Institut für Mathematik Fachbereich Mathematik Universität Hannover

Torische Varietäten und Calabi-Yau-Mannigfaltigkeiten

Diplomarbeit Katharina Ludwig Matrikelnr. 1937570

Prüfer: Prof. Dr. Hulek
 Prüfer: Prof. Dr. Ebeling

Inhaltsverzeichnis

Einleitung

1	Tor	ische Varietäten	1		
	1.1	Grundlagen der torischen Geometrie	1		
	1.2	Das Polytop Δ_r	10		
	1.3	Der Fächer $\Sigma(\Delta_r)$	16		
	1.4	Die torische Varietät P_{Δ_r}	19		
2 MPCP-Desingularisierung					
	2.1	Allgemeine Konstruktion	33		
	2.2	Der Fächer der MPCP-Desingularisierung	37		
	2.3	Beschreibung der MPCP-Desingularisierung von P_{Δ_r}	41		
ก	C-1		50		
ა	Calabi-Yau-Hypernachen				
	3.1	Calabi-Yau-Hyperflächen in torischen Varietäten	59		
	3.2	Kohomologie torischer Varietäten	65		
	3.3	Der Hodgediamant	68		

 \mathbf{v}

INHALTSVERZEICHNIS

Einleitung

Ausgangspunkt dieser Arbeit ist ein Artikel von V. Batyrev [Ba]; in diesem werden Calabi-Yau-Hyperflächen in torischen Fano-Varietäten betrachtet.

Dreidimensionale Calabi-Yau-Varietäten spielen eine große Rolle in der String-Theorie und es wird vermutet, daß eine Dualität dieser Varietäten existiert, die sogenannte Mirror-Symmetrie. Dabei muß (unter anderem) der Hodgediamant der dualen Varietät Z' zu einer Calabi-Yau-Varietät Z der an der Diagonalen gespiegelte Hodgediamant von Z sein. Im dreidimensionalen Fall muß also $h^{1,1}(Z) = h^{2,1}(Z')$ und $h^{2,1}(Z) = h^{1,1}(Z')$ gelten. In [Ba] wird nun untersucht, wie ein Mirror-Kandidat, d.h. eine Varietät, die die Forderung an die Hodgezahlen erfüllt, einer Desingularsierung einer dreidimensionalen Calabi-Yau-Hyperfläche in einer torischen Fano-Varietät gefunden werden kann. Dort wird gezeigt, daß eine solche Fano-Varietät durch ein reflexives Gitter-Polytop definiert ist, und daß ein Mirror-Kandidat die Desingularisierung einer Calabi-Yau-Hyperfläche in der durch das duale Polytop definierten torischen Fano-Varietät ist.

Hier sollen bestimmte torische Varietäten betrachtet werden, nämlich solche, die durch ein Wurzelsystem A_r definiert werden. Dafür wird die konvexe Hülle Δ_r der Wurzeln betrachtet, dieses Polytop sieht im Fall r = 3 so aus:

Es handelt sich hierbei um reflexive Polytope und damit sind die zugehörigen Varietäten Fano-Varietäten. In diesen sollen Calabi-Yau-Hyperflächen untersucht werden. Insbesondere sollen ihre Hodgezahlen bestimmt werden, soweit sie noch nicht in [Ba] angegeben sind.

Die Arbeit unterteilt sich in folgende Abschnitte:

Im ersten Kapitel werden die durch die Polytope Δ_r definierten torischen Varietäten P_{Δ_r} analysiert und die hierfür benötigten Grundlagen der torischen Geometrie bereitgestellt. Insbesondere werden die Konstruktionen torischer Varietäten aus Fächern und aus Polytopen erklärt und Charakterisierungen für wichtige Eigenschaften einer torischen Varietät mit Hilfe der kombinatorischen Daten des Fächers bzw. des Polytopes gegeben. Die wichtigste Quelle hierfür ist ein Buch von T. Oda [Oda].

Das zweite Kapitel befaßt sich mit der (partiellen) Auflösung der Singularitäten einer torischen Varietät, insbesondere mit der in dem Artikel von V. Batyrev [Ba] definierten MPCP-Desingularisierung einer torischen Fano-Varietät. Eine solche wird für die Varietäten P_{Δ_r} explizit berechnet und analysiert.

Im letzten Kapitel wird dann das Augenmerk auf die Calabi-Yau-Hyperflächen gerichtet. Zunächst wird eine Familie von Hyperflächen in einer torischen Fano-Varietät definiert und angegeben, wann diese aus Calabi-Yau-Varietäten besteht, wichtigste Quelle hier ist wiederum [Ba]. Für diese Familie von Calabi-Yau-Hyperflächen in den Varietäten P_{Δ_r} wird daraufhin ein großer Teil der Hodgezahlen berechnet. Die Beweisidee entstammt einem Artikel von J. Zintl [Zi], wobei aber die dortigen Resultate nicht direkt auf den hier untersuchten Fall angewandt werden können.

An dieser Stelle möchte ich mich noch sehr herzlich bei Herrn Prof. Hulek für die Betreuung dieser Diplomarbeit bedanken. Mit seiner Hilfe konnten die auftretenden Probleme gelöst und meine Gedanken sortiert werden. Bedanken möchte ich mich auch bei Herrn Dr. Zintl für die Beantwortung meiner Fragen bezüglich seines Artikels insbesondere für die sehr wertvollen Hiweise bezüglich des Ishida Komplexes. Ein großer Dank geht an meine Familie, die mich, jeder auf seine Weise, auf meinem bisherigen Weg unterstützt und begleitet hat. Desweiteren danke ich meinen Freunden und Kommilitonen Cord Erdenberger, Matthias Schütt, Mazeyar Makoui und Frank Attia für ihre Hilfe bei der Klärung verschiedenster Fragen und der Eliminierung von Fehlern aus dieser Arbeit.

Kapitel 1

Torische Varietäten

Der erste Abschnitt dieses Kapitels soll die benötigten Grundlagen der torischen Geometrie bereitstellen, um dann im zweiten, dritten und vierten Abschnitt bestimmte Polytope Δ_r , die zugehörigen Fächer und torischen Varietäten zu analysieren. Die Darstellung im ersten Abschnitt folgt dabei einem Buch von T. Oda [Oda], einem Artikel von V. Batyrev [Ba] und der Doktorarbeit von H.-J. Brasch [Br]. Es soll sowohl die Konstruktion einer torischen Varietät aus einem Polytop als auch die allgemeinere aus einem Fächer beschrieben werden, da beide Möglichkeiten im folgenden benötigt werden.

1.1 Grundlagen der torischen Geometrie

Es sei N ein freier \mathbb{Z} -Modul vom Rang $r \in \mathbb{N} (= \mathbb{Z}_{\geq 1}), M = \operatorname{Hom}_{\mathbb{Z}} (N, \mathbb{Z})$ der duale Modul zu N und $\langle , \rangle : M \times N \to \mathbb{Z}$ die kanonische bilineare Paarung. Weiter sei $N_{\mathbb{R}} = N \otimes_{\mathbb{Z}} \mathbb{R}$ und $M_{\mathbb{R}} = M \otimes_{\mathbb{Z}} \mathbb{R}$. Die auf $M_{\mathbb{R}} \times N_{\mathbb{R}}$ fortgesetzte Paarung werde ebenfalls mit \langle , \rangle bezeichnet.

Definition 1.1

(i) Eine Teilmenge $\sigma \subset N_{\mathbb{R}}$ heißt rationaler, polyhedraler Kegel in N, falls es eine Darstellung

$$\sigma = \mathbb{R}_{>0} n^{(1)} + \dots + \mathbb{R}_{>0} n^{(s)}$$

mit endlich vielen Elementen $n^{(1)}, \ldots, n^{(s)} \in N$, den sogenannten Erzeugern des Kegels, gibt. σ heißt streng konvex, falls außerdem $\sigma \cap (-\sigma) = \{0\}$ gilt.

(ii) Die Dimension eines rationalen, polyhedralen Kegels σ in $N_{\mathbb{R}}$ (dim σ) ist die Dimension des kleinsten Unterraumes des \mathbb{R} -Vektorraumes $N_{\mathbb{R}}$, der σ enthält. (iii) Der duale Kegel zu einem rationalen, polyhedralen Kegel σ in $N_{\mathbb{R}}$ ist definiert als

 $\check{\sigma} := \{ m \in M_{\mathbb{R}} : \langle m, n \rangle \ge 0 \text{ für alle } n \in \sigma \}.$

Darüber hinaus sei

$$\sigma^{\perp} := \{ m \in M_{\mathbb{R}} : \langle m, n \rangle = 0 \text{ für alle } n \in \sigma \}.$$

(iv) Eine Teilmenge τ eines rationalen, polyhedralen Kegels σ in $N_{\mathbb{R}}$ heißt *Seite* des Kegels ($\tau < \sigma$), falls es ein $m^{(0)} \in \check{\sigma}$ gibt, so daß

$$\tau = \sigma \cap \{m^{(0)}\}^{\perp} := \{n \in \sigma : \langle m^{(0)}, n \rangle = 0\}$$

gilt.

(v) Eine nichtleere Menge Σ von streng konvexen, rationalen, polyhedralen Kegeln in $N_{\mathbb{R}}$ heißt *Fächer* in N, falls mit $\sigma \in \Sigma$ auch jede Seite $\tau < \sigma$ in Σ enthalten ist und für $\sigma, \sigma' \in \Sigma$ der Durchschnitt $\sigma \cap \sigma'$ eine Seite von σ und σ' ist. Die Menge aller *s*-dimensionalen Kegel ($0 \leq s \leq r$) in Σ wird mit $\Sigma(s)$ bezeichnet.

$$\Sigma^{[s]} := \bigcup_{i=0}^{s} \Sigma(i)$$

sei die Menge aller Kegel in Σ , deren Dimension nicht größer als s ist.

(vi) Der Träger eines Fächers Σ ist definiert als

$$|\Sigma| := \bigcup_{\sigma \in \Sigma} \sigma \subset N_{\mathbb{R}}.$$

(vii) Ein Fächer Σ heißt *vollständig*, falls $|\Sigma| = N_{\mathbb{R}}$ gilt.

Bemerkung 1.2

- (i) Hat der streng konvexe Kegel σ maximale Dimension, so ist der duale Kegel $\check{\sigma}$ ebenfalls streng konvex.
- (ii) Für einen eindimensionalen, streng konvexen, rationalen, polyhedralen Kegel $\rho \in \Sigma$ gibt es ein eindeutig bestimmtes Element $n(\rho) \in N$ mit

$$\varrho \cap N = \mathbb{Z}_{\geq 0} n(\varrho).$$

Dieses Element heißt der primitive Erzeuger des Kegels.

(iii) Das definierende Element $m^{(0)} \in \check{\sigma}$ einer Seite τ des Kegels σ kann stets so gewählt werden, daß es bereits in $M \cap \check{\sigma}$ liegt. Also ist eine Seite eines streng konvexen, rationalen, polyhedralen Kegels wieder ein solcher Kegel. (iv) Die Teilmenge $\Sigma^{[s]}$ eines Fächers Σ ist selbst wieder ein Fächer.

Zu dem Gitter N wird der r-dimensionale algebraische Torus

$$\mathbf{T}_N := \mathrm{Hom}_{\mathbb{Z}} \left(M, \mathbb{C}^* \right) = N \otimes_{\mathbb{Z}} \mathbb{C}^* \cong (\mathbb{C}^*)^r$$

und zu jedem $m \in M$ der Charakter

$$\begin{array}{cccc} \mathbf{e}\left(m\right): & \mathbf{T}_{N} & \longrightarrow & \mathbb{C}^{*} \\ & t & \longmapsto & t(m) \end{array}$$

definiert, dabei gilt $\mathbf{e}(m+m') = \mathbf{e}(m) \cdot \mathbf{e}(m')$. Wählt man für das Gitter M eine Basis $\{m^{(1)}, \ldots, m^{(r)}\}$, so legen die zugehörigen Charaktere $X_i := \mathbf{e}(m^{(i)})$ einen Isomorphismus

$$\begin{array}{rccc} \mathbf{T}_N & \longrightarrow & (\mathbb{C}^*)^r \\ t & \longmapsto & (X_1(t), \dots, X_r(t)) \end{array}$$

fest und stellen damit Koordinaten für den Torus dar.

Zu jedem Kegel $\sigma \in \Sigma$ ist nun die Menge $S_{\sigma} := M \cap \check{\sigma}$ nach Proposition 1.1. in [Oda] eine additive Unterhalbgruppe von M, die die 0 enthält und von endlich vielen Elementen $m^{(1)}, \ldots, m^{(l)} \in M$ erzeugt wird. S_{σ} erzeugt die Gruppe M, d.h. $S_{\sigma} + (-S_{\sigma}) = M$, und S_{σ} ist saturiert, d.h. $\lambda m \in S_{\sigma}$ für ein $m \in M$ und eine natürliche Zahl $\lambda \in \mathbb{N}$ impliziert $m \in S_{\sigma}$. Dieser Halbgruppe wird die Halbgruppenunteralgebra

$$\mathbb{C}[\mathcal{S}_{\sigma}] := \bigoplus_{m \in \mathcal{S}_{\sigma}} \mathbb{C} \cdot \mathbf{e}(m)$$

der Algebra $\mathbb{C}[M]$ mit der Multiplikation $\mathbf{e}(m) \cdot \mathbf{e}(m') = \mathbf{e}(m+m')$ zugeordnet. Zu dem Kegel σ wird nun die *affine Toruseinbettung*

 $U_{\sigma} := U_{\sigma,N} := \{ u : \mathbb{C}[\mathcal{S}_{\sigma}] \to \mathbb{C} : u \text{ ist Algebrahomomorphismus} \}$

definiert. U_{σ} läßt sich interpretieren als die Menge der \mathbb{C} -wertigen Punkte des affinen Schemas Spec $\mathbb{C}[\mathcal{S}_{\sigma}]$ und ist daher eine *r*-dimensionale Varietät. Mittels der Einbettung

$$\begin{pmatrix} \mathbf{e} (m^{(1)}), \dots, \mathbf{e} (m^{(l)}) \end{pmatrix} : U_{\sigma} \longrightarrow \mathbb{C}^{l} \\ u \longmapsto (u (\mathbf{e} (m^{(1)})), \dots, u (\mathbf{e} (m^{(l)})))$$

kann man U_{σ} mit einer analytischen Struktur versehen.

