ Ej,i+j2 (X,A(n))→ Hi+2j
j,nr (X,A(n))→ . . .

Proof. The result follows, as explained in Section 1.3, from the derived couple associated to the couple
from Lemma 5.8. With the aim of making the involved maps explicit, we spell out the argument in
some detail in what follows.

Let [ξ] ∈ Ej,i+j2 (X,A(n)) with ξ ∈ ⊕x∈X(j)Hi(x) and ∂ ◦ ι∗(ξ) = 0. By Lemma 5.8, the condition
∂ ◦ ι∗(ξ) = 0 is equivalent to

ι∗ξ ∈ F j+1H2j+i(FjX).

If ξ = ∂ ◦ ι∗(ζ) for some ζ ∈ ⊕x∈X(j−1)Hi+1(x), then

ι∗ξ = ι∗ ◦ ∂ ◦ ι∗(ζ) = 0

by the exactness of the Gysin sequence. It follows that there is a well-defined map

Ej,i+j2 (X,A(n)) //Hi+2j
j,nr (X,A(n)), [ξ] � // ι∗ξ(7.20)

Any class in the image of this map lies in the kernel of

Hi+2j
j,nr (X,A(n)) //Hi+2j

j−1,nr(X,A(n))(7.21)

because ι∗ξ vanishes when restricted to Fj−1X by Lemma 5.8. Conversely, any class α ∈ Hi+2j
j,nr (X,A(n))

in the kernel of the above restriction map is by Lemma 5.8 of the form α = ι∗ξ for some ξ ∈
⊕x∈X(j)Hi(x). The fact that α ∈ Hi+2j

j,nr (X,A(n)) ⊂ Hi+2j(FjX,A(n)) is unramified implies ∂ ◦ ι∗(ξ) =

0, and so α lies in the image of (7.20). Hence, the composition of (7.20) and (7.21) is exact.

Let now [ξ] ∈ Ej,i+j2 (X,A(n)) with ξ ∈ ⊕x∈X(j)Hi(x) and ∂◦ι∗(ξ) = 0 be a class in the kernel of (7.20).
By the exactness of the Gysin sequence, this means that ξ = ∂α for some α ∈ Hi+2j−1(Fj−1X,A(n)).
Hence, the natural sequence

Hi+2j−1(Fj−1X,A(n)) ∂ // Ej,i+j2 (X,A(n)) ι∗ // Hi+2j
j,nr (X,A(n))(7.22)

is exact. The image of

ι∗ : ⊕x∈X(j−1)Hi+1(x,A(n− j + 1)) //Hi+2j−1(Fj−1X,A(n))

lies in the kernel of the first map in (7.22) by the definition in (7.19). By the Gysin sequence, it follows
that (7.22) descends to an exact sequence

Hi+2j−1
j−2,nr (X,A(n)) ∂ // Ej,i+j2 (X,A(n)) ι∗ // Hi+2j

j,nr (X,A(n)).(7.23)

Let [α] ∈ Hi+2j−1
j−2,nr (X,A(n)) with α ∈ Hi+2j−1(Fj−1X,A(n)) and assume that

∂α = 0 ∈ Ej,i+j2 (X,A(n)).

This means that there is a class ζ ∈ ⊕x∈X(j−1)Hi+1(x) with ∂(α − ι∗ζ) = 0. Hence, up to replacing α
by α− ι∗ζ, we may assume ∂α = 0 and so

[α] ∈ F jHi+2j−1(Fj−2X,A(n)).
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Conversely, any class in F jHi+2j−1(Fj−2X,A(n)) clearly maps to zero in Hj(X,Hi+jX (A(n))). Hence,
the kernel of the first map in (7.23) agrees with the image of the canonical restriction map

Hi+2j−1
j−1,nr (X,A(n)) //Hi+2j−1

j−2,nr (X,A(n)).

This concludes the proof of the proposition. �

Corollary 7.36. Let c ≥ 0 be a non-negative integer. Let X ∈ V with d := dimX and assume that for
any x ∈ X(j), H

i(x, µ⊗n`r ) = 0 for i > j + c. Then there is a canonical isomorphism

Ej,d+c
2 (X,µ⊗n`r ) ∼ // Hd+c+j

j,nr (X,µ⊗n`r ).

Proof. Our assumption implies by Corollary 5.11:

Hi
j,nr(X,A(n)) = 0 for all j < i− d− c.

The result in question is then an immediate consequence of Proposition 7.35. �

Remark 7.37. The condition in Corollary 7.36 is satisfied for c = 0 if k = C and the underlying coho-
mology theory is singular/étale cohomology. It is also satisfied if k has finite cohomological dimension
c and the cohomology theory is twisted `-adic pro-étale cohomology, which for finite coefficients agrees
with étale cohomology and so Hi(x, µ⊗n`r ) identifies by [Mil80, p. 88, III.1.16] to the Galois cohomology of

the residue field κ(x). In both cases, Ej,d+c
2 (X,µ⊗n`r ) coincides by definition with Kato homology of X,

see [Kat86, KeSa12, Tia20]. Corollary 7.36 thus shows that Kato homology is a special case of refined
unramified cohomology.

8. Comparison to Bloch’s map

In [Blo79], Bloch constructed an Abel–Jacobi map on torsion cycles in the Chow group of smooth
projective varieties over algebraically closed ground fields. Bloch’s map induces a transcendental Abel–
Jacobi map on torsion-cycles in the Griffiths group of such varieties and we aim to show in this section
that Bloch’s map agrees with the map that we constructed in Section 7.5 (applied to the cohomology
theory from Proposition 6.6 in the case where k = k̄ is algebraically closed and X is smooth projective).

In contrast to Bloch’s map, the transcendental Abel–Jacobi map that we defined in Section 7.5 works
for arbitrary algebraic schemes over a field. This is crucial for the construction of the higher Abel–Jacobi
maps in Section 7.9.

8.1. `r-torsion in Chow groups. Fix a prime ` and an `-adic twisted Borel–Moore cohomology theory
H∗(−, A(n)) on a constructible category of Noetherian schemes V with coefficients in a full subcategory
A ⊂ ModZ` , as in Definitions 4.2 and 4.4. For X ∈ V, x ∈ X there are isomorphisms H0(x,A(0)) ' A
that are functorial in A. Moreover, there is a distinguished class [x] ∈ H0(x,Z`(0)) and we denote the
image of that class in H0(x, µ⊗0

`r ) by the same symbol, so that H0(x, µ⊗0
`r ) = [x]Z/`r. For any X ∈ V,

properties (P1)–(P3), (P5), and (P6) thus imply the existence of the following commutative diagram
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with exact rows (cf. [Blo79, (2.1)]):⊕
x∈X(i−1) κ(x)

∗ ⊗Z Z`
×`r
//

ε

��

⊕
x∈X(i−1) κ(x)

∗ ⊗Z Z` //

ε

��

⊕
x∈X(i−1) κ(x)

∗/(κ(x)∗)`
r

'

��

// 0

⊕
x∈X(i−1) H

1(x,Z`(1))
×`r
//

∂◦ι∗
��

⊕
x∈X(i−1) H

1(x,Z`(1)) //

∂◦ι∗
��

⊕
x∈X(i−1) H

1(x, µ⊗1
`r )

∂◦ι∗
��

// 0

0 //
⊕

x∈X(i) [x]Z` //

��

×`r
//
⊕

x∈X(i) [x]Z` //

��

⊕
x∈X(i) [x]Z/`r // 0

CHi(X)Z`

��

×`r
// CHi(X)Z`

��

Ai(X)Z`
×`r

// Ai(X)Z`

The following is motivated by [Blo79, §2].

Lemma 8.1. For any X ∈ V, there are canonical isomorphisms

φr : CHi(X)[`r] ' //
ker
(
∂ ◦ ι∗ :

⊕
x∈X(i−1) H1(x, µ⊗1

`r ) //
⊕

x∈X(i) [x]Z/`r
)

ker
(
∂ ◦ ι∗ ◦ ε :

⊕
x∈X(i−1) κ(x)∗ ⊗Z Z` //

⊕
x∈X(i) [x]Z`

)
and

ψr : Ai(X)[`r] ' //
ker
(
∂ ◦ ι∗ :

⊕
x∈X(i−1) H1(x, µ⊗1

`r ) //
⊕

x∈X(i) [x]Z/`r
)

ker
(
∂ ◦ ι∗ :

⊕
x∈X(i−1) H1(x,Z`(1)) //

⊕
x∈X(i) [x]Z`

) .
Proof. Note that the first arrow in the third row of the above diagram is injective, while the last arrows
in the first two rows are surjective by property (P6). The result is therefore an immediate consequence
of the snake lemma and the presentation of CHi(X)Z` in Lemma 7.1, respectively the definition of
Ai(X)Z` in Definition 7.2. �

8.2. The case of smooth projective varieties over algebraically closed fields. In this section
we assume that k is an algebraically closed field, ` is a prime that is invertible in k and V denotes the
category of separated schemes of finite type over k. Let A ⊂ ModZ` be the full subcategory spanned
by Z`,Q`,Q`/Z` and Z/`r for all r ≥ 1. We further fix the `-adic twisted Borel–Moore cohomology
theory on V with coefficients in A given by Proposition 6.6, cf. Definitions 4.2 and 4.4. We also note
that (P7.1) holds true by Proposition 6.6, as k is algebraically closed.

If X ∈ V is regular and equi-dimensional, then

Hi(X,A(n)) ' Hi
cont(Xét, A(n)) ' Hi(Xét, A(n))

where the first isomorphism comes from Lemma 6.5 and the second isomorphism uses that k is alge-
braically closed, so that continuous étale cohomology of algebraic schemes over k coincides with usual
étale cohomology, as the R1 lim term in (6.1) vanishes in this case by finiteness of the corresponding étale
cohomology groups, cf. [Jan88]. (As usual, étale cohomology with Z`-coefficients has in the above for-
mula to be understood as inverse limit limHi(Xét, µ

⊗n
`r ) and cohomology with Q` or Q`/Z` coefficients

is as usual defined by asking that (P4) holds.)
Bloch [Blo79] used Bloch–Ogus theory [BO74] and the Weil conjectures, proven by Deligne [Del74],

to construct a map

λ : CHi(X)[`∞] //H2i−1(X,Q`/Z`(i))(8.1)
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which agrees with the Abel–Jacobi map on homologically trivial cycles in the case where k = C, see
[Blo79, Proposition 3.7]. To give a description of Bloch’s map in the present context, we need the
following.

Lemma 8.2. Let k be an algebraically closed field and let ` be a prime that is invertible in k. Let X be
a smooth projective variety over k. Then the image of

ker

∂ ◦ ι∗ ◦ ε :
⊕

x∈X(i−1)

κ(x)∗ //
⊕
x∈X(i)

[x]Z`

⊗Z Z`

via the composition⊕
x∈X(i−1)

κ(x)∗ ⊗Z Z` ε //
⊕

x∈X(i−1)

H1(x,Z`(1)) ι∗ // H2i−1(Fi−1X,Z`(i))

is torsion.

Proof. Our proof is similar to [Blo79, Lemma 2.4] but we avoid Bloch–Ogus theory.
Let ξ ∈

⊕
x∈X(i−1) κ(x)∗ ⊗Z Z` with ∂(ι∗(ε(ξ))) = 0. By Lemma 5.8, we get

ι∗(ε(ξ)) ∈ F iH2i−1(Fi−1X,Z`(i)) ' H2i−1(X,Z`(i)).
If k is the algebraic closure of a finite field, then X and ξ are both defined over Fq for some finite

field Fq ⊂ k. In particular, X = X0 ×Fq k and the Frobenius F (given by x � // xq on X0 and by id on
k) satisfies

F (ι∗(ε(ξ))) = ι∗(ε(ξ
q)) = q · ι∗(ε(ξ)).

Since X is smooth projective, the Weil conjectures [Del74] imply that q cannot appear as an eigenvalue
of the action of F on H2i−1(X,Q`(i)) and so ι∗(ε(ξ)) must be torsion, as claimed.