Die affinen Varietäten $\{U_{\sigma} : \sigma \in \Sigma\}$ sollen nun verklebt werden, um die torische Varietät P_{Σ} zu erhalten. Dabei werden Punkte mittels der folgenden Inklusionen

identifiziert. Ist τ eine Seite des Kegels σ , so gibt es ein $m^{(0)} \in S_{\sigma}$ mit $\tau = \sigma \cap \{m^{(0)}\}^{\perp}$. Dann gilt

$$\mathcal{S}_{\tau} = \mathcal{S}_{\sigma} + \mathbb{Z}_{\geq 0}(-m^{(0)})$$

und damit ist

$$U_{\tau} = \left\{ u \in U_{\sigma} : u \left(\mathbf{e} \left(m^{(0)} \right) \right) \neq 0 \right\}$$

eine offene und dichte Teilmenge von U_{σ} . Durch das Verkleben entsteht (analytisch) ein irreduzibler, normaler, hausdorffscher, komplexer Raum der Dimension r.

Da der Kegel {0} Seite eines jeden Kegels ist und $U_{\{0\}} \cong T_N$ gilt, ist der Torus T_N in jedem U_{σ} enthalten. Diese Eigenschaft überträgt sich auch auf die torische Varietät, so daß der Torus T_N eine offene und dichte Teilmenge von P_{Σ} ist.

Darüberhinaus operiert der Torus algebraisch auf der Varietät P_{Σ} , das Produkt von $t \in T_N$ und $u \in U_{\sigma}$ wird dazu definiert als

$$t \cdot u : \mathbb{C}[\mathcal{S}_{\sigma}] \longrightarrow \mathbb{C}$$

$$\mathbf{e}(m) \longmapsto t(m) \cdot u(\mathbf{e}(m)),$$

es ist also $tu \in U_{\sigma}$. Damit ist unter dieser Operation jede affine, offene Teilmenge U_{σ} von P_{Σ} invariant. Schränkt man die Operation auf den Torus $T_N \cong U_{\{0\}}$ ein, so erhält man die übliche Gruppenmultiplikation.

Die Orbits dieser Operation lassen sich wie folgt beschreiben. Zu jedem Kegel $\sigma\in\Sigma$ wird der *Quotiententorus*

orb
$$\sigma := \operatorname{orb}_N \sigma := \{ u : M \cap \sigma^\perp \to \mathbb{C}^* : u \text{ ist Gruppenhomomorphismus} \}$$

definiert. Er läßt sich mittels der folgenden Zuordnung in U_{σ} einbetten. Ein $\tilde{u} \in$ orb σ wird abgebildet auf $u \in U_{\sigma}$ mit

$$u\left(\mathbf{e}\left(m\right)\right) := \begin{cases} \widetilde{u}(m), & \text{falls} & m \in M \cap \sigma^{\perp} \\ 0, & \text{falls} & m \in M \cap \check{\sigma} \setminus \sigma^{\perp} \end{cases}$$

Jedes orb σ ist ein T_N-Orbit in P_{Σ} und jeder T_N-Orbit ist von dieser Form. Außerdem gilt die Dimensionsformel dim(orb σ) + dim $\sigma = r$.

Die Orbits bilden eine disjunkte Zerlegung von P_{Σ} und U_{σ} , nach [Oda, Proposition 1.6.] gilt

$$P_{\Sigma} = \prod_{\sigma \in \Sigma} \operatorname{orb} \sigma$$

und

$$U_{\sigma} = \coprod_{\tau < \sigma} \operatorname{orb} \tau.$$

Darüberhinaus ist τ genau dann eine Seite von σ , wenn orb σ im Abschluß von orb τ enthalten ist. Dieser Abschluß wird mit $V(\tau)$ bezeichnet und es gilt nach [Oda, S. 12]

$$V(\tau) = \coprod_{\sigma > \tau} \operatorname{orb} \sigma.$$

Speziell für $\sigma = \{0\}$ gilt orb $\{0\} = T_N$ und damit $V(\{0\}) = P_{\Sigma}$.

Der Abschluß $V(\sigma)$ eines jeden Orbits orb σ ist selbst wieder eine torische Varietät, das folgende Lemma bestimmt den definierenden Fächer.

Lemma 1.3 Sei Σ ein Fächer im Gitter N und σ ein Kegel in diesem Fächer. Das Untergitter von N, welches von $\sigma \cap N$ erzeugt wird, wird mit $\mathbb{Z}(\sigma \cap N)$ bezeichnet und der dadurch definierte Quotient von N mit $\overline{N}(\sigma) := N/\mathbb{Z}(\sigma \cap N)$. Für jeden Kegel $\tau \in \Sigma$ mit $\tau > \sigma$ sei $\overline{\tau} := (\tau + \mathbb{R}\sigma)/\mathbb{R}\sigma$ das Bild von τ im Quotienten $\overline{N}(\sigma)_{\mathbb{R}} = N_{\mathbb{R}}/\mathbb{R}\sigma$. Dann ist

$$\bar{\Sigma}(\sigma) := \{ \bar{\tau} : \tau \in \Sigma, \, \tau > \sigma \}$$

ein Fächer in $\overline{N}_{\mathbb{R}}$ und die dadurch definierte torische Varietät $P_{\overline{\Sigma}(\sigma)}$ stimmt mit $V(\sigma)$ überein.

Beweis. [Oda, Korollar 1.7.]

Für die Konstruktion einer torischen Varietät aus einem Polytop werden ebenfalls die Gitter N und M, ihre skalaren Erweiterungen $N_{\mathbb{R}}$ und $M_{\mathbb{R}}$ und die dazugehörigen Paarungen \langle , \rangle vorgegeben.

Definition 1.4

- (i) Eine Teilmenge $\Delta \subset M_{\mathbb{R}}$ heißt *Polytop*, falls sie die konvexe Hülle endlich vieler Punkte in $M_{\mathbb{R}}$ ist.
- (ii) Ein Polytop $\Delta \subset M_{\mathbb{R}}$ wird *Gitter-Polytop* genannt, falls die erzeugenden Punkte bereits im Gitter *M* liegen.
- (iii) Die Dimension eines Polytopes Δ (dim Δ) ist die Dimension des kleinsten affinen Unterraumes von $M_{\mathbb{R}}$, der Δ enthält.
- (iv) Eine Teilmenge F eines Polytopes Δ heißt Seite von Δ ($F < \Delta$), falls es $n \in N_{\mathbb{R}}$ und $\lambda \in \mathbb{R}$ gibt mit

$$\Delta \subset H^+(n,\lambda) := \{ m \in M_{\mathbb{R}} : \langle m, n \rangle \ge \lambda \}$$

und

$$F = \Delta \cap H(n, \lambda) := \{ m \in \Delta : \langle m, n \rangle = \lambda \}.$$

Bemerkung 1.5 Die Seiten eines *r*-dimensionalen (Gitter-)Polytopes Δ sind selbst (Gitter-)Polytope und bilden eine partiell geordnete Menge bezüglich <. Das kleinste Element ist die leere Menge, das größte Δ selbst. Die Menge aller *s*-dimensionalen Seiten ($-1 \leq s \leq r$) des Polytopes Δ wird mit $\Delta(s)$ bezeichnet, dabei wird der leeren Menge die Dimension -1 zugeordnet. Es ist also $\Delta(-1) = \{\emptyset\}$ und $\Delta(r) = \{\Delta\}$. Die nulldimensionalen Seiten heißen *Ecken* und die Seiten, deren Dimension echt kleiner als *r* ist, werden *echte Seiten* genannt.

Die Konstruktion einer torischen Varietät aus einem Gitter-Polytop soll auf die aus einem Fächer zurückgeführt werden. Damit ist auch klar, daß die Konstruktion aus einem Fächer allgemeiner ist. Inwiefern sie tatsächlich eine größere Klasse von Varietäten beschreibt, wird im Anschluß erklärt.

Satz und Definition 1.6 Es sei Δ ein Gitter-Polytop in $M_{\mathbb{R}}$ mit dim Δ = dim $M_{\mathbb{R}} = r$ und F eine s-dimensionale, nichtleere Seite $(0 \leq s \leq r)$ von Δ . Dann ist

$$\check{\sigma}(F) := \mathbb{R}_{\geq 0}(\Delta - F) = \{\lambda(m - m') : \lambda \in \mathbb{R}_{\geq 0}, m \in \Delta, m' \in F\} \subset M_{\mathbb{R}}$$

ein konvexer, rationaler, polyhedraler, r-dimensionaler Kegel und $\sigma(F)$, der duale Kegel zu $\check{\sigma}(F)$ in $N_{\mathbb{R}}$, ist ein streng konvexer, rationaler, polyhedraler Kegel der Dimension r-s. Die Menge

$$\Sigma(\Delta) := \{ \sigma(F) : \emptyset \neq F < \Delta \}$$

ist ein endlicher, vollständiger Fächer in N. Die torische Varietät P_{Δ} zu dem Gitter-Polytop Δ ist definiert als die Varietät $P_{\Sigma(\Delta)}$.

Beweis. [Ba, Proposition 2.1.1.]

Bemerkung 1.7

(i) Für zwei Seiten F_1, F_2 von Δ gilt

$$F_1 < F_2 \iff \sigma(F_2) < \sigma(F_1).$$

(ii) Die nach Satz und Definition 1.6 definierten Fächer zu zwei verschiedenen Gitter-Polytopen sind nicht notwendigerweise verschieden. Betrachtet man z.B. ein Gitter-Polytop Δ und ein positives ganzzahliges Vielfaches $\nu\Delta$, so erhält man in beiden Fällen denselben Fächer und damit dieselbe torische Varietät.

Viele Eigenschaften der torischen Varietät lassen sich auf einfachere Eigenschaften des Fächers resp. des Gitter-Polytopes zurückführen. Dazu zunächst folgende

Definition 1.8

(i) Ein Kegel σ heißt *nichtsingulär* (oder auch *regulär*), falls es eine Z-Basis $\{n^{(1)}, \ldots, n^{(r)}\}$ von N und ein $s \leq r$ gibt mit

$$\sigma = \mathbb{R}_{>0} n^{(1)} + \dots + \mathbb{R}_{>0} n^{(s)}.$$

- (ii) Ein Kegel σ heißt singulär, falls er nicht regulär ist.
- (iii) Ein Fächer heißt nichtsingulär (oder regulär), falls jeder seiner Kegel nichtsingulär ist.

Satz 1.9 Sei Σ ein Fächer in N. Dann gilt

- (i) Die affine Toruseinbettung U_{σ} zu einem Kegel $\sigma \in \Sigma$ ist genau dann glatt, wenn σ nichtsingulär ist.
- (ii) Die Varietät P_{Σ} ist genau dann glatt, wenn der Fächer Σ nichtsingulär ist.
- (iii) Die Varietät P_{Σ} ist genau dann kompakt, wenn der Fächer Σ endlich und vollständig ist.

Beweis. [Oda, Theoreme 1.10 und 1.11]

Bemerkung 1.10 Der Kegel $\{0\}$ ist trivialerweise nichtsingulär. Da ein eindimensionaler Kegel ρ in N nach Definition von einem Element in N erzeugt wird und dieses zu einer Basis fortgesetzt werden kann, sind auch alle eindimensionalen Kegel nichtsingulär. Das bedeutet, daß für jeden beliebigen Fächer $\Sigma^{[1]}$ regulär und damit die offene, torische Untervarietät $P_{\Sigma^{[1]}}$ von P_{Σ} glatt ist. Also ist der singuläre Ort einer torischen Varietät stets in

$$P_{\Sigma} \setminus P_{\Sigma^{[1]}} = \prod_{\sigma \in \Sigma \setminus \Sigma^{[1]}} \operatorname{orb} \sigma$$

enthalten.

Für weitere Kriterien dieser Art wird der Begriff der Trägerfunktion benötigt.

Definition 1.11 Es sei Σ ein Fächer in N.

- (i) Eine Funktion $h: |\Sigma| \to \mathbb{R}$ heißt *Trägerfunktion* des Fächers Σ , falls sie auf jedem Kegel $\sigma \in \Sigma$ linear ist und $h(N \cap |\Sigma|) \subset \mathbb{Q}$ gilt.
- (ii) Eine Trägerfunktion h heißt ganzzahlig, falls sogar $h(N \cap |\Sigma|) \subset \mathbb{Z}$ gilt.

Bemerkung 1.12

- (i) Zu einer Trägerfunktion h des Fächers Σ gibt es für jeden Kegel $\sigma \in \Sigma$ ein Element $h_{\sigma} \in M_{\mathbb{Q}} := M \otimes_{\mathbb{Z}} \mathbb{Q}$ mit $h|_{\sigma} = \langle h_{\sigma}, \cdot \rangle$. Ist $h'_{\sigma} \in M_{\mathbb{Q}}$ ein weiteres Element mit dieser Eigenschaft, so gilt $h_{\sigma} - h'_{\sigma} \in \sigma^{\perp}$. Also ist h_{σ} für ein $\sigma \in \Sigma(r)$ wegen $\sigma^{\perp} = \{0\}$ eindeutig festgelegt, für andere Kegel hingegen nicht. Ist τ eine Seite von σ , so kann man $h_{\tau} = h_{\sigma}$ wählen.
- (ii) Ist h ganzzahlig, so liegen die darstellenden Elemente h_{σ} bereits in M.
- (iii) Gibt man die Werte $h(n(\varrho)) \in \mathbb{Q}$ für die primitiven Erzeuger $n(\varrho) \in N$ aller eindimensionalen Kegel ϱ in Σ vor, so gibt es entweder keine Trägerfunktion auf $|\Sigma|$, die diese Werte annimmt, oder sie existiert und ist eindeutig bestimmt. Letzteres ist genau dann der Fall, wenn es für jeden Kegel $\sigma = \sum_{\varrho < \sigma} \mathbb{R}_{\geq 0} n(\varrho)$ in Σ ein $h_{\sigma} \in M_{\mathbb{Q}}$ gibt mit $\langle h_{\sigma}, n(\varrho) \rangle = h(n(\varrho))$ für jedes $\varrho < \sigma$. Für einen simplizialen Kegel σ , d.h. σ hat genau dim σ eindimensionale Seiten, existiert ein solches h_{σ} stets. Dies gilt insbesondere für nichtsinguläre Kegel.
- (iv) Wählt man die Werte $h(n(\varrho))$ in \mathbb{Z} und ist der Fächer nichtsingulär, so ist die dadurch definierte Trägerfunktion ganzzahlig. Dies gilt aber nicht für einen beliebigen Fächer. Selbst wenn eine Trägerfunktion mit den gegebenen Werten existiert, kann sie auf Punkten in $N \cap |\Sigma|$ nicht-ganzzahlige Werte annehmen.

Definition 1.13 Sei Σ ein vollständiger Fächer in N.

- (i) Eine Trägerfunktion h von Σ heißt konvex, falls für alle $n, n' \in |\Sigma| (= N_{\mathbb{R}})$ die Ungleichung $h(n + n') \leq h(n) + h(n')$ gilt.
- (ii) Eine konvexe Trägerfunktion h heißt streng konvex, falls für zwei r-dimensionale Kegel $\sigma \neq \sigma'$ in Σ die darstellenden Elemente h_{σ} und $h_{\sigma'}$ verschieden sind.
- (iii) Eine Trägerfunktion h von Σ heißt konkav, falls -h konvex ist; entsprechend heißt h streng konkav, falls -h streng konvex ist.

Die Trägerfunktionen sind unter anderem wichtig im Zusammenhang mit Divisoren. Es existiert mittels der Zuordnung

$$h \mapsto D_h := \sum_{\varrho \in \Sigma(1)} h(n(\varrho)) V(\varrho)$$

eine injektive Abbildung der Menge der Trägerfunktionen in die Menge der T_Ninvarianten \mathbb{Q} -Cartier-Divisoren. Schränkt man die Abbildung auf diejenigen Trägerfunktionen ein, die den primitiven Erzeugern aller eindimensionalen Kegel ganze Zahlen zuordnen, erhält man eine Abbildung in die Menge der T_N-invarianten Divisoren. Dabei ergeben im Fall einer kompakten, torischen Varietät die konvexen resp. streng konvexen Trägerfunktionen Divisoren, die nef resp. ampel sind. Ist der Fächer Σ nichtsingulär, die zugehörige Varieät also glatt, so ist diese Abbildung ein Isomorphismus und die genannte Einschränkung ebenso.

Bemerkung 1.14 In der Literatur werden bei dieser Zuordnung verschiedene Vorzeichenkonventionen verwendet. In [Oda] wird einer Trägerfunktion h der Divisor $-\sum_{\varrho \in \Sigma(1)} h(n(\varrho))V(\varrho)$ zugeordnet. Daraus ergibt sich, daß nicht mit konvexen (streng konvexen) sondern mit konkaven (streng konkaven) Trägerfunktionen gearbeitet werden muß, um Divisoren zu erhalten, die nef (ampel) sind. In [Ba] hingegen wird die hier angegebene Vorzeichenwahl getroffen.

Es gilt nun folgender

Satz 1.15 Eine kompakte torische Varietät P_{Σ} ist genau dann projektiv, wenn es zu Σ eine streng konvexe, ganzzahlige Trägerfunktion h gibt.

Beweis. [Oda, Korollar 2.16]

Bemerkung 1.16

(i) Zu einer Trägerfunktion h läßt sich wie folgt ein (eventuell leeres) Polytop in $M_{\mathbb{R}}$ definieren:

$$\Delta(\Sigma, h) := \bigcap_{\sigma \in \Sigma(r)} (-h_{\sigma} + \check{\sigma})$$

Im Falle eines endlichen, vollständigen Fächers und einer streng konvexen Trägerfunktion ist dieses Polytop *r*-dimensional und hat als Ecken genau die Elemente $\{-h_{\sigma} : \sigma \in \Sigma(r)\}$. Ist *h* ganzzahlig, so ist $\Delta(\Sigma, h)$ ein Gitter-Polytop.

- (ii) Eine streng konvexe Trägerfunktion eines vollständigen Fächers legt einen amplen Divisor fest und damit definiert ein positiv ganzzahliges Vielfaches dieser Trägerfunktion einen sehr amplen Divisor, der dann eine Einbettung in einen projektiven Raum liefert. Ist der Fächer regulär, die torische Varietät also glatt, ist jeder ample Divisor bereits sehr ampel ([Oda, Korollar 2.15.]). Existieren für einen vollständigen Fächer zwei verschiedene streng konvexe, ganzzahlige Trägerfunktionen, so legen diese auf diese Weise i.a. auch verschiedene Einbettungen der torischen Varietät in einen projektiven Raum fest.
- (iii) Genauer gesagt, sind zwei T_N -invariante Divisoren D_h und D'_h genau dann linear äquivalent, wenn sich die definierenden ganzzahligen Trägerfunktionen h und h' um ein Element in M unterscheiden, d.h. es gibt ein $m \in M$

mit h = h' + m. Dies ist der Fall, da ein Divisor D_h genau dann prinzipal ist, wenn $h \in M$ gilt. In diesem Fall gilt dann auch

$$\Delta(\Sigma, h) = \bigcap_{\sigma \in \Sigma(r)} (-h_{\sigma} + \check{\sigma})$$
$$= m + \bigcap_{\sigma \in \Sigma(r)} (-(h_{\sigma} + m) + \check{\sigma})$$
$$= m + \Delta(\Sigma, h').$$

Ist P_{Σ} eine projektive torische Varietät, so legen also der Fächer und eine streng konvexe, ganzzahlige Trägerfunktion ein Gitter-Polytop und einen amplen Divisor fest. Geht man von einem Gitter-Polytop aus, so definiert dieses nicht nur einen Fächer und damit eine torische Varietät, sondern auch eine streng konvexe, ganzzahlige Trägerfunktion h^{Δ} . Die Trägerfunktion wird auf einem *r*-dimensionalen Kegel $\sigma(F)$ zu einer Ecke $F \in \Delta$ festgelegt durch $h^{\Delta}_{\sigma(F)} = -F(\in M)$, da sich mit dieser Funktion

$$\Delta = \Delta(\Sigma(\Delta), h^{\Delta})$$

ergibt. Entsprechend erhält man aus dem Polytop $\Delta(\Sigma, h)$ den Fächer Σ und die Trägerfunktion h zurück:

$$\Sigma = \Sigma(\Delta(\Sigma, h))$$
 und $h = h^{\Delta(\Sigma, h)}$.

Zusammenfassend definiert ein Fächer eine allgemeine torische Varietät, wohingegen ein Gitter-Polytop eine projektive torische Varietät inklusive eines amplen Divisors festlegt. Also ist die Konstruktion aus einem Fächer wesentlich allgemeiner als die aus einem Polytop, denn außer den nicht kompakten torischen Varietäten, die aus nicht vollständigen Fächern entstehen, gibt es auch kompakte, nicht-projektive torische Varietäten ([Oda, Beispiel S. 84]).

1.2 Das Polytop Δ_r

Es sei $r \in \mathbb{N}$ und $\{e_t : 1 \leq t \leq r+1\}$ die Standardbasis des \mathbb{Z}^{r+1} . Das Wurzelsystem A_r besteht dann aus den Wurzeln $e_{i,j} := e_i - e_j, 1 \leq i \neq j \leq r+1$, und erzeugt das folgende Untergitter von \mathbb{Z}^{r+1} vom Rang r

$$M := M_r := \left\{ \sum_{t=1}^{r+1} m_t e_t \in \mathbb{Z}^{r+1} : \sum_{t=1}^{r+1} m_t = 0 \right\} \subset \mathbb{Z}^{r+1}.$$

Das zugehörige Gitter-Polytop Δ_r ist definiert als die konvexe Hülle der Wurzeln in $M_{\mathbb{R}}$, also

$$\Delta_r := \overline{\{e_{i,j} : 1 \le i \ne j \le r+1\}}^{\text{con}} \subset M_{\mathbb{R}}.$$

1.2. DAS POLYTOP Δ_R

Eine Z-Basis des Gitters M ist durch $\{e_{i+1,i} : 1 \leq i \leq r\}$ gegeben. Das duale Gitter $N := N_r$ kann dann mittels der hierzu dualen Basis bestimmt werden. Dazu seien die Elemente der dualen Basis zu den $e_t \in \mathbb{Z}^{r+1}$ ebenfalls mit e_t bezeichnet.

Lemma 1.17 Die duale Basis zur Basis $\{e_{i+1,i}, 1 \leq i \leq r\}$ von M, besteht aus den Vektoren

$$e_{\{1,\dots,i\}} := \frac{i}{r+1} \sum_{t=i+1}^{r+1} e_t - \frac{r+1-i}{r+1} \sum_{t=1}^{i} e_t$$

mit $1 \leq i \leq r$.

Beweis.Es se
i δ_{ij} das Kroneckersymbol und $1 \leq i,j \leq r$

$$\begin{aligned} \langle e_{i+1,i}, e_{\{1,\dots,j\}} \rangle &= \frac{j}{r+1} \sum_{t=j+1}^{r+1} \langle e_{i+1} - e_i, e_t \rangle - \frac{r+1-j}{r+1} \sum_{t=1}^{j} \langle e_{i+1} - e_i, e_t \rangle \\ &= \frac{j}{r+1} \,\delta_{i+1,j+1} - \frac{r+1-j}{r+1} \left(-\delta_{i,j} \right) \\ &= \delta_{ij}. \end{aligned}$$

г		
-	-	_

Das duale Gitter läßt sich damit als

$$N = N_r = \left\{ \sum_{t=1}^{r+1} n_t e_t : n_t \in \frac{1}{r+1} \mathbb{Z}, \sum_{t=1}^{r+1} n_t = 0 \right\}$$

darstellen.

Da für die Konstruktion und die Eigenschaften der torischen Varietät P_{Δ_r} die Seiten und die Eigenschaften des Polytopes eine entscheidende Rolle spielen, soll nun das Polytop Δ_r analysiert werden.

Lemma 1.18 Jede echte Seite von Δ_r ist von der Form

 $F_{J_1J_2} := \overline{\{e_{i,j} : i \in J_1, j \in J_2^c\}}^{\text{con}}$

mit $J_1 \subset J_2 \subset \{1, \ldots, r+1\}$ und hat damit $\#J_1 \cdot (r+1-\#J_2)$ Ecken. $F_{J_1J_2}$ ist genau dann die leere Seite von Δ_r , wenn $J_1 = \emptyset$ oder $J_2 = \{1, \ldots, r+1\}$ gilt. Für zwei Seiten $F_{J_1^{(t)}J_2^{(t)}}$ mit $J_1^{(t)} \subset J_2^{(t)} \subset \{1, \ldots, r+1\}, t = 1, 2, gilt$

$$F_{J_1^{(1)}J_2^{(1)}} \cap F_{J_1^{(2)}J_2^{(2)}} = F_{J_1^{(1)} \cap J_1^{(2)}J_2^{(1)} \cup J_2^{(2)}}$$

und

$$F_{J_1^{(1)}J_2^{(1)}} < F_{J_1^{(2)}J_2^{(2)}} \Longleftrightarrow J_1^{(1)} \subset J_1^{(2)} \text{ und } J_2^{(1)} \supset J_2^{(2)}$$

Für eine nichtleere Seite $F_{J_1J_2}$ von Δ ist die Dimension gegeben durch

$$r + \#J_1 - \#J_2 - 1.$$

Beweis. Das Kriterium, wann ein $F_{J_1J_2}$ leer ist, die Anzahl der Ecken und die Formel für den Durchschnitt zweier solcher Mengen folgen sofort aus der Definition. Ebenso folgt sofort, daß $F_{J_1^{(1)}J_2^{(1)}}$ genau dann eine Teilmenge von $F_{J_1^{(2)}J_2^{(2)}}$ ist, wenn

$$J_1^{(1)} \subset J_1^{(2)} \text{ und } J_2^{(1)} \supset J_2^{(2)}$$

gilt. Sobald gezeigt wurde, daß die $F_{J_1^{(t)}J_2^{(t)}}$ Seiten des Polytopes Δ_r sind, ist damit auch dieses Kriterium gezeigt.

Es sei für $\emptyset \neq J \subsetneq \{1, \dots, r+1\}$ und k := #J

$$e_{J} := \frac{k}{r+1} \sum_{t \in J^{c}} e_{t} - \frac{r+1-k}{r+1} \sum_{t \in J} e_{t} \in N,$$
$$H(e_{J}, -1) := \{ m \in M_{\mathbb{R}} : \langle m, e_{J} \rangle = -1 \}$$

und

$$H^+(e_J, -1) := \{ m \in M_{\mathbb{R}} : \langle m, e_J \rangle \ge -1 \}.$$

Behauptung 1. Es gilt

$$\Delta_r \subset \bigcap_{\substack{J \subsetneq \{1, \dots, r+1\}\\ J \neq \emptyset}} H^+(e_J, -1).$$

Beweis. Da Δ_r konvex ist, genügt es zu zeigen, daß die Ecken von Δ , also alle $e_{i,j}$, in dem ebenfalls konvexen Durchschnitt der Halbräume liegen.

$$\begin{array}{ll} \text{Mit } \delta_i^J \coloneqq \left\{ \begin{array}{ll} 1 & i \in J \\ 0 & i \notin J \end{array} \right. \text{gilt:} \\ \left\langle e_{i,j}, e_J \right\rangle &=& \frac{k}{r+1} \sum_{t \in J^c} \langle e_i - e_j, e_t \rangle - \frac{r+1-k}{r+1} \sum_{t \in J} \langle e_i - e_j, e_t \rangle \\ &=& \frac{k}{r+1} \left(\delta_i^{J^c} - \delta_j^{J^c} \right) - \frac{r+1-k}{r+1} \left(\delta_i^J - \delta_j^J \right) \\ &=& \left\{ \begin{array}{ll} 1 & i \in J^c, j \in J \\ 0 & i, j \in J \lor i, j \in J^c \\ -1 & i \in J, j \in J^c \end{array} \right. \\ &\geq& -1. \end{array}$$

Aus dieser Rechnung geht auch hervor, daß eine Ecke $e_{i,j}$ genau dann in der Hyperebene $H(e_J, -1)$ liegt, wenn $i \in J$ und $j \in J^c$ gilt.