If k is not the algebraic closure of a finite field, then the result in question follows from spreading
out the problem over a finitely generated field, which allows us to specialize to a finite field and so the
smooth proper base change theorem yields the result. This proves the lemma. �

Taking the direct limit of the isomorphisms from Lemma 8.1, we obtain an isomorphism

φ : CHi(X)[`∞] ' //
ker
(
∂ ◦ ι∗ :

⊕
x∈X(i−1) H1(x,Q`/Z`(1))→

⊕
x∈X(i) [x]Q`/Z`

)
ker
(
∂ ◦ ι∗ ◦ ε :

⊕
x∈X(i−1) κ(x)∗ ⊗Z Q` →

⊕
x∈X(i) [x]Q`

) .

Proposition 8.3. There is a well-defined map

λ′ : CHi(X)[`∞] //H2i−1(X,Q`/Z`(i)),
given by

λ′(φ−1([ξ])) := −ι∗ξ ∈ F iH2i−1(Fi−1X,Q`/Z`(i)) ' H2i−1(X,Q`/Z`(i)).

Proof. The natural map

H2i−1(X,Z`(i))tors
// lim //

r

H2i−1(X,µ⊗i`r ) ' H2i−1(X,Q`/Z`(i))

is zero. Lemma 8.2 thus implies that for any ξ ∈
⊕

x∈X(i−1) κ(x)∗ ⊗Z Q` with ∂(ι∗(ε(ξ))) = 0,

ι∗(ε(ξ)) ∈ F iH2i−1(Fi−1X,Q`/Z`(i)) ' H2i−1(X,Q`/Z`(i))
vanishes. This concludes the proof. �

The minus sign in Proposition 8.3 is necessary to make our definition compatible with λitr defined in
Section 7.5; a similar sign issue was noticed by Bloch, see [Blo79, p. 112].

Lemma 8.4. The map λ′ constructed above coincides with the map (8.1) constructed by Bloch: λ = λ′.
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Proof. This follows directly from Lemma 5.12 by comparing our construction with Bloch’s construction
via diagram (2.2) in [Blo79], where we recall that Bloch included the minus sign in [Blo79, p. 112]. �

As mentioned above, since k is algebraically closed, (P7.1) holds true. Lemma 7.5 thus implies

Ai0(X)Z` = Griffi(X)⊗Z Z`
is the group of homologically trivial codimension i cycles with coefficients in Z` modulo algebraic equiva-
lence. In particular, Ai0(X)[`∞] = Griffi(X)[`∞] is the group of classes in Griffi(X) that are annihilated
by some power of `.

Proposition 8.5. Let k be an algebraically closed field and let X be a smooth projective variety over k.
The map

λitr : Griffi(X)[`∞] //
H2i−1(X,Q`/Z`(i))
N i−1H2i−1(X,Q`(i))

constructed in Section 7.5 is induced by Bloch’s map in (8.1) and hence agrees with the transcendental
Abel–Jacobi map if k = C.

Proof. If k = C, then Bloch’s map agrees with the Abel–Jacobi map on torsion cycles, see [Blo79,
Proposition 3.7]. It thus suffices to show that λitr from Section 7.5 is induced by Bloch’s map in
(8.1). For this, let z ∈

⊕
x∈X(i) [x]Z` be a homologically trivial cycle. Then ∂α = z for some α ∈

H2i−1(Fi−1X,Z`(i)). Assume that z is `r-torsion modulo algebraic equivalence. As in Section 7.5, we
find classes β ∈ H2i−1(X,Z`(i)) and ξ ∈

⊕
x∈X(i−1) H1(x,Z`(i)) with

β = `r · α− ι∗ξ ∈ F iH2i−1(Fi−1X,Z`(i)).
In particular, ∂ ◦ ι∗(ξ)/`r = z and so ψr([z]) = [ξ/`r], where ψr is the isomorphism from Lemma 8.1.
By our construction of Bloch’s map, we thus find

λ([z]) = λ′([z]) = −ι∗ξ/`r ∈ F iH2i−1(Fi−1X,Q`/Z`(i)) ' H2i−1(X,Q`/Z`(i)).
On the other hand,

λitr([z]) = [β/`r] ∈ H2i−1(X,Q`/Z`(i))/N i−1H2i−1(X,Q`(i))
by our construction of λitr in Section 7.5. The result thus follows from the fact that

β/`r + ι∗ξ/`
r = α = 0 ∈ H2i−1(Fi−1X,Q`/Z`(i)),

because α is an integral class. This proves the proposition. �

9. Proof of main results (`-adic)

9.1. `-adic twisted Borel–Moore cohomology. Fix a field k and a prime ` that is invertible in k.
Let V be the category whose objects are separated schemes of finite type over k and such that the
morphisms are given by open immersions of schemes of the same dimension. This is a constructible
category of Noetherian schemes as in Definition 4.1. Let A ⊂ ModZ` be the full subcategory with
objects Z`,Q`,Q`/Z` and Z/`r for all r ≥ 1. By Proposition 6.6, `-adic pro-étale Borel–Moore coho-
mology H∗(−, A(n)) as defined in (6.13)–(6.15) is a twisted Borel–Moore cohomology theory on V with
coefficients in A which is `-adic if k is perfect, see Definitions 4.2 and 4.4. In particular, all results from
Section 5 and 7 hold true in this set-up. Here we recall that for i ≥ 1:

Ai(X)Z` =
CHi(X)Z`

N i−1 CHi(X)Z`
and N jAi0(X)Z` = N jAi(X)Z` =

N j CHi(X)Z`
N i−1 CHi(X)Z`

(9.1)

for 0 ≤ j ≤ i − 1, see Lemma 7.4. Moreover, Lemma 7.5 implies that Ai0(X)Z` = Griffi(X)Z` if k

is algebraically closed and Ai0(X)Z` = ker(cliX) ⊂ CHi(X)Z` if k is the perfect closure of a finitely
generated field.
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Lemma 9.1. In the above notation, assume in addition that X is smooth and equi-dimensional. Then
the cycle class map

cliX : CHi(X)Z`
//H2i(X,Z`(i)),

constructed in (7.1) coincides with Jannsen’s cycle class map in continuous étale cohomology from
[Jan88].