Behauptung 2. Der kleinste affine Unterraum, der die Menge $F_{J_1J_2} \neq \emptyset$ enthält, hat Dimension $r + \#J_1 - \#J_2 - 1$.

Beweis. O.B.d.A. sei $J_1 = \{1, \ldots, k\} \subset J_2 = \{1, \ldots, l\}$ mit $1 \leq k \leq l \leq r$. Diese Situation kann durch Permutation der Menge $\{1, \ldots, r+1\}$ stets hergestellt

1.2. DAS POLYTOP Δ_R

werden. Folgende r - l + k Wurzeln in $F_{J_1J_2}$ sind affin unabhängig, spannen also einen (r - l + k - 1)-dimensionalen affinen Raum auf,

$$e_{1,l+1}, e_{1,l+2}, \ldots, e_{1,r+1}, e_{2,r+1}, \ldots, e_{k,r+1},$$

da für $\lambda_{1,j} \in \mathbb{R}, j = l+1, \ldots, r$ und $\lambda_{i,r+1} \in \mathbb{R}, i = 2, \ldots, k$ gilt

$$\begin{split} \sum_{j=l+1}^{r} \lambda_{1,j}(e_{1,j} - e_{1,r+1}) + \sum_{i=2}^{k} \lambda_{i,r+1}(e_{i,r+1} - e_{1,r+1}) &= 0 \\ \iff \sum_{j=l+1}^{r} \lambda_{1,j}(e_{r+1} - e_j) + \sum_{i=2}^{k} \lambda_{i,r+1}(e_i - e_1) &= 0 \\ \iff \left(\sum_{i=2}^{k} -\lambda_{i,r+1}\right) e_1 + \sum_{i=2}^{k} \lambda_{i,r+1}e_i + \sum_{j=l+1}^{r} -\lambda_{1,j}e_j + \left(\sum_{j=l+1}^{r} \lambda_{1,j}\right) e_{r+1} &= 0 \\ \iff \begin{cases} \sum_{i=2}^{k} \lambda_{i,r+1} &= 0, \quad \lambda_{i,r+1} &= 0 & \text{für } i = 2, \dots, k, \\ \sum_{j=l+1}^{r} \lambda_{1,j} &= 0, \quad \lambda_{1,j} &= 0 & \text{für } j = l+1, \dots, r \end{cases} \\ \iff \begin{cases} \lambda_{i,r+1} &= 0 & \text{für } i = 2, \dots, k, \\ \lambda_{1,j} &= 0 & \text{für } j = l+1, \dots, r. \end{cases} \end{split}$$

Also ist die Dimension des kleinsten affinen Unterraumes, der $F_{J_1J_2}$ enthält, nicht kleiner als $r - l + k - 1 = r + \#J_1 - \#J_2 - 1$. Andererseits gilt

$$F_{J_1J_2} \subset \bigcap_{t=k}^{l} H(e_{\{1,\dots,t\}}, -1),$$

da für $k \leq t \leq l$ gilt

$$e_{i,j} \in F_{J_1J_2} \implies i \in \{1, \dots, k\}, j \in \{l+1, \dots, r+1\}$$

$$\implies i \in \{1, \dots, t\}, j \in \{t+1, \dots, r+1\}$$

$$\implies e_{i,j} \in H(e_{\{1,\dots,t\}}, -1).$$

Die Menge $\{e_{\{1,\dots,t\}} : k \leq t \leq l\}$ ist Teilmenge der zu $e_{i+1,i}$ dualen Basis von N (s. Lemma 1.17) und damit linear unabhängig. Also ist die Dimension des Durchschnittes der von diesen Elementen definierten Hyperebenen $r - (\#Hyperebenen) = r - (l - k + 1) = r + \#J_1 - \#J_2 - 1.$

Behauptung 3. Die Mengen $F_{J_1J_2}$ sind Seiten des Polytopes Δ_r .

Beweis. Für $\emptyset \neq J = J_1 = J_2 \subsetneq \{1, \ldots, r+1\}$ ergibt sich die Dimension des kleinsten affinen Unterraumes, der F_{JJ} enthält, zu r - 1. Die Ecken von

 F_{JJ} spannen nach Behauptung 2 die Hypereben
e $H(e_J,-1)$ auf. Zusammen mit Behauptung 1 ergibt sich dann

$$\Delta_r = \bigcap_{\emptyset \neq J \subsetneq \{1, \dots, r+1\}} H^+(e_J, -1).$$

Damit gilt auch

$$\begin{aligned} F_{J_1J_2} &= \Delta_r \cap H(e_{J_1}, -1) \cap H(e_{J_2}, -1) \\ &= \{ m \in M_{\mathbb{R}} : \langle m, e_J \rangle \geq -1 \text{ für alle } J, \langle m, e_{J_1} \rangle = \langle m, e_{J_2} \rangle = -1 \}. \end{aligned}$$

Mit $n = \frac{e_{J_1} + e_{J_2}}{2}$ ergibt sich dann

$$\Delta_r \subset H^+(n,-1),$$

da $\langle e_{i,j},n\rangle=\frac{\langle e_{i,j},e_{J_1}\rangle+\langle e_{i,j},e_{J_2}\rangle}{2}\geq -1$ gilt, und

$$F_{J_1J_2} = \Delta \cap H(n, -1) = \{ m \in M_{\mathbb{R}} : \langle m, e_J \rangle \ge -1 \text{ für alle } J, \langle m, n \rangle = -1 \},$$

da mit der Voraussetzung $\langle m, e_J \rangle \geq -1$ für alle J

$$\langle m, n \rangle = -1 \iff \langle m, e_{J_1} \rangle = \langle m, e_{J_2} \rangle = -1$$

gilt. Also ist $F_{J_1J_2}$ eine Seite von Δ_r .

Behauptung 4. Jede echte Seite F von Δ_r ist von der Form $F = F_{J_1J_2}$ für geeignete $J_1 \subset J_2 \subset \{1, \ldots, r+1\}.$

Beweis. Wegen $\Delta_r = \bigcap_{\emptyset \neq J \subsetneq \{1, \dots, r+1\}} H^+(e_J, -1), F_{JJ} = \Delta_r \cap H(e_J, -1)$ und dim $F_{J_1J_2} = r - 1 \iff J_1 = J_2$ sind alle (r - 1)-dimensionalen Seiten von Δ_r von der Form F_{JJ} . Jede echte Seite F von Δ_r läßt sich nun als endlicher Durchschnitt von (r - 1)-dimensionalen Seiten schreiben. Es gilt also für geeignete $\emptyset \neq J_i \subsetneq$ $\{1, \dots, r+1\}, i = 1, \dots, k$

$$F = \bigcap_{i=1}^{k} F_{J_i J_i}.$$

Wendet man nun die Formel für den Durchschnitt zweier solcher Mengen induktiv an, so erhält man

$$F = \bigcap_{i=1}^{k} F_{J_i J_i} = F_{\left(\bigcap_i J_i\right)\left(\bigcup_i J_i\right)},$$

also die gewünschte Darstellung. Darüberhinaus folgt, daß sich jede Seite des Polytopes Δ_r bereits als Durchschnitt zweier (r-1)-dimensionaler Seiten darstellen läßt. Es gilt für $J_1 \subset J_2 \subset \{1, \ldots, r+1\}$

$$F_{J_1J_2} = F_{(J_1 \cap J_2)(J_1 \cup J_2)} = F_{J_1J_1} \cap F_{J_2J_2}.$$

1.2. DAS POLYTOP Δ_R

Korollar 1.19 Für $0 \le s \le r-1$ ist die Anzahl der s-dimensionalen Seiten von Δ gegeben durch

$$#\Delta(s) = \binom{r+1}{s+2} (2^{s+2} - 2),$$

also hat Δ insbesondere genau $(r+1) \cdot r$ Ecken und $2^{r+1}-2$ Seiten mit Dimension r-1. Außerdem ist $\#\Delta(-1) = \#\Delta(r) = 1$.

Beweis. Sei $0 \leq s \leq r-1$, wegen $F_{J_1J_2} \in \Delta(s) \iff r + \#J_1 - \#J_2 - 1 = s$, ist $\#\Delta(s)$ die Anzahl der verschiedenen Möglichkeiten, zwei Mengen J_1 und J_2 mit $\emptyset \neq J_1 \subset J_2 \subsetneq \{1, \ldots, r+1\}$ und $\#J_2 - \#J_1 = r - s - 1$ zu wählen. Es muß gelten

$$(\#J_1, \#J_2) \in \{(1, r-s), (2, r-s+1), \dots, (s+1, r)\}.$$

Sei $k = \#J_1 \in \{1, \ldots, s+1\}$, dann ist $l = \#J_2 = r-s-1+k$, $\#(J_2 \setminus J_1) = r-s-1$ und es gibt $\binom{r+1}{k}$ Möglichkeiten, eine Menge J_1 mit k Elementen zu wählen. Da $J_2 \supset J_1$ gelten muß, gibt es $\binom{r+1-k}{r-s-1}$ Möglichkeiten, r-s-1 Elemente aus J_1^c zu J_1 hinzuzufügen, um eine Menge J_2 zu erhalten. Es ergibt sich

$$\#\Delta(s) = \sum_{k=1}^{s+1} \binom{r+1}{k} \binom{r+1-k}{r-s-1}$$

$$= \frac{(r+1)!}{(r-s-1)!} \sum_{k=1}^{s+1} \frac{1}{k!(s+2-k)!}$$

$$= \frac{(r+1)!}{(s+2)!(r-s-1)!} \left(\sum_{k=0}^{s+2} \binom{s+2}{k} - 2\right)$$

$$= \binom{r+1}{s+2} (2^{s+2}-2).$$

Speziell gilt

$$\#\Delta(0) = \binom{r+1}{2}(2^2 - 2) = (r+1) \cdot r$$

und

$$#\Delta(r-1) = \binom{r+1}{r+1}(2^{r+1}-2) = 2^{r+1}-2.$$

Die Behauptung $\#\Delta(-1) = \#\Delta(r) = 1$ gilt für jedes *r*-dimensionale Polytop. \Box Eine wichtige Eigenschaft eines Polytopes Δ ist die Reflexivität. Dafür wird der Begriff des ganzzahligen Abstandes benötigt.

Definition 1.20 Es sei H eine affine Hyperebene in $M_{\mathbb{R}}$, die von Gitterpunkten aufgespannt wird, d.h. es gibt ein $n^{(0)} \in N$ und eine ganze Zahl $\lambda \in \mathbb{Z}$ mit

$$H = \{ m \in M_{\mathbb{R}} : \langle m, n^{(0)} \rangle = \lambda \}.$$

Der ganzzahlige Abstand eines Punktes $m^{(0)} \in M$ und der Hyperebene H ist definiert als

$$|\lambda - \langle m^{(0)}, n^{(0)} \rangle| \in \mathbb{Z}_{>0}.$$

Definition 1.21 Es sei M ein r-dimensionales Gitter und Δ ein Gitter-Polytop in $M_{\mathbb{R}}$, dessen Inneres die 0 enthält. Das Paar (Δ, M) heißt *reflexiv*, falls der ganzzahlige Abstand zwischen der 0 und jeder affinen Hyperebene H, die von einer (r-1)-dimensionalen Seite von Δ aufgespannt wird, gleich 1 ist. Ist (Δ, M) ein reflexives Paar, so wird Δ *reflexiv* genannt.

Bemerkung 1.22 Ein reflexives Polytop ist notwendigerweise r-dimensional, da anderenfalls das Innere leer ist.

Korollar 1.23 Das Polytop Δ_r ist ein reflexives Polytop.

Beweis. Aus dem Beweis von Lemma 1.18 ist bekannt, daß

$$\Delta_r = \bigcap_{\substack{J \subsetneq \{1, \dots, r+1\}\\ J \neq \emptyset}} H^+(e_J, -1)$$

gilt. Wegen $0 \in H^+(e_J, -1) \setminus H(e_J, -1)$ liegt die 0 im Inneren des Polytopes. Außerdem wurde dort gezeigt, daß alle (r-1)-dimensionalen Seiten von Δ_r die Form F_{JJ} haben mit einem $\emptyset \neq J \subsetneq \{1, \ldots, r+1\}$ und, daß F_{JJ} die Hyperebene $H(e_J, -1)$ aufspannt. Der ganzzahlige Abstand von einer solchen Hyperebene und der 0 ist also

$$|-1-\langle 0,e_J\rangle|=1,$$

und damit ist das Paar (Δ, M) reflexiv.

1.3 Der Fächer $\Sigma(\Delta_r)$

Nachdem im letzten Abschnitt das Polytop Δ_r analysiert wurde, soll in diesem Abschnitt der zugehörige Fächer $\Sigma(\Delta_r)$ betrachtet werden. Dafür wird $N_{\mathbb{R}}$ durch Einbettung in den Vektorraum $(\mathbb{Z}^{r+1})^{\vee} \otimes_{\mathbb{Z}} \mathbb{R} \cong \mathbb{R}^{r+1}$ mit den Koordinaten $n = (n_1, \ldots, n_{r+1})$ versehen. Dann ist $N_{\mathbb{R}} = H((1, \ldots, 1), 0) \subset \mathbb{R}^{r+1}$, d.h. für ein $n \in N_{\mathbb{R}}$ gilt $\sum_{t=1}^{r+1} n_t = 0$.

Lemma 1.24 Der Fächer $\Sigma(\Delta_r)$ besteht aus dem Kegel $\{0\}$ und den Kegeln

$$\begin{aligned} \sigma_{J_1 J_2} &:= & \sigma(F_{J_1 J_2}) \\ &= & \{ n \in N_{\mathbb{R}} : n_i \le n_t \le n_j \text{ für alle } i \in J_1, j \in J_2^c, 1 \le t \le r+1 \} \subset N_{\mathbb{R}} \end{aligned}$$

mit $\emptyset \neq J_1 \subset J_2 \subsetneq \{1, \ldots, r+1\}$. Ein Kegel $\sigma_{J_1J_2}$ hat Dimension $\#J_2 - \#J_1 + 1$. Außerdem gilt für $\emptyset \neq J_1^{(i)} \subset J_2^{(i)} \subsetneq \{1, \ldots, r+1\}, i = 1, 2,$

$$\sigma_{J_1^{(1)}J_2^{(1)}} < \sigma_{J_1^{(2)}J_2^{(2)}} \iff J_1^{(1)} \supset J_1^{(2)} \text{ und } J_2^{(1)} \subset J_2^{(2)}.$$

Beweis. Der Fächer $\Sigma(\Delta_r)$ besteht nach Satz und Definition 1.6 aus allen Kegeln $\sigma(F)$ mit einer nichtleeren Seite F von Δ_r . Dabei ist für $F = \Delta_r$ der zugehörige Kegel $\{0\}$. Sei also F eine nichtleere, echte Seite von Δ_r . Dann gilt nach Lemma 1.18 $F = F_{J_1J_2}$ für geeignete $\emptyset \neq J_1 \subset J_2 \subsetneq \{1, \ldots, r+1\}$ und es ist

$$\check{\sigma}_{J_1J_2} := \check{\sigma}(F_{J_1J_2}) = \mathbb{R}_{\geq 0}(\Delta_r - F_{J_1J_2}).$$

Dieser Kegel wird erzeugt von den Elementen $e_{k,l} - e_{i,j}$ mit $1 \le k \ne l \le r+1$ und $i \in J_1, j \in J_2^c$, da Δ_r die konvexe Hülle der $e_{k,l}$ und $F_{J_1J_2}$ die der $e_{i,j}$ ist. Nun gilt für feste $i \in J_1, j \in J_2^c$

$$e_{k,l} - e_{i,j} = \begin{cases} 0, & \text{falls } k = i, l = j \\ e_{j,l}, & \text{falls } k = i, l \neq j \\ e_{k,i}, & \text{falls } k \neq i, l = j \\ 2e_{j,t} + 2e_{t,i}, & \text{falls } k = j, l = i \\ 2e_{j,l} + e_{l,i}, & \text{falls } k = j, l \neq i \\ 2e_{k,i} + e_{j,k}, & \text{falls } k \neq j, l = i \\ e_{k,i} + e_{j,l}, & \text{falls } k, l \neq i, j \end{cases}$$

für ein beliebiges $t \neq i, j$, denn z.B. für k = j, l = i ist

$$e_{k,l} - e_{i,j} = e_j - e_i - e_i + e_j = 2(e_j - e_t) + 2(e_t - e_i) = 2e_{j,t} + 2e_{t,i}.$$

Die anderen Fälle ergeben sich analog.

Es gilt also

$$\mathbb{R}_{\geq 0}(\Delta_r - e_{i,j}) = \sum_{k \neq l} \mathbb{R}_{\geq 0}(e_{k,l} - e_{i,j}) = \sum_{t \neq i,j} \left(\mathbb{R}_{\geq 0} e_{j,t} + \mathbb{R}_{\geq 0} e_{t,i} \right)$$

und damit

$$\begin{split} \check{\sigma}_{J_{1}J_{2}} &= \mathbb{R}_{\geq 0} (\Delta_{r} - F_{J_{1}J_{2}}) \\ &= \sum_{i \in J_{1} \atop j \in J_{2}^{c}} \mathbb{R}_{\geq 0} (\Delta_{r} - e_{i,j}) \\ &= \sum_{i \in J_{1} \atop j \in J_{2}^{c}} \sum_{t \neq i,j} (\mathbb{R}_{\geq 0} e_{j,t} + \mathbb{R}_{\geq 0} e_{t,i}) \\ &= \begin{cases} \sum_{i \in J_{1}} \sum_{t \neq i} \mathbb{R}_{\geq 0} e_{t,i} + \sum_{j \in J_{2}^{c}} \sum_{t \neq j} \mathbb{R}_{\geq 0} e_{j,t}, \text{ falls } \#J_{1} \neq 1, \#J_{2} \neq r \\ \sum_{t \neq i} \mathbb{R}_{\geq 0} e_{t,i} + \sum_{j \in J_{2}^{c}} \sum_{t \neq i,j} \mathbb{R}_{\geq 0} e_{j,t}, \text{ falls } J_{1} = \{i\}, \#J_{2} \neq r \\ \sum_{i \in J_{1}} \sum_{t \neq i} \mathbb{R}_{\geq 0} e_{t,i} + \sum_{j \in J_{2}^{c}} \sum_{t \neq i,j} \mathbb{R}_{\geq 0} e_{j,t}, \text{ falls } \#J_{1} \neq 1, J_{2}^{c} = \{j\} \\ \sum_{i \in J_{1}} \sum_{t \neq i,j} \mathbb{R}_{\geq 0} e_{t,i} + \sum_{t \neq j} \mathbb{R}_{\geq 0} e_{j,t}, \text{ falls } J_{1} = \{i\}, J_{2}^{c} = \{j\} \end{cases} \end{split}$$

Der duale Kegel zu
 $\check{\sigma}_{J_1J_2}$ ergibt sich nun zu

$$\begin{aligned} \sigma_{J_1J_2} &= \{ n \in N_{\mathbb{R}} : \langle m, n \rangle \ge 0 \text{ für alle } m \in \check{\sigma}_{J_1J_2} \} \\ &= \{ n \in N_{\mathbb{R}} : \langle m, n \rangle \ge 0 \text{ für alle Erzeuger } m \text{ von } \check{\sigma}_{J_1J_2} \} \\ &= \{ n \in N_{\mathbb{R}} : n_i \le n_t \le n_j \text{ für alle } i \in J_1, j \in J_2^c, 1 \le t \le r+1 \}, \end{aligned}$$

da z.B. für $\#J_1 \neq 1, \#J_2 \neq r$ und $n \in N_{\mathbb{R}}$ gilt

$$\begin{array}{l} \langle m,n\rangle \geq 0 \text{ für alle Erzeuger } m \text{ von } \check{\sigma}_{J_1J_2} \\ \Longleftrightarrow \quad \langle e_{t,i},n\rangle \geq 0 \text{ für alle } i \in J_1, t \neq i \text{ und } \langle e_{j,t},n\rangle \geq 0 \text{ für alle } j \in J_2^c, t \neq j \\ \Leftrightarrow \quad n_i \leq n_t \text{ für alle } i \in J_1, t \neq i \text{ und } n_t \leq n_j \text{ für alle } j \in J_2^c, t \neq j \\ \Leftrightarrow \quad n_i \leq n_t \leq n_j \text{ für alle } i \in J_1, j \in J_2^c, 1 \leq t \leq r+1. \end{array}$$

Die anderen drei Fälle lassen sich analog beweisen.

Die Dimension des Kegels $\sigma_{J_1J_2}$ ergibt sich nach Satz und Definition 1.6 und Lemma 1.18 als $r - \dim(F_{J_1J_2}) = r - (r + \#J_1 - \#J_2 - 1) = \#J_2 - \#J_1 + 1$. Die Bedingung, wann ein Kegel Seite eines anderen ist, folgt sofort aus Lemma 1.18 und Bemerkung 1.7.

Korollar 1.25 Die eindimensionalen Kegel des Fächers $\Sigma(\Delta_r)$ sind genau die Kegel der Form

$$\varrho_J := \sigma_{JJ} = \mathbb{R}_{\ge 0} n(\varrho_J)$$

mit $\emptyset \neq J \subsetneq \{1, \ldots, r+1\}$, k := #J und

$$n(\varrho_J) = e_J = \frac{k}{r+1} \sum_{t \in J^c} e_t - \frac{r+1-k}{r+1} \sum_{t \in J} e_t \in N.$$

Der Vektor $n(\varrho_J)$ ist der (eindeutige) primitive Erzeuger von ϱ_J über $\mathbb{Z}_{\geq 0}$, d.h. $\varrho_J \cap N = \mathbb{Z}_{\geq 0} n(\varrho_J)$.

1.4. DIE TORISCHE VARIETÄT P_{Δ_R}

Beweis. Nach Lemma 1.24 sind die eindimensionalen Kegel von $\Sigma(\Delta_r)$ genau die der Form $\sigma_{J_1J_2}$ mit $\emptyset \neq J := J_1 = J_2 \subsetneq \{1, \ldots, r+1\}$. Es genügt also zu zeigen, daß e_J der primitive Erzeuger von $\varrho_J = \sigma_{JJ}$ ist, also

$$N \cap \varrho_J = \mathbb{Z}_{\geq 0} e_J.$$

Sei o.B.d.A. $J = \{1, \ldots, k\}$ mit $1 \le k \le r$. Es ist $\mathbb{Z}_{\ge 0} e_J \subset N \cap \varrho_J$, da

$$e_J = \left(\underbrace{-\frac{r+1-k}{r+1}, \dots, -\frac{r+1-k}{r+1}}_{k-\text{mal}}, \frac{k}{r+1}, \dots, \frac{k}{r+1}\right)$$

und

$$N \cap \varrho_J = \{n \in N : n_1 = \dots = n_k \le n_{k+1} = \dots = n_{r+1}\}$$

gilt und damit e_J in $N \cap \varrho_J$ liegt. Die andere Inklusion folgt, da e_J ein Vektor der Basis von N ist.

Bemerkung 1.26 Für jeden s-dimensionalen Kegel $\sigma_{J_1J_2}$ in $\Sigma(\Delta_r)$ ist ϱ_J genau dann eine Seite, wenn $J_1 \subset J \subset J_2$ gilt. Hält man J_1 und J_2 fest, so gibt es $2^{\#J_2-\#J_1}$ Mengen mit dieser Eigenschaft, so daß jeder Kegel mit Dimension größer als 2 singulär ist, da $2^{\#J_2-\#J_1} > s = \#J_2 - \#J_1 + 1$ für alle $s \geq 3$ gilt, d.h. der Kegel hat mehr Erzeuger als seine Dimension angibt. Die Varietät P_{Δ_r} ist also für $r \geq 3$ nach Satz 1.9 singulär und für r = 1, 2 glatt.

1.4 Die torische Varietät P_{Δ_r}

In diesem Abschnitt soll die durch das Polytop Δ_r definierte torische Varietät P_{Δ_r} analysiert werden. Bekannt ist aus Abschnitt 1.1 und Bemerkung 1.26, daß P_{Δ_r} projektiv und nicht glatt ist. Man kann nun nach der Dimension des singulären Ortes und der Art der Singularitäten fragen. Dafür ist es wichtig, die durch das Polytop definierte Trägerfunktion h^{Δ_r} auf dem Fächer $\Sigma(\Delta_r)$ zu kennen.

Aus dem Abschnitt 1.1 ist bekannt, daß eine ganzzahlige Trägerfunktion h auf jedem r-dimensionalen Kegel $\sigma \in \Sigma$ eindeutig durch ein Element $h_{\sigma} \in M$ festgelegt wird und die Funktion durch Festlegung dieser darstellenden Elemente eindeutig bestimmt ist. Darüberhinaus wurde dort dargestellt, wie mittels des Polytopes Δ_r die Trägerfunktion h^{Δ_r} festgelegt wird. Sei dafür nun $e_{i,j}$ eine Ecke des Polytopes Δ_r und $\sigma_{i,j} := \sigma_{\{i\}\{j\}^c}, i \neq j$, sei der zugehörige r-dimensionale Kegel in $\Sigma(\Delta_r)$ aus Lemma 1.24. Das darstellende Element der Funktion h^{Δ_r} auf $\sigma_{i,j}$ ist dann $-e_{i,j} = e_{j,i}$.

Eine wichtige Feststellung, um Aussagen über die Art der Singularitäten einer torischen Varietät machen zu können, ist die, daß alle Punkte auf einem Orbit orb $\sigma, \sigma \in \Sigma$, lokal isomorph sind, also das gleiche Verhalten bezüglich Singularitäten an den Tag legen. Dies sieht man wie folgt ein.

Definition 1.27 Es sei σ ein *s*-dimensionaler Kegel in einem Fächer Σ in $N_{\mathbb{R}}$. Das von σ erzeugte Untergitter $N(\sigma)$ von N ist das kleinste *s*-dimensionale Untergitter von N, welches $\sigma \cap N$ enthält.

Da σ ein streng konvexer, rationaler, polyhedraler Kegel in $N(\sigma)$ ist, kann man zusätzlich zu U_{σ} die affine Toruseinbettung $U_{\sigma,N(\sigma)}$ von σ als Kegel in $N(\sigma)$ betrachten. Es gilt

$$U_{\sigma} \cong (\mathbb{C}^*)^{r-s} \times U_{\sigma,N(\sigma)}.$$

Auf $U_{\sigma,N(\sigma)}$ operiert der Torus $T_{N(\sigma)}$ und der Orbit $\operatorname{orb}_{N(\sigma)} \sigma$ von σ bezüglich dieser Operation ist ein Punkt, der einzige Fixpunkt in $U_{\sigma,N(\sigma)}$.

Definition 1.28 Der Fixpunkt in $U_{\sigma,N(\sigma)}$ unter der Operation des Torus $T_{N(\sigma)}$ wird mit u_{σ} bezeichnet.