Proof. By Lemma 6.8 and the topological invariance of the pro-étale topos (see [BS15, Lemma 5.4.2]),
we may replace k by its perfect closure and assume that k is perfect. Let X be a smooth variety over
k. By Lemma 6.5, H∗(X,A(n)) agrees with the corresponding continuous étale cohomology group. The
cycle class map in (7.1) is defined via the Gysin pushforward, where one uses excision to reduce to the
case of a cycle whose support is smooth. Our claim thus follows from [Jan88, Remark 3.24]. �

9.2. Proof of Theorem 1.8.

Proof of Theorem 1.8. We use the notation from Section 9.1 and claim that it suffices to prove Theorem
1.8 after replacing k by its perfect closure kper. Indeed, this does not change `-adic Chow groups by
Lemma 6.8 and it does not change the (pro-)étale topos (see [BS15, Lemma 5.4.2]), so that H∗(−, A(n))
remains unchanged by passing from k to kper.

We may and will thus from now on assume that k is perfect, so that H∗(−, A(n)) is an `-adic twisted
Borel–Moore cohomology theory on V by Proposition 6.6. For any X ∈ V, we thus get a cycle class map

cliX : CHi(X)Z` := CHi(X)⊗Z Z` //H2i(X,Z`(i)),

constructed in Section 7.2. If X is smooth and equi-dimensional, then, by Lemma 6.5, Hi(X,Z`(n)) '
Hi
cont(Xét,Z`(n)) agrees with Jannsen’s `-adic continuous étale cohomology groups, see Section 6.1.1.

It follows from the construction of cliX via the Gysin sequence (see (P2)) that if X is a smooth variety,

then cliX agrees with Jannsen’s cycle class map (see Lemma 9.1).
Recall from Definitions 7.2 and 7.10 the groups Ai(X)Z` and Ai0(X)Z` and recall the description from

(9.1) (that we used as definition in the introduction).
Item (1) in Theorem 1.8 is then a consequence of Theorem 7.7 and Proposition 7.11.
By Section 7.5, there is a map

λitr : Ai0(X)[`∞] //H2i−1(X,Q`/Z`(i))/N i−1H2i−1(X,Q`(i)),

where N jHi(X,A(n)) := ker(Hi(X,A(n)) → Hi(Fj−1X,A(n))). If k is algebraically closed and X is
smooth projective, then this map agrees by Proposition 8.5 with Bloch’s transcendental Abel–Jacobi
mapping on torsion cycles from [Blo79] (cf. Section 8). Item (2) thus follows from Theorem 7.19 and
Proposition 7.16. This concludes the proof of Theorem 1.8. �

9.3. Proof of Theorem 1.5. The following lemma shows that in our set-up, the result of Theorem
7.30 holds true whenever k contains all `-roots of unity.

Lemma 9.2. In the notation of Section 9.1, the following holds. Then for any X ∈ V and any i and
n, Hi(F0X,Z`(n)) is torsion-free if one of the following conditions holds:

(1) n = i− 1;
(2) k contains all `-power roots of unity.

Proof. By additivity of the cohomology functor (see Lemma 5.6), we may assume that X is irreducible
with generic point ηX ∈ X. If k contains all `-power roots of unity, Hi(F0X,Z`(n)) ' Hi(F0X,Z`(i−1))
for all i and n. It thus suffices to prove the lemma under assumption (1). Since X is irreducible,
Hi(F0X,Z`(i − 1)) = Hi(ηX ,Z`(i − 1)) and so the claim follows from Remark 5.14 and Voevodsky’s
proof of the Bloch–Kato conjecture [Voe11]. �
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By (7.17) there is a higher Abel–Jacobi mapping

λ̄ij,tr : N jAi0(X)[`∞] // J
i

j,tr(X)[`∞](9.2)

where N∗ denotes the coniveau filtration on Ai0(X)[`∞] from Section 7.8.

Theorem 9.3. Let X be a separated scheme of finite type over k. Let i ≥ 2 and assume that one of the
following holds:

(1) k contains all `-power roots of unity, or
(2) i = 2.

Then for all 0 ≤ j ≤ i− 2, we have

N j+1Ai0(X)[`∞] = ker
(
λ̄ij,tr : N jAi0(X)[`∞]→ J

i

j,tr(X)[`∞]
)
.

Proof. We aim to apply Theorem 7.30. To this end we need to ensure that for any closed subscheme
Z ⊂ X, H2(i−j)−1(F0Z,Z`(i− j)) is torsion free. By Lemma 9.2, this condition is satisfied if k contains
all `-power roots of unity, or if i = 2 and j = 0. This concludes the proof. �

We are now in position to proof Theorem 1.5, which follows from the following slightly stronger result.

Theorem 9.4. Let X be a separated scheme of finite type over a field k and let ` be a prime invertible
in k. Let i ≥ 2 and assume that one of the following holds:

(1) k contains all `-power roots of unity, or
(2) i = 2.

Then for all 0 ≤ j ≤ i− 2, we have

N j+1 CHi(X)[`∞] = ker
(
λ
i

j,tr : N j CHi(X)[`∞]→ J
i

j,tr(X)[`∞]
)
.

Proof. By (9.1),

Ai0(X)[`∞] = N0 CHi(X)Z`/N
i−1 CHi(X)Z` .

The higher transcendental Abel–Jacobi mapping from (7.17) thus yields for 0 ≤ j ≤ i− 2 mappings

λ̄ij,tr : N j CHi(X)[`∞] // J
i

j,tr(X)[`∞] = lim //
Z⊂X

H2i−2j−1(Z,Q`/Z`(i− j))
N1H2i−2j−1(Z,Q`(i− j))

where Z ⊂ X runs through all closed subschemes with j = dimX − dimZ. Theorem 9.3 then implies
that for 0 ≤ j ≤ i− 2, the kernel of the above map is given by N j+1 CHi(X)[`∞], as we want. �

9.4. Applications of Theorem 1.5 and 9.4. The simplest (non-trivial) consequence of Theorem 9.4
is as follows.

Corollary 9.5. Let X be a smooth equi-dimensional algebraic scheme over a finitely generated field k.
Let ` be a prime invertible in k and let CHi

0(X)[`∞] denote the group of `-power torsion cycles with
trivial cycle class in Jannsen’s continuous `-adic étale cohomology. Then there is a canonical injection

λ2
tr : CH2

0(X)[`∞] ↪→ H3
cont(Xét,Q`/Z`(2))/N1H3

cont(Xét,Q`(2)).