Unter dem oben genannten Isomorphismus gilt

$$\operatorname{orb}_N \sigma \cong (\mathbb{C}^*)^{r-s} \times \{u_\sigma\},\$$

so daß kleine offene analytische Umgebungen eines beliebigen Punktes $u \in \operatorname{orb}_N \sigma$ isomorph zu Produkten von (r-s)-dimensionalen offenen Kugeln mit offenen analytischen Umgebungen des Punktes $u_{\sigma} \in U_{\sigma,N(\sigma)}$ sind. Dementsprechend genügt es also, für jeden Kegel $\sigma \in \Sigma$ den Punkt u_{σ} zu untersuchen.

Bemerkung 1.29 Für einen Kegel $\sigma \in \Sigma$ ist u_{σ} und damit orb_N σ genau dann singulär, wenn der Kegel σ singulär ist. Dies läßt sich aus dem Beweis zu Satz 1.9 in [Oda, Theorem 1.10.] entnehmen.

Definition 1.30 Es sei X eine normale, r-dimensionale algebraische Varietät und $X^{\circ} = X \setminus \text{Sing}(X)$ sei der glatte Anteil von X.

(i) Ein Weil-Divisor K_X auf X heißt kanonischer Divisor, falls

$$\mathcal{O}_{X^{\circ}}(K_X) = \Omega^r_{X^{\circ}}$$

gilt.

- (ii) X heißt Q-Gorenstein-Varietät, falls es eine natürliche Zahl l gibt, so daß $\omega_X^{[l]} := \mathcal{O}_X(lK_X)$ ein Geradenbündel ist, d.h. K_X ist ein Q-Cartier-Divisor.
- (iii) X heißt Gorenstein, falls $\omega_X := \mathcal{O}_X(K_X)$ ein Geradenbündel ist.
- (iv) Eine isolierte Singularität heißt Q-Gorenstein-Singularität (Gorenstein-Singularität), falls es eine Umgebung der Singularität gibt, die Q-Gorenstein (Gorenstein) ist.

Satz 1.31 Es sei σ ein s-dimensionaler Kegel und die primitiven Erzeuger der eindimensionalen Seiten von σ seien $n^{(1)}, \ldots, n^{(t)} \in N, t \geq s$. Dann gilt

- (i) Der Punkt $u_{\sigma} \in U_{\sigma,N(\sigma)}$ ist genau dann Q-Gorenstein, wenn es ein Element $ak_{\sigma} \in M_{\mathbb{Q}}$ gibt, so daß alle $n^{(i)}$ in der affinen Hyperebene $H(ak_{\sigma}, 1)$ liegen.
- (ii) Ist $u_{\sigma} \in U_{\sigma,N(\sigma)}$ Q-Gorenstein, so ist u_{σ} genue dann Gorenstein, wenn ak_{σ} in M liegt.

Beweis. [Ba, Proposition 2.2.2.]

Bemerkung 1.32

- (i) Die Forderung, daß es für jeden Kegel σ ein $ak_{\sigma} \in M_{\mathbb{Q}}$ gibt, so daß alle primitiven Erzeuger der eindimensionalen Seiten in der Hyperebene $H(ak_{\sigma}, 1)$ liegen, ist äquivalent zu der Existenz einer Trägerfunktion auf dem Fächer Σ , die auf dem primitiven Erzeuger eines jeden eindimensionalen Kegels in Σ den Wert 1 annimmt. Also ist die torische Varietät P_{Σ} genau dann \mathbb{Q} -Gorenstein, wenn es eine Trägerfunktion ak auf Σ gibt mit $ak(n(\varrho)) = 1$ für alle $\varrho \in \Sigma(1)$ $(n(\varrho)$ sei der primitive Erzeuger von ϱ). Entsprechend ist eine torische Varietät genau dann Gorenstein, wenn es eine ganzzahlige Trägerfunktion mit dieser Eigenschaft gibt.
- (ii) Für eine torische Q-Gorenstein-Varietät P_Σ legt die Trägerfunktion ak einen T_N-invarianten Q-Cartier-Divisor D_{ak} fest, dies ist ein antikanonischer Divisor. Dementsprechend ist D_{-ak} ein kanonischer Q-Cartier-Divisor. Ist P_Σ Gorenstein, so ist D_{-ak} ein Cartier-Divisor.

Definition 1.33 Für eine torische Q-Gorenstein-Varietät heißt die Trägerfunktion ak die *antikanonische Trägerfunktion*.

Lemma 1.34 Die torische Varietät P_{Δ_r} ist Gorenstein.

Beweis. Nach obiger Bemerkung muß es also eine ganzzahlige Trägerfunktion ak geben, die auf den primitiven Erzeugern der eindimensionalen Kegel den Wert 1 annimmt.

Behauptung. Es gilt $h^{\Delta_r} = ak$.

Sei also ρ_J ein eindimensionaler Kegel mit $\emptyset \neq J \subsetneq \{1, \ldots, r+1\}$. Der primitive Erzeuger ist dann nach Korollar 1.25 $n(\rho_J) = e_J$. Der Kegel ρ_J ist Seite eines jeden r-dimensionalen Kegels $\sigma_{i,j}$ mit $i \in J, j \in J^c$. Also ist $h^{\Delta_r}(n(\rho_J)) = \langle e_{j,i}, e_J \rangle$ für beliebige $i \in J, j \in J^c$. In dem Beweis zu Lemma 1.18 wurde dieses Skalarprodukt ausgerechnet und es galt

$$\langle e_{j,i}, e_J \rangle = \begin{cases} 1 & j \in J^c, i \in J \\ -1 & j \in J , i \in J^c \\ 0 & \text{sonst} \end{cases}$$

Dementsprechend ist (unabhängig von der Wahl der i, j) $h^{\Delta_r}(n(\varrho_J)) = 1$. Da die darstellenden Elemente zu jedem Kegel in M liegen, ist h^{Δ_r} auch ganzzahlig. Also ist die ganzzahlige Trägerfunktion h^{Δ_r} die antikanonische Trägerfunktion und damit P_{Δ_r} Gorenstein.

Bemerkung 1.35 Der T_N-invariante antikanonische Q-Divisor D_{ak} , der durch die antikanonische Trägerfunktion ak einer torischen Q-Gorenstein-Varietät P_{Σ} definiert wird, ist gleich $P_{\Sigma} \setminus T_N$. Es gilt nämlich

$$D_{ak} = \sum_{\varrho \in \Sigma(1)} \operatorname{ak}(n(\varrho))V(\varrho)$$
$$= \sum_{\varrho \in \Sigma(1)} 1 \cdot V(\varrho)$$
$$= \prod_{\sigma \in \Sigma \atop \dim \sigma \ge 1} \operatorname{orb} \sigma$$
$$= P_{\Sigma} \setminus T_{N},$$

da $V(\rho)$ die Vereinigung aller Orbits zu Kegeln ist, die ρ als Seite enthalten, und jeder Kegel mit positiver Dimension irgendein ρ enthält.

Nun hat die antikanonische Trägerfunktion ak von P_{Δ_r} zusätzlich die Eigenschaft, streng konvex zu sein, da sie durch das Polytop gegeben ist. Damit ist der antikanonische Divisor D_{ak} ampel.

Definition 1.36

- (i) Eine Q-Gorenstein-Varietät X heißt Q-Fano-Varietät, falls es eine natürliche Zahl l gibt, so daß $-lK_X$ ein ampler Cartier-Divisor ist.
- (ii) Eine Q-Fano-Varietät heißt Fano-Varietät, falls $-K_X$ ampel ist.

Bemerkung 1.37 Für eine Fano-Varietät X ist $-K_X$ ampel und damit insbesondere ein Geradenbündel. Also ist X eine Gorenstein-Varietät.

Da nach [Oda, Lemma 2.12.] eine Trägerfunktion h auf einem Fächer Σ genau dann streng konvex ist, wenn das Polytop $\Delta(\Sigma, h)$ r-dimensional ist und als Ecken genau die paarweise verschiedenen $-h_{\sigma}, \sigma \in \Sigma$, hat, gilt folgendes

Lemma 1.38

(i) Eine kompakte torische Q-Gorenstein-Varietät P_{Σ} ist genau dann eine Q-Fano-Varietät, wenn $\Delta(\Sigma, ak)$ ein r-dimensionales Polytop ist und die Menge der Ecken genau die $-ak_{\sigma}$ sind, wobei $ak_{\sigma} \neq ak_{\sigma'}$ für zwei verschiedene r-dimensionale Keqel σ, σ' gilt.

1.4. DIE TORISCHE VARIETÄT P_{Δ_R}

(ii) Eine torische \mathbb{Q} -Fano-Varietät P_{Σ} ist genau dann eine Fano-Varietät, wenn $\Delta(\Sigma, \mathrm{ak})$ ein Gitter-Polytop ist.

Bemerkung 1.39 Für eine torische Fano-Varietät P_{Σ} gilt

$$P_{\Sigma} = P_{\Delta(\Sigma, \mathrm{ak})}.$$

Also ist die Varietät P_{Δ_r} eine Fano-Varietät, was bedeutet, daß der antikanonische Divisor $P_{\Delta_r} \setminus T_N$ ampel ist. In dem Abschnitt 1.1 wurde bereits darauf hingewiesen, daß man das Polytop Δ_r aus zugehörigem Fächer und Trägerfunktion zurückgewinnen kann, es gilt wegen ak = h^{Δ_r}

$$\Delta_r = \Delta_r(\Sigma(\Delta_r), \mathrm{ak}) = \bigcap_{\sigma_{i,j} \in \Sigma(\Delta_r)(r)} (e_{j,i} + \check{\sigma}_{i,j}).$$

Für die Eigenschaften der torischen Varietät spielt noch ein weiteres Polytop eine wichtige Rolle, nämlich das zu Δ_r duale Polytop Δ_r^* .

Definition 1.40 Es sei Δ ein *r*-dimensionales Polytop in $M_{\mathbb{R}}$, in dessen Inneren die 0 liegt. Das *duale Polytop* zu Δ ist definiert als

$$\Delta^* := \{ n \in N_{\mathbb{R}} : \langle m, n \rangle \ge -1 \text{ für alle } m \in \Delta \}.$$

Bemerkung 1.41

- (i) Für den Fall, daß ein Gitter-Polytop Δ nicht die 0 im Inneren enthält, aber einen Gitterpunkt $m^{(0)}$, kann man stattdessen das Gitter-Polytop $\Delta - m^{(0)}$ betrachten. Im Inneren dieses Polytopes liegt dann die 0 und es gilt $P_{\Delta} = P_{\Delta - m^{(0)}}$. Darüberhinaus legen die beiden Trägerfunktionen h^{Δ} und $h^{\Delta - m^{(0)}}$ linear äquivalente Divisoren fest, da $h^{\Delta} + m^{(0)} = h^{\Delta - m^{(0)}}$ ist.
- (ii) Das duale Polytop Δ^* eines *r*-dimensionalen Polytopes Δ ist wieder ein Polytop. Dafür seien F_1, \ldots, F_k alle (r-1)-dimensionalen Seiten von Δ und H_1, \ldots, H_k die dadurch erzeugten Hyperebenen. Da die 0 im Inneren von Δ liegt, gibt es für jedes H_i ein Element $n^{(i)} \in N_{\mathbb{R}}$ und eine positive, reelle Zahl λ_i mit

$$H_i = H\left(n^{(i)}, -\lambda_i\right) = H\left(\frac{1}{\lambda_i}n^{(i)}, -1\right)$$

und

$$\Delta \subset H^+\left(n^{(i)}, -\lambda_i\right) = H^+\left(\frac{1}{\lambda_i}n^{(i)}, -1\right)$$

Dann gilt

$$\Delta = \bigcap_{i=1}^{k} H^{+} \left(\frac{1}{\lambda_{i}} n^{(i)}, -1 \right) = \left\{ m \in M_{\mathbb{R}} : \left\langle m, \frac{1}{\lambda_{i}} n^{(i)} \right\rangle \ge -1, 1 \le i \le k \right\}$$

und damit

$$\Delta^* = \overline{\left\{\frac{1}{\lambda_i}n^{(i)}: 1 \le i \le k\right\}}^{\text{con}}.$$

Also ist Δ^* die konvexe Hülle endlich vieler Elemente von $N_{\mathbb{R}}$.

(iii) Die $0 \in N_{\mathbb{R}}$ liegt im Inneren des Polytopes Δ^* und es gilt

$$(\Delta^*)^* = \Delta.$$

(iv) Das duale Polytop eines Gitter-Polytopes Δ ist genau dann ein Gitter-Polytop, wenn Δ reflexiv ist. In diesem Fall können die $n^{(i)} \in N$ und $\lambda_i = 1$ gewählt werden, so daß die Ecken des dualen Polytopes im Gitter N liegen. Ist Δ ein nicht-reflexives Gitter-Polytop, so können nicht alle Ecken $\frac{1}{\lambda_i}n^{(i)}$ in dem Gitter N liegen.

Definition 1.42 Es sei P_{Σ} eine torische Q-Fano-Varietät und ak die streng konvexe, antikanonische Trägerfunktion. Zu der Varietät wird folgendes Polytop definiert

$$\Delta^*(\Sigma, \mathrm{ak}) := \{ n \in N_{\mathbb{R}} : \mathrm{ak}(n) \le 1 \}.$$

Bemerkung 1.43

- (i) Ist P_{Σ} eine Fano-Varietät, so ist $\Delta(\Sigma, ak)$ reflexiv. Also ist $\Delta^*(\Sigma, ak)$ nach obiger Bemerkung ein Gitter-Polytop.
- (ii) $\Delta^*(\Sigma, ak)$ ist das duale Polytop von $\Delta(\Sigma, ak)$.

Es sei F eine s-dimensionale Seite $(-1 \le s \le r)$ eines reflexiven Gitter-Polytopes $\Delta \subset M_{\mathbb{R}}$ und $m^{(1)}, \ldots, m^{(k)} \in M$ seien die Ecken von F (k = 0 falls $F = \emptyset$). Dann gilt für die duale Seite zu F

$$F^* := \{ n \in \Delta^* : \langle m^{(i)}, n \rangle = -1, 1 \le i \le k \} \subset \Delta^*$$

folgendes

Lemma 1.44

- (i) F^* ist eine (r-s-1)-dimensionale Seite von Δ^* .
- (ii) Die Operation * ist eine 1:1-Zuordnung zwischen den Seiten von Δ und denen von Δ^* .
- (iii) Für zwei Seiten F und F' von Δ gilt genau dann F < F', wenn $(F')^* < F^*$ gilt.