Corollary 9.5 should be compared to a result of Merkurjev–Suslin [MS83, §18], who showed that
Bloch’s Abel–Jacobi mapping on `-power torsion cycles on smooth projective varieties over algebraically
closed fields [Blo79] is injective on codimension 2 cycles. Corollary 9.5 has previously been proven in
the particular case where k = Fq is a finite field and X is smooth projective in [CTSS83, Théorème

4] (in fact, loc. cit. proves that CH2
0(X)[`∞] = 0 in this case; this also follows from our set-up, see

Proposition 7.16 and note that H3
cont(Xét,Q`(2)) = H3(Xét,Q`(2)) = 0 for weight reasons, cf. [CTSS83,

p. 780-781]).
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Proof of Corollary 9.5. By the same argument as in the proof of Theorem 1.8, we may replace k by its
perfect closure and hence assume that k is the perfect closure of a finitely generated field. The result
then follows from Theorem 1.5 (or Theorem 7.19) together with the fact that A2

0(X)Z` = CH2
0(X)Z` if

the ground field k is (the perfect closure of a) finitely generated, see Proposition 6.6 and Lemma 7.5. �

Let X and Y be smooth projective equi-dimensional k-schemes. A cycle Γ ∈ CHdimX(X × Y ) yields
actions on Chow groups that are compatible with the cycle class maps in continuous étale cohomology.
Hence we get an action Γ∗ : N0 CHi(X)[`∞] → N0 CHi(Y )[`∞]. Similarly, there are actions Γ∗ :
Hi
cont(Xét, A(n)) → Hi

cont(Yét, A(n)) for A ∈ {Q`/Z`,Q`}. The latter respect Grothendieck’s coniveau
filtration N∗, as can be checked with the help of a moving lemma (see e.g. [Lev05, Theorem 2.13]). We
conclude that correspondences act on source and target of the map

λitr : N0 CHi(X)[`∞] //H2i−1
cont (X,Q`/Z`(i))/N i−1H2i−1

cont (X,Q`(i))

induced from the map in Section 7.5 (cf. Lemma 7.4). We will show in [Sch22] that these actions are
compatible with the map λitr. The case i = 2 is simpler, and we give a direct proof in the following
lemma.

Lemma 9.6. Let X,Y be smooth projective equi-dimensional k-schemes and let Γ ∈ CHdimX(X × Y ).
Then the following diagram commutes:

A2
0(X)[`∞]

Γ∗

��

λ2
tr // H3

cont(X,Q`/Z`(2))/N1H3
cont(X,Q`(2))

Γ∗

��

A2
0(Y )[`∞]

λ2
tr // H3

cont(Y,Q`/Z`(2))/N1H3
cont(Y,Q`(2)).

Proof. By the description of λitr from Lemma 7.15, it suffices to show that the isomorphism

A2
0(X)Z`

' // H3
nr(X,Z`(2))/H3(X,Z`(2))

from Proposition 7.11 is compatible with the action of correspondences. Since X is smooth and equi-
dimensional, the Gersten conjecture [BO74, CTHK97] identifies H3

nr(X,Z`(2)) with the global sections
of the corresponding Bloch–Ogus sheaf, associated to U � //H3

cont(Uét,Z`(2)). This description makes
it easy to define an action on unramified cohomology, cf. [CTV12, §9, Appendice], (an action in a more
general setting has been constructed by Rost [Ros96]). Using this description one readily checks that
the above isomorphism is compatible with the action of cycles, which concludes the lemma. �

Corollary 9.5 implies for instance the Rost nilpotence conjecture for surfaces up to inverting the
exponential characteristic, originally due to Gille [Gil10, Gil14] and with an alternative proof due to
Rosenschon–Sawant [RoSa18]:

Corollary 9.7. Let X be a smooth projective equi-dimensional scheme over a field k with base change
X̄ = X ×k k̄, where k̄ denotes an algebraic closure. Let Γ ∈ CHdimX(X ×X) and assume that the base
change Γ̄ = Γ×k k̄ acts trivially on Hi(X̄ét,Q`/Z`(2)) for i ≤ 3. Then the action

Γ◦N∗ : CH2(X)[`∞] // CH2(X)[`∞]

is zero for N ≥ 10.

Proof. A straightforward limit argument reduces us to the case where k is finitely generated. (This
uses that étale cohomology does not change under algebraically closed field extensions.) By Lemma
9.6 and Corollary 9.5, it thus suffices to show that Γ◦5 acts trivially on H4

cont(Xét,Z`(2))[`∞] and on
H3
cont(Xét,Q`/Z`(2)). The Bockstein sequence yields a canonical surjection

H3
cont(Xét,Q`/Z`(2))→ H4

cont(Xét,Z`(2))[`∞]
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that is compatible with the action of correspondences. It thus suffices to show that Γ◦5∗ acts trivially on
H3
cont(Xét,Q`/Z`(2)). Note that H3

cont(Xét,Q`/Z`(2)) = colimrH
3
cont(Xét, µ

⊗2
`r ) and H3

cont(Xét, µ
⊗2
`r ) =

H3(Xét, µ
⊗2
`r ), cf. [Jan88, (3.1)]. The assertion in question thus follows from the fact that the Hochschild–

Serre spectral sequence for étale cohomology (see [Mil80, p. 105, III.2.20]) is compatible with the action
of correspondences. (In the last step, we are implicitly working with the separable closure of k and not
with the algebraic closure; this is possible because neither Chow groups nor étale cohomology change
by purely inseparable field extensions, see Lemma 6.8.) �

Recall that the exponential characteristic e of a field k is 1 if char k = 0 and p if p = char k > 0.