Beweis. [Ba, Proposition 4.1.7.]

Darüberhinaus gilt folgender

Satz 1.45 Es sei (Δ, M) ein reflexives Paar. Dann ist auch (Δ^*, N) ein reflexives Paar.

Beweis. [Ba, Theorem 4.1.6.]

Diese Sätze und Definitionen sollen nun auf den speziellen Fall Δ_r angewandt werden.

Lemma 1.46 Das duale Polytop Δ_r^* von Δ_r ist gegeben durch

$$\Delta_r^* = \overline{\{e_J : \emptyset \neq J \subsetneq \{1, \dots, r+1\}\}}^{\text{con}} \subset N_{\mathbb{R}}.$$

Die echten, nichtleeren Seiten von Δ_r^* sind genau die von der Form

$$f_{J_1J_2} := \overline{\{e_J : J_1 \subset J \subset J_2\}}^{\operatorname{con}}$$

 $mit \ \emptyset \neq J_1 \subset J_2 \subsetneq \{1, \ldots, r+1\}$. Für eine solche Seite ist dim $f_{J_1J_2} = \#J_2 - \#J_1$, die Anzahl der Ecken ist $2^{\#J_2 - \#J_1}$. Für zwei Seiten $f_{J_1^{(i)}J_2^{(i)}}$, i = 1, 2, gilt

$$f_{J_1^{(1)}J_2^{(1)}} < f_{J_1^{(2)}J_2^{(2)}} \Longleftrightarrow J_1^{(1)} \supset J_1^{(2)}, \ J_2^{(1)} \subset J_2^{(2)}$$

und

$$f_{J_1^{(1)}J_2^{(1)}} \cap f_{J_1^{(2)}J_2^{(2)}} = f_{\left(J_1^{(1)} \cup J_1^{(2)}\right)\left(J_2^{(1)} \cap J_2^{(2)}\right)},$$

falls $J_1^{(1)} \cup J_1^{(2)} \subset J_2^{(1)} \cap J_2^{(2)}$, ansonsten ist der Durchschnitt leer.

Beweis. Nach Lemma 1.18 sind die (r-1)-dimensionalen Seiten von Δ von der Form F_{JJ} mit $\emptyset \neq J \subsetneq \{1, \ldots, r+1\}$ und die dadurch aufgespannten Hyperebenen sind die $H(e_J, -1)$. Nach Bemerkung 1.41(i) ist dann Δ_r^* die konvexe Hülle der e_J , also

$$\Delta_r^* = \overline{\{e_J : \emptyset \neq J \subsetneq \{1, \dots, r+1\}\}}^{\operatorname{con}} \subset N_{\mathbb{R}}.$$

Nach Lemma 1.44 sind die Seiten von Δ_r^* genau die der Form F^* mit einem $F < \Delta_r$. Ist $F = \emptyset$, so ist F^* das gesamte duale Polytop. Für $F = \Delta_r$ ergibt sich $F^* = \emptyset$. Sei also F eine echte, nichtleere Seite von Δ_r . Wiederum nach Lemma 1.18 ist dann $F = F_{J_1J_2}$ mit $\emptyset \neq J_1 \subset J_2 \subsetneq \{1, \ldots, r+1\}$ und die Ecken von F sind genau die $e_{i,j}$ mit $i \in J_1$ und $j \in J_2^c$. Also ergibt sich

$$F_{J_1J_2}^* = \overline{\{e_J : \langle e_{i,j}, e_J \rangle = -1 \text{ für alle } i \in J_1, j \in J_2^c\}}^{\text{con}}$$
$$= \overline{\{e_J : J_1 \subset J \subset J_2\}}^{\text{con}}$$
$$= f_{J_1J_2},$$

da $\langle e_{i,j}, e_J \rangle = -1 \iff i \in J, j \in J^c$. Nun gilt

$$\dim f_{J_1J_2} = r - \dim F_{J_1J_2} - 1 = r - (r + \#J_1 - \#J_2 - 1) - 1 = \#J_2 - \#J_1$$

und die Anzahl der Ecken ist $2^{\#J_2-\#J_1}$, da dies die Anzahl der verschiedenen Mengen ist, die zwischen J_1 und J_2 liegen. Außerdem ist

$$\begin{split} & f_{J_1^{(1)}J_2^{(1)}} < f_{J_1^{(2)}J_2^{(2)}} \\ \Longleftrightarrow & F_{J_1^{(1)}J_2^{(1)}} > F_{J_1^{(2)}J_2^{(2)}} \\ \iff & J_1^{(1)} \supset J_1^{(2)}, \ J_2^{(1)} \subset J_2^{(2)} \end{split}$$

und

$$= \frac{f_{J_1^{(1)}J_2^{(1)}} \cap f_{J_1^{(2)}J_2^{(2)}}}{\{e_J : J_1^{(i)} \subset J \subset J_2^{(i)}, \ i = 1, 2\}}^{\operatorname{con}}$$

=
$$\frac{\{e_J : J_1^{(i)} \cup J_1^{(2)} \subset J \subset J_2^{(1)} \cap J_2^{(2)}\}}{\{e_J : J_1^{(1)} \cup J_1^{(2)} \subset J \subset J_2^{(1)} \cap J_2^{(2)}\}}^{\operatorname{con}},$$

so daß für den Fall $J_1^{(1)}\cup J_1^{(2)}\subset J_2^{(1)}\cap J_2^{(2)}$

$$f_{J_1^{(1)}J_2^{(1)}} \cap f_{J_1^{(2)}J_2^{(2)}} = f_{\left(J_1^{(1)} \cup J_1^{(2)}\right)\left(J_2^{(1)} \cap J_2^{(2)}\right)}$$

gilt und sonst der Durchschnitt leer ist.

Bemerkung 1.47 Jeder Kegel σ in $\Sigma(\Delta_r)$ wird von einer echten Seite f von Δ_r^* erzeugt, d.h. es gilt $\sigma = \mathbb{R}_{\geq 0} f$, dabei sei $\mathbb{R}_{\geq 0} \emptyset := \{0\}$. Ist $\sigma_{J_1 J_2}$ mit $\emptyset \neq J_1 \subset J_2 \subsetneq \{1, \ldots, r+1\}$ ein Kegel in $\Sigma(\Delta_r)$, dann gilt

$$\sigma_{J_1J_2} = \sum_{J_1 \subset J \subset J_2} \mathbb{R}_{\geq 0} n(\varrho_J)$$

= $\mathbb{R}_{\geq 0} \overline{\{n(\varrho_J) : J_1 \subset J \subset J_2\}}^{\operatorname{con}}$
= $\mathbb{R}_{\geq 0} f_{J_1J_2}.$

Korollar 1.48 Das Polytop Δ_r^* ist reflexiv.

Beweis. Δ_r ist reflexiv und damit ist das duale Polytop nach Satz 1.45 ebenfalls reflexiv.

Im weiteren Verlauf werden die Gitterpunkte in den Polytopen Δ_r und Δ_r^* eine Rolle spielen, so daß diese kurz untersucht werden sollen. Zunächst einmal gilt folgendes für ein beliebiges reflexives Polytop Δ^* in $N_{\mathbb{R}}$.

Lemma 1.49 Ist $\Delta^* \subset N_{\mathbb{R}}$ ein reflexives Polytop, so gilt

$$(\Delta^*)^\circ \cap N = \{0\}$$

wobei $(\Delta^*)^\circ$ das Innere des Polytopes bezeichne.

Beweis. Da Δ^* reflexiv ist, gibt es für die (r-1)-dimensionalen Seiten f_1, \ldots, f_k von Δ^* Elemente $m^{(i)} \in M$ mit $f_i = \Delta^* \cap H(m^{(i)}, 1)$. Sei nun $n \in \Delta^* \cap N$, dann gibt es ein f_i mit

$$i \in \overline{\{0\} \cup f_i}^{\operatorname{con}}.$$

Sei f_i die konvexe Hülle der Ecken $\{n^{(1)}, \ldots, n^{(l)}\}$ von Δ^* . Dann gibt es eine Darstellung

$$n = \sum_{j=1}^{l} \lambda_j n^{(j)}$$

mit nichtnegativen, reellen Zahlen λ_j und $\sum_{j=1}^{l} \lambda_j \leq 1$. Da die $n^{(j)}$ in der Hyperebene $H(m^{(i)}, 1)$ liegen, gilt

$$\langle m^{(i)}, n \rangle = \sum_{j=1}^{l} \lambda_j \langle m^{(i)}, n^{(j)} \rangle = \sum_{j=1}^{l} \lambda_j$$

und damit $0 \leq \langle m^{(i)}, n \rangle \leq 1$.

Da n im Gitter N liegt, gilt aber auch $\langle m^{(i)}, n \rangle \in \mathbb{Z}$, also ist $\langle m^{(i)}, n \rangle \in \{0, 1\}$. Ist $\langle m^{(i)}, n \rangle = 1$, so muß $\sum_{j=1}^{l} \lambda_j = 1$ gelten, und n liegt bereits in f_i , also im Rand von Δ^* . Ist $\langle m^{(i)}, n \rangle = 0$, so folgt mit $\sum_{j=1}^{l} \lambda_j = 0$ und $\lambda_j \ge 0$, daß n = 0ist. Dementsprechend ist der einzige Gitterpunkt, der im Inneren von Δ^* liegt, die 0.

Für das Polytop Δ_r kann man noch weitere Aussagen über die Gitterpunkte im dualen Polytop machen.

Lemma 1.50 Es gilt

$$\Delta_r^* \cap N = \{0\} \cup \{e_J : \emptyset \neq J \subsetneq \{1, \dots, r+1\}\}.$$

Beweis. Da Δ_r^* reflexiv und die konvexe Hülle der e_J ist, gilt auf jeden Fall

$$\{0\} \cup \{e_J : \emptyset \neq J \subsetneq \{1, \dots, r+1\}\} \subset \Delta_r^* \cap N$$

Sei also $n \in \Delta_r^* \cap N$. Dann gilt nach obigem Lemma n = 0 oder n liegt im Rand von Δ_r^* . Ist letzteres der Fall, so gibt es eine (r-1)-dimensionale Seite $f_{i,j} := f_{\{i\}\{j\}^c} < \Delta_r^*, i \neq j$, mit $n \in f_{i,j} = \Delta_r^* \cap H(e_{i,j}, -1)$ und n läßt sich als Konvexkombination der Ecken von $f_{i,j}$ darstellen:

$$n = \sum_{i \in J \not\ni j} \lambda_J e_J$$

mit $\lambda_J \geq 0$ und $\sum_J \lambda_J = 1$. Außerdem gibt es zu $n = (n_1, \ldots, n_{r+1})$ eine Permutation $p \in S_{r+1}$ mit der Eigenschaft

$$n_{p(1)} \le n_{p(2)} \le \dots \le n_{p(r+1)}.$$

Es seien $(\varepsilon_1, \ldots, \varepsilon_{r+1})$ die Koordinaten des Vektors e_J bezüglich der Standardbasis von \mathbb{Z}^{r+1} , d.h. $\varepsilon_t = -\frac{r+1-\#J}{r+1}$ für $t \in J$ und $\varepsilon_t = \frac{\#J}{r+1}$ für $t \in J^c$. Da dann

$$\varepsilon_t = \varepsilon_{t'} < \varepsilon_{\bar{t}} = \varepsilon_{\bar{t}'}$$

für alle $t, t' \in J$ und $\overline{t}, \overline{t}' \in J^c$ gilt, und die λ_J nichtnegativ sind, muß für alle Jmit $J \neq \{p(1), \ldots, p(k)\}$ (für alle $1 \leq k \leq r$) $\lambda_J = 0$ gelten. Also ist

$$n = \sum_{k=1}^{r} \lambda_{\{p(1),\dots,p(k)\}} e_{\{p(1),\dots,p(k)\}}.$$

Da die auftauchenden Vektoren durch Permutation aus der Z-Basis $\{e_{\{1,\ldots,k\}}: 1 \leq k \leq r\}$ entstehen, bilden sie ebenfalls eine Z-Basis von N. Also muß $\lambda_{\{p(1),\ldots,p(k)\}} \in \mathbb{Z}$ gelten und damit ist $\lambda_{\{p(1),\ldots,p(k)\}} \in \{0,1\}$. Wegen $\sum \lambda_J = 1$ ist genau eines der $\lambda_{\{p(1),\ldots,p(k)\}}$ gleich 1 und die anderen gleich 0. Dementsprechend gilt $n \in \{e_J\}$ und insgesamt folgt aus $n \in \Delta_r^* \cap N$

$$n \in \{0\} \cup \{e_J : \emptyset \neq J \subsetneq \{1, \dots, r+1\}\}.$$

Auch Δ_r selbst enthält außer seinen Ecken und der 0 keine weiteren Gitterpunkte:

Lemma 1.51 Es gilt

$$M \cap \Delta_r = \{0\} \cup \{e_{i,j} : 1 \le i \ne j \le r+1\}.$$

Beweis. Da Δ_r reflexiv ist, gilt $\{0\} \cup \{e_{i,j} : 1 \leq i \neq j \leq r+1\} \subset M \cap \Delta_r$ und für ein $0 \neq m \in M \cap \Delta_r$ gibt es eine (r-1)-dimensionale Seite $F_{JJ} = \{e_{k,l} : k \in J, l \in J^c\}^{\text{con}}$, in der m enthalten ist, sei dies o.B.d.A. die Seite F_{JJ} mit $J = \{1, \ldots, t\}$. Dann gibt es $\lambda_{k,l} \geq 0$ mit $\sum_{k=1}^t \sum_{l=t+1}^{r+1} \lambda_{k,l} = 1$ und

$$m = \sum_{k=1}^{t} \sum_{l=t+1}^{r+1} \lambda_{k,l} e_{k,l}.$$

Sei nun $I = \{s\}$ für ein $1 \le s \le r+1$, dann ist

$$\langle e_{k,l}, e_I \rangle = \begin{cases} 1, & \text{falls } l = s \\ -1, & \text{falls } k = s \\ 0, & \text{sonst} \end{cases}$$