Corollary 9.8. Let S be a smooth projective scheme of pure dimension 2 over a field k of exponential
characteristic e. Let Γ ∈ CH2(S ×k S) be a correspondence with base change Γ̄ ∈ CH2(Sk̄ ×k̄ Sk̄) to the
algebraic closure k̄ of k. Assume that Γ̄ is torsion and homologically trivial in `-adic étale cohomology
for any prime ` invertible in k̄. Then up to inverting e, the composition Γ◦N is zero for N ≥ 11.

Proof. A standard norm argument shows that Γ is torsion. By the Chinese remainder theorem, we may
assume that Γ is `r-torsion for some integer r ≥ 0 and some prime ` invertible in k. Let X := S × S.
The assumptions imply that there is a correspondence Ω ∈ CH4(X × X)[`∞] which is homologically
trivial over k̄ and such that Ω◦N∗ (Γ) = Γ◦N+1. The assertion thus follows from Corollary 9.7. �

Remark 9.9. Up to inverting the exponential characteristic, Corollary 9.8 is slightly stronger than the
original conjecture of Rost for surfaces, proven in [Gil10, Gil14, RoSa18]. Indeed, we are only asking that
Γ̄ is torsion and homologically trivial, while the original formulation asks that Γ is rationally equivalent
to 0 over k̄ (or equivalently over some field extension of k).

10. Proof of main results over C

10.1. Integral twisted Borel–Moore cohomology. Let V be the category whose objects are sep-
arated schemes of finite type over C and such that the morphisms are given by open immersions of
schemes of the same dimension. This is a constructible category of Noetherian schemes as in Definition
4.1. Let A := ModZ and define for X ∈ V and A ∈ A,

Hi(X,A(n)) := HBM
2dX−i(Xan, A(dX − n)),

where dX := dimX and HBM
∗ denotes Borel–Moore homology and Xan denotes the analytic space that

underlies X and A(n) := A ⊗Z (2πi)nZ denotes the n-th Tate twist of A. By Proposition 6.9, H∗

defines an integral twisted Borel–Moore cohomology theory that is adapted to algebraic equivalence,
cf. Definition 4.6. It follows that all results from Sections 5 and 7 hold true in the above set-up if we
formally make the replacements Z`  Z, Q`  Q, `r  r, and [`∞] tors.

10.2. Proof of Theorem 1.6.

Proof of Theorems 1.6. We use the notation from Section 10.1. Performing the aforementioned formal
replacements Z`  Z, Q`  Q, `r  r, and [`∞]  tors, Lemma 7.5 shows that Ai0(X)Z = Griffi(X)
is the group of homologically trivial cycles modulo algebraic equivalence. The arguments in Section 7.5
yield a map

λitr : Griffi(X)tors
// J itr(X)tors := H2i−1(X,Q/Z(i))/N i−1H2i−1(X,Q(i)),(10.1)

where N jHi(X,A(n)) := ker(Hi(X,A(n)) → Hi(Fj−1X,A(n))). If X is smooth projective, we claim
that this map agrees with Griffiths transcendental Abel–Jacobi map restricted to torsion cycles. By the
Chinese remainder theorem, it suffices to show this for classes that are `-power torsion for some prime
`. In this case our map identifies by Proposition 8.5 with Bloch’s map, which in turn identifies with
Griffiths map by [Blo79, Proposition 3.7].
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Theorem 1.6 follows now as above from Theorem 7.7, Proposition 7.11, Theorem 7.19, and Proposition
7.16 (after performing the formal replacements Z`  Z, Q`  Q, `r  r, and [`∞]  tors). This
concludes the proof of Theorem 1.6. �

10.3. Proof of Theorems 1.1 and 1.4, and Corollaries 1.2 and 1.3.

Lemma 10.1. In the notation of Section 10.1, for any X ∈ V and any i and n, Hi(F0X,Z(n)) is
torsion-free.

Proof. By additivity of the cohomology functor (see Lemma 5.6), we may assume that X is irreducible
with generic point ηX ∈ X. By definition, Hi(F0X,Z(n)) ' Hi(F0X,Z(i− 1)) for all i and n. Since X
is irreducible, the latter coincides with Hi(ηX ,Z(i− 1)) and so the claim follows from Remark 5.14 and
Voevodsky’s proof of the Bloch–Kato conjecture [Voe11]. �

Proof of Theorem 1.4. Theorem 1.4 follows with help of Lemma 10.1 via the same arguments as in the
proof of Theorem 1.5. This requires as in Theorem 1.6 the formal replacements Z`  Z, Q`  Q,
`r  r, and [`∞] tors in Section 7. �

Proof of Theorem 1.1. This is a consequence of Theorem 1.4 together with the fact that λitr factorizes
for smooth projective varieties through Bloch’s Abel–Jacobi map for torsion cycles, which in turn agrees
with the Abel–Jacobi invariants due to Griffiths in that case, see Proposition 8.5. The assumption i ≥ 2
is needed, because the assertion in Theorem 1.4 is empty for i = 1. �

Proof of Corollary 1.2. By Theorem 1.1, the n-torsion of N0 CHi(X)tors/N
1 CHi(X)tors injects into the

n-torsion of a quotient of H2i−1(X,Q/Z), hence is finite. Moreover, the cycle class map yields an injec-
tion of CHi(X)/N0 CHi(X) into H2i(X,Z) and so the n-torsion subgroup of CHi(X)tors/N

0 CHi(X)tors

must be finite as well. Altogether we conclude that the n-torsion subgroup of CHi(X)tors/N
1 CHi(X)tors

is finite, as claimed. �

Proof of Corollary 1.3. This is an immediate consequence of Theorem 1.1. �

10.4. Applications of Theorem 1.4. For a complex algebraic scheme X, we recall that the coniveau
filtration N j on Griffi(X) is defined by saying that a cycle z ∈ Griffi(X) lies in N j if and only if
there is a closed subset Z ⊂ X with j = dimX − dimZ and a homologically trivial cycle z′ on Z such
that z agrees with the pushforward of z′, cf. Definition 7.3. This yields a finite decreasing filtration on
Griffi(X) with N i−1 = 0, cf. Lemmas 7.4 and 7.5.

Corollary 10.2. Let X be a separated scheme of finite type over C. Then

Griffi(X)tors = N1 Griffi(X)tors = · · · = N j Griffi(X)tors for all j ≤ 2i− 1− dimX.

Proof. We use the notation from Section 10.1. Proposition 7.16 implies that for any separated scheme
X of finite type over C, we have

im(λ̄itr) =
N i−1H2i−1(X,Q/Z(i))div

N1H2i−1(X,Q(i))
,

where H2i−1(X,Q/Z(i))div = im(H2i−1(X,Q(i)) → H2i−1(X,Q/Z(i))). Since affine varieties have
no cohomology in degrees greater than their dimension, and because Hi(X,A(n)) depends only on
the underlying reduced scheme and agrees with singular cohomology if X is smooth, we find that
N1H2i−1(X,Q(i)) = H2i−1(X,Q(i)) for 2i − 1 > dimX and so im(λ̄itr) = 0 for 2i − 1 > dimX. It
follows that im(λ̄ij,tr) = 0 for 2i − 2j − 1 > dimX − j, i.e. for j < 2i − 1 − dimX. Theorem 1.4

thus implies that N j+1 Griffi(X)tors = N j Griffi(X)tors for j < 2i− 1− dimX, which proves Corollary
10.2. �
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10.5. Algebraic cycles and traditional unramified cohomology in arbitrary degree. For j ≥ m,
there is a canonical restriction map

Hi
j,nr(X,A(n)) //Hi

m,nr(X,A(n)).(10.2)

Recall from Section 5 that we denote its image by F j+1Hi
m,nr(X,A(n)). We describe the effect of

applying the restriction map (10.2) to Theorem 1.6 next.

Corollary 10.3. Let X be a separated scheme of finite type over C. Then for any 0 ≤ j ≤ i− 2, there
are canonical exact sequences

lim
//
Zi−j(Z)tors

//Zi(X)tors
//
F i−1H2i−1

j−1,nr(X,Q/Z(i))

F i−1H2i−1
j−1,nr(X,Q(i))

// 0,

lim
//
Griffi−j(Z) // Griffi(X) //

F i−1H2i−1
j−1,nr(X,Z(i))

H2i−1(X,Z(i))
// 0,

lim
//
T i−j(Z) // T i(X) //

F i−2H2i−2
j−1,nr(X,Q/Z(i))

GiF i−2H2i−2
j−1,nr(X,Q/Z(i))

// 0,

where in the direct limits, Z ⊂ X runs through all reduced closed subschemes of X with dim(X) −
dim(Z) = j.

The above corollary is particularly interesting for j = 1. In this case the refined unramified coho-
mology groups above agree with traditional unramified cohomology Hi

nr(X,A(n)) = Hi
0,nr(X,A(n)).

The corollary then identifies certain graded pieces of traditional unramified cohomology with certain
birationally invariant quotients of the above cycle groups. In particular, non-trivial elements in certain
pieces of the F ∗ filtration on traditional unramified cohomology Hi

nr(X,A(n)) = Hi
0,nr(X,A(n)) de-

tect exactly those cycles on X that are not supported in codimension 1 in the sense that they are not
pushforwards of the respective cycle groups on some divisor on X. This improves some results obtained
independently by Ma in [Ma20].

Proof of Corollary 10.3. The corollary follows from Theorem 1.6 and Corollary 5.9. We give some details
for Griffi(X); the other cases are similar.

We use the same notation as in the proof of Theorem 1.6 and fix the integral twisted Borel–Moore
cohomology theory H∗(−, A(n)) on separated schemes of finite type over C from Proposition 6.9. By
Theorem 1.6, there is a canonical isomorphism

Griffi(X) ' H2i−1
i−2,nr(X,Z(i))/H2i−1(X,Z(i)).

By Corollary 5.9, for any 0 ≤ j ≤ i− 1, there is a canonical exact sequence

lim
//
H

2(i−j)−1
i−j−2,nr(Z,Z(i− j)) ι∗ // H2i−1

i−2,nr(X,Z(i)) // F i−1H2i−1
j−1,nr(X,Z(i)) // 0,

where the direct limit runs through all closed reduced subschemes Z ⊂ X of dimension dimZ =
dimX − j. Here the first map is induced by the pushforward map with respect to Z ↪→ X and the
second map is the canonical restriction map. The latter is surjective by definition of the filtration F ∗

(see Definition 5.3).
The above sequence induces a sequence

lim
//

H
2(i−j)−1
i−j−2,nr(Z,Z(i− j))

H2(i−j)−1(Z,Z(i− j))
ι∗ //

H2i−1
i−2,nr(X,Z(i))

H2i−1(X,Z(i))
//
F i−1H2i−1

j−1,nr(X,Z(i))

H2i−1(X,Z(i))
// 0,
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and one directly checks that this sequence remains exact. By Theorem 1.6, this sequence identifies to
an exact sequence

lim
//
Griffi−j(Z) ι∗ // Griffi(X) //

F i−1H2i−1
j−1,nr(X,Z(i))

H2i−1(X,Z(i))
// 0.

It follows from the functoriality of the Gysin sequence with respect to proper pushforwards (see (P2))
that the first map above agrees with the pushforward of cycles induced by Z ↪→ X. This concludes the
proof of the corollary. �

Remark 10.4. Theorem 1.8 together with Corollary 5.9 implies analogues of Corollary 10.3 over arbi-
trary fields. We leave it to the reader to formulate and prove those results.

10.6. Applications of Theorem 1.6. If X is an integral scheme over C, we write in this section

Hi(C(X), A) := Hi(F0X,A) = lim //
∅6=U⊂X

Hi(U,A),

which is consistent with some of the notation used in the literature (see e.g. [CTV12, Voi12]). The above
group is the cohomology of the generic point of X as defined in (4.2). If A = Z/`r or A = Q/Z, this
group coincides by [Mil80, p. 88, III.1.16] with the corresponding Galois cohomology group of the field
C(X).

We will need the following result that is proven with methods from [Sch19].

Proposition 10.5. For any positive integer n, there is a smooth projective unirational variety Y of
dimension 3n over C such that the composition

H2i(Y,Z/2) //H2i(C(Y ),Z/2) //H2i(C(Y ),Q/Z)

is nonzero for all i = 1, . . . , n.

Proof. By the proof of [Sch19, Theorem 1.5], there is a unirational smooth complex projective threefold
T together with a morphism f : T → P2 whose generic fibre is a conic, such that the following holds:

• the class α = (x1/x0, x2/x0) ∈ H2(C(P2),Z/2) has the property that f∗α ∈ H2
nr(T,Z/2) is

unramified and non-trivial;
• there is a specialization T0 of T such that the specialization f0 : T0 → P2 of f has the property

that its generic fibre has a C(P2)-rational point in its smooth locus.

Let us now consider Y := Tn, which is a smooth complex projective variety of dimension 3n that is
unirational. Let prj : Y → T denote the projection onto the j-th factor and consider the class

γi := pr∗1 f
∗α ∪ pr∗2 f

∗α ∪ · · · ∪ pr∗i f
∗α ∈ H2i(C(Y ),Z/2).

Since α is of degree two, the unramified class f∗α admits a lift to a class in H2(T,Z/2), see Corollary
5.10. Hence, γi admits a lift to a class in H2i(Y,Z/2) and so

γi ∈ F iH2i
nr(Y,Z/2).

It remains to show that the image γ′i of γi in H2i(C(Y ),Q/Z) is nonzero for all i = 1, . . . , n. By
construction of the class γi, it suffices to prove that γ′n is nonzero and our argument is similar to the
proofs of [Sch19, Proposition 6.1] and [Sch21a, Theorem 5.3(3)].

Assume for a contradiction that γ′ := γ′n is zero in H2n(C(Y ),Q/Z). Let us then specialize T to T0.
Then Y specializes to a projective variety Y0 together with a morphism Y0 → (P2)n whose generic fibre
admits a rational point in its smooth locus. The specialization γ′0 of γ′ vanishes, because γ′ vanishes by
assumption. It follows that the restriction of γ′0 to the rational point in the smooth locus of the generic
fibre of Y0 → (P2)n is zero. This restriction in turn computes explicitly as the image of

pr∗1 α ∪ pr∗2 α ∪ · · · ∪ pr∗n α ∈ H2n
(
C
(
(P2)n

)
,Z/2

)
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in H2n(C((P2)n),Q/Z). But this class is nonzero, as one can check by computing successive residues.
This is a contradiction, which concludes the proof. �

10.6.1. Integral Hodge conjecture for uniruled varieties. Recall that for any algebraic schemeX of dimen-
sion d over C, there is a cycle class map cliX : CHi(X)→ H2i(X,Z), where Hi(X,A) := HBM

2d−i(Xan, A).

We denote its cokernel by Zi(X) := coker(cliX).

Theorem 10.6. For any n ≥ 1, there is a smooth complex projective unirational variety Y of dimension
3n and an elliptic curve E such that X := E × Y satisfies

coker
(

lim
//
Zi−1(D)tors

//Zi(X)tors

)
6= 0 for all 2 ≤ i ≤ n+ 1,(10.3)

where D runs through all closed reduced subvarieties D ⊂ X of codimension 1.

Note that for any closed subscheme Z ( X of codimension c ≥ 1, the pushforward Zi−c(Z)→ Zi(X)
factors through Zi−1(D) for any divisor D ⊂ X that contains Z, and so the non-trivial class in the
cokernel of the above corollary is not hit by Zi−c(Z)tors and hence in particular not by the torsion in
H2i−2c(Z,Z) = HBM

2dX−2i(Z,Z), where dX = dimX. In particular, the above theorem implies Corollary
1.7 stated in the introduction.

Proof of Theorem 10.6. By Proposition 10.5, there is a unirational smooth complex projective variety
Y of dimension 3n such that H2i(Y,Q/Z) //H2i(C(Y ),Q/Z) is nonzero for all i = 1, . . . , n. It thus
follows from a theorem of Colliot-Thélène [CT19, Theorem 1.1] that there is an elliptic curve E such
that the product X = Y × E has the property that

H2i+1(X,Q/Z) //H2i+1(C(X),Q/Z)

is nonzero for all i = 1, . . . , n. Since the Chow group of zero-cycles of X is supported on a curve (i.e.
CH0({pt.} × E) → CH0(Y × E) is surjective), the rational unramified cohomology groups of X above
degree one vanish by a simple Bloch–Srinivas decomposition of the diagonal argument, see e.g. [CTV12,
Proposition 3.3.(i)].1 The result thus follows from Corollary 10.3. �

10.6.2. Applications to the Artin–Mumford invariant. In [AM72], Artin and Mumford showed that for
any smooth complex projective variety X, the torsion subgroup of H3(X,Z) is a birational invariant
and used this to construct unirational threefolds that are not rational. For i > 3, the torsion subgroup
of Hi(X,Z) is not a birational invariant. However, Voisin observed (see [Voi12, Remark 2.4]) that the
Bloch–Kato conjecture proven by Voevodsky implies that the torsion subgroup of H5(X,Z)/N2H5(X,Z)
is a birational invariant. By Proposition 7.32, there is a canonical surjection

ϕ : Tors

(
Hi(X,Z)

N2Hi(X,Z)

)
// //
Gdi/2eHi−1

nr (X,Q/Z)

Hi−1
nr (X,Q)

.

(It follows from the Bloch–Kato conjecture, proven by Voevodsky, that this surjection is in fact an
isomorphism, see Remark 7.33, but we will not use this.)

As an application, we prove that Voisin’s generalization of the Artin–Mumford invariant is non-trivial
in any odd degree.

Corollary 10.7. For any positive integer i, there is a unirational smooth complex projective variety X
with a torsion class in H2i+1(X,Z) that is non-zero in the quotient

H2i+1(X,Z)/N2H2i+1(X,Z).

1This step uses the existence of an action of algebraic cycles on unramified cohomology, hence [BO74] or [Sch22], but
it does not use the Bloch–Kato conjectures, as we are only concerned about the vanishing of unramified cohomology with

rational coefficients and so torsion-freeness of Hi
nr(X,Z) is not needed.
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Proof. Rationally connected varieties have no rational unramified cohomology in positive degrees, see
e.g. [CTV12, Proposition 3.3.(i)]. The claim in Corollary 10.7 follows therefore directly from Propositions
6.9, 7.32, and 10.5. �
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