Ist $s \ge t+1$, so gilt

$$\langle m, e_I \rangle = \sum_{k=1}^t \sum_{l=t+1}^{r+1} \lambda_{k,l} \langle e_{k,l}, e_I \rangle = \sum_{k=1}^t \lambda_{k,s},$$

1.4. DIE TORISCHE VARIETÄT P_{Δ_R}

ist $s \leq t$, so folgt mit $e_{I^c} = -e_I$

$$\langle m, e_{I^c} \rangle = \sum_{k=1}^t \sum_{l=t+1}^{r+1} \lambda_{k,l} \langle e_{k,l}, e_{I^c} \rangle = \sum_{l=t+1}^{r+1} \lambda_{s,l}.$$

Da m im Gitter M liegt, ist das Skalarprodukt von m mit einem Vektor e_I eine ganze Zahl, also muß $\sum_{k=1}^{t} \lambda_{k,s} \in \{0,1\}$ für $s \ge t+1$ und $\sum_{l=t+1}^{r+1} \lambda_{s,l} \in \{0,1\}$ für $s \le t$ gelten. Da die Summe aller $\lambda_{k,l}$ gleich 1 ist, gibt es genau ein $i \le t$ mit $\sum_{l=t+1}^{r+1} \lambda_{i,l} = 1$ und genau ein $j \ge t+1$ mit $\sum_{k=1}^{t} \lambda_{k,j} = 1$. Für alle $s \le t$ mit $s \ne i$ ist dann aber $\sum_{l=t+1}^{r+1} \lambda_{s,l} = 0$ und für alle $s \ge t+1$ mit $s \ne j$ gilt $\sum_{k=1}^{t} \lambda_{k,s} = 0$. Deshalb sind alle $\lambda_{k,l}$ mit $k \ne i$ und $l \ne j$ gleich 0 und wegen $\sum_{k=1}^{t} \sum_{l=t+1}^{r+1} \lambda_{k,l} = 1$ gilt

$$m = \sum_{k=1}^{t} \sum_{l=t+1}^{r+1} \lambda_{k,l} e_{k,l} = \lambda_{i,j} e_{i,j} = e_{i,j}.$$

Also enthält Δ_r außer der Ecken und der 0 keine weiteren Gitterpunkte.

Mit Hilfe der festgestellten Eigenschaften der beiden Polytope können nun die Singularitäten der torischen Varietät P_{Δ_r} weiter untersucht werden, dazu zunächst folgende

Definition 1.52 Es sei X eine Q-Gorenstein-Varietät und K_X ein kanonischer Divisor. X hat kanonische Singularitäten, falls es eine Auflösung $f: Y \to X$ von X gibt, so daß in

$$K_Y = f^*(K_X) + \sum_i a_i E_i$$

mit $a_i \in \mathbb{Q}$ alle $a_i \geq 0$ sind, wobei $\{E_i\}$ die Familie aller exzeptionellen Primdivisoren von f sei. Gilt sogar $a_i > 0$, so hat X terminale Singularitäten. Der Term $\sum_i a_i E_i$ wird Diskrepanz genannt.

Bemerkung 1.53 Da X eine Q-Gorenstein-Varietät ist, existiert ein $l \in \mathbb{N}$, so daß lK_X ein Cartier-Divisor ist. Für diesen erhält man eine Gleichung

$$lK_Y = f^*(lK_X) + \sum \widetilde{a}_i E_i$$

mit $\tilde{a}_i \in \mathbb{Z}$, teilt man nun durch *l* ergibt sich die formale Gleichung

$$K_Y = f^*(K_X) + \sum_i a_i E_i$$

aus der Definition. Es ist also $a_i \in \frac{1}{l}\mathbb{Z}$.

Für torische Q-Gorenstein-Singularitäten gibt es folgende Charakterisierung dieser beiden Begriffe.

Lemma 1.54 Es sei σ ein s-dimensionaler Kegel im Gitter N und $n^{(1)}, \ldots, n^{(t)}$ seien die primitiven Erzeuger seiner eindimensionalen Seiten. Die affine Toruseinbettung $U_{\sigma,N(\sigma)}$ sei \mathbb{Q} -Gorenstein und $ak_{\sigma} \in M_{\mathbb{Q}}$ erfülle $n^{(i)} \in H(ak_{\sigma}, 1)$. Dann gilt

(i) Der Punkt $u_{\sigma} \in U_{\sigma,N(\sigma)}$ ist genau dann eine terminale Singularität, wenn

$$N \cap \sigma \cap \{n \in N_{\mathbb{R}} : \langle ak_{\sigma}, n \rangle \le 1\} = \{0, n^{(1)}, \dots, n^{(t)}\}\$$

gilt.

(ii) Der Punkt $u_{\sigma} \in U_{\sigma,N(\sigma)}$ ist genau dann eine kanonische Singularität, wenn

$$N \cap \sigma \cap \{n \in N_{\mathbb{R}} : \langle ak_{\sigma}, n \rangle < 1\} = \{0\}$$

gilt.

Beweis. [Ba, Proposition 2.2.4]

Korollar 1.55 Jede torische Gorenstein-Singularität ist kanonisch.

Beweis. [Ba, Korollar 2.2.5.]

Bemerkung 1.56 Ist P_{Σ} eine torische Fano-Varietät, so hat P_{Σ} höchstens kanonische Singularitäten, da eine Fano-Varietät Gorenstein ist. P_{Σ} hat genau dann höchstens terminale Singularitäten, wenn

$$N \cap \Delta^*(\Sigma, \mathrm{ak}) = \{0\} \cup \Delta^*(\Sigma, \mathrm{ak})(0)$$

gilt, also keine echte Seite von Δ^* innere Punkte besitzt.

Korollar 1.57 Die torische Varietät P_{Δ_r} hat höchstens terminale Singularitäten.

Beweis. Nach Lemma 1.50 gilt

$$N \cap \Delta_r^* = \{0\} \cup \{e_J : \emptyset \neq J \subsetneq \{1, \dots, r+1\}\} = \{0\} \cup \Delta_r^*(0)$$

und damit hat die Varietät nach obiger Bemerkung höchstens terminale Singularitäten. $\hfill \Box$

30
1.4. DIE TORISCHE VARIETÄT P_{Δ_R}

Für eine solche torische Varietät gilt:

Lemma 1.58 Es sei P_{Σ} eine torische Varietät mit höchsten terminalen Singularitäten, dann ist die offene torische Untervarietät $P_{\Sigma^{[2]}}$ glatt.

Beweis. [Ba, Theorem 2.2.9.]

Satz 1.59 Der singuläre Ort der torischen Varietät P_{Δ_r} ist

$$\operatorname{Sing}(P_{\Delta_r}) = P_{\Sigma(\Delta_r)} \setminus P_{\Sigma(\Delta_r)^{[2]}} = \coprod_{\dim \sigma \ge 3} \operatorname{orb} \sigma.$$

Damit ist die Kodimension des singulären Ortes 3.

Beweis. Nach Bemerkung 1.26 sind alle Kegel mit Dimension größer als 2 singulär, so daß für jeden Kegel $\sigma \in \Sigma \setminus \Sigma(\Delta_r)^{[2]}$ der Orbit orb σ im singulären Ort enthalten ist.

Andererseits ist nach Lemma 1.58 die Untervarietä
t $P_{\Sigma(\Delta_r)^{[2]}}$ glatt. Also ist der glatte Teil der Varietät genau

$$P_{\Sigma(\Delta_r)^{[2]}} = \coprod_{\dim \sigma \le 2} \operatorname{orb} \sigma$$

und der singuläre Ort genau das Komplement

$$P_{\Sigma(\Delta_r)} \setminus P_{\Sigma(\Delta_r)^{[2]}} = \prod_{\dim \sigma \ge 3} \operatorname{orb} \sigma.$$

Wegen dim σ + dim(orb σ) = r ist die Dimension des singulären Ortes r - 3.

Kapitel 2

MPCP-Desingularisierung

Dieses Kapitel beschäftigt sich mit der Frage, wie die in [Ba] beschriebene MPCP-Desingularisierung der torischen Varietäten P_{Δ_r} aussieht.

2.1 Allgemeine Konstruktion

In diesem Abschnitt soll geklärt werden, was unter einer MPCP-Desingularisierung zu verstehen ist und wie diese im Fall torischer Fano-Varietäten konstruiert werden können. Grundlage hierfür ist der Artikel von V. Batyrev [Ba].

Seien Σ und $\widetilde{\Sigma}$ Fächer in den Gittern N bzw. \widetilde{N} der Dimension r bzw. \widetilde{r} .

Definition 2.1 Eine Abbildung von Fächern $\varphi : (\widetilde{N}, \widetilde{\Sigma}) \to (N, \Sigma)$ ist ein Zlinearer Homomorphismus $\varphi : \widetilde{N} \to N$, dessen skalare Fortsetzung $\varphi : \widetilde{N}_{\mathbb{R}} \to N_{\mathbb{R}}$ die Eigenschaft hat, daß für jeden Kegel $\widetilde{\sigma} \in \widetilde{\Sigma}$ ein Kegel $\sigma \in \Sigma$ existiert mit $\varphi(\widetilde{\sigma}) \subset \sigma$.

Durch die beiden Fächer werden zwei torische Varietäten P_{Σ} und $P_{\widetilde{\Sigma}}$ festgelegt und es gilt folgende Korrespondenz von Abbildungen der Fächer und äquivarianten Abbildungen der torischen Varietäten.

Satz 2.2 Eine Abbildung von Fächern $\varphi : (\widetilde{N}, \widetilde{\Sigma}) \to (N, \Sigma)$ definiert eine holomorphe Abbildung

$$\varphi_*: P_{\widetilde{\Sigma}} \longrightarrow P_{\Sigma},$$

deren Einschränkung auf den Torus $\mathrm{T}_{\widetilde{N}}$ mit der Abbildung algebraischer Tori

$$\varphi \otimes 1: \mathcal{T}_{\widetilde{N}} = \widetilde{N} \otimes_{\mathbb{Z}} \mathbb{C}^* \longrightarrow \mathcal{T}_N = N \otimes_{\mathbb{Z}} \mathbb{C}^*$$

übereinstimmt. Mittels dieses Homomorphismus ist φ_* äquivariant bezüglich der Operationen der Tori T_N und $T_{\widetilde{N}}$ auf den zugehörigen torischen Varietäten.

Andererseits gibt es zu jeder holomorphen Abbildung $f : P_{\widetilde{\Sigma}} \to P_{\Sigma}$, die äquivariant bezüglich einer Abbildung von Tori $\widetilde{f} : T_{\widetilde{N}} \to T_N$ ist, eine eindeutig festgelegte Abbildung von Fächern $\varphi : (\widetilde{N}, \widetilde{\Sigma}) \to (N, \Sigma)$ mit $f = \varphi_*$.

Beweis. [Oda, Theorem 1.13.]

Eigenschaften von äquivarianten Abbildungen torischer Varietäten lassen sich nun auf Eigenschaften der Fächer und der definierenden Abbildung von Fächern zurückführen.

Lemma 2.3 Es sei $\varphi : (\widetilde{N}, \widetilde{\Sigma}) \to (N, \Sigma)$ eine Abbildung von Fächern und $\varphi_* : P_{\widetilde{\Sigma}} \to P_{\Sigma}$ die dadurch definierte äquivariante Abbildung. Diese Abbildung ist genau dann eigentlich und birational, wenn $\varphi : \widetilde{N} \to N$ ein Isomorphismus und $\varphi(\widetilde{\Sigma})$ eine lokal endliche Verfeinerung von Σ ist, d.h. für jeden Kegel $\sigma \in \Sigma$ ist die Menge $\{\varphi(\widetilde{\sigma}) : \widetilde{\sigma} \in \widetilde{\Sigma}, \varphi(\widetilde{\sigma}) \subset \sigma\}$ endlich und σ ergibt sich als Vereinigung über diese Menge.

Beweis. [Oda, Korollar 1.17.]

Lemma 2.4 Es sei $\varphi_* : P_{\widetilde{\Sigma}} \to P_{\Sigma}$ eine eigentliche und birationale äquivariante Abbildung torischer Varietäten. Dann gibt es zu jedem Kegel $\widetilde{\sigma} \in \widetilde{\Sigma}$ einen Kegel $\sigma \in \Sigma$ minimaler Dimension mit $\varphi(\widetilde{\sigma}) \subset \sigma$. Für diesen gilt

$$\varphi_*(\operatorname{orb} \widetilde{\sigma}) = \operatorname{orb} \sigma.$$

Beweis. [Er, Proposition 2.25.]

Solche Abbildungen sollen nun genutzt werden, um partielle Desingularisierungen torischer Varietäten zu konstruieren. Dazu werden noch folgende Definitionen benötigt.

Definition 2.5 Ein eigentlicher, birationaler Morphismus $\varphi : \widetilde{X} \to X$ normaler, algebraischer Q-Gorenstein-Varietäten heißt *krepant*, falls $\varphi^* K_X = K_{\widetilde{X}}$ gilt, d.h. die Diskrepanz ist 0.

Definition 2.6 Eine algebraische Varietät X heißt \mathbb{Q} -faktoriell, falls es für jeden Weil-Divisor D eine natürliche Zahl l gibt, so daß lD ein Cartier-Divisor ist. Die Singularitäten einer \mathbb{Q} -faktoriellen Varietät heißen \mathbb{Q} -faktorielle Singularitäten.

2.1. ALLGEMEINE KONSTRUKTION

Im Falle einer torischen Varietät gilt:

Lemma 2.7 Eine torische Varietät P_{Σ} zu einem Fächer Σ ist genau dann \mathbb{Q} -faktoriell, wenn jeder Kegel $\sigma \in \Sigma$ simplizial ist.

Beweis. [Ba, Proposition 2.2.2.]

Definition 2.8 Es sei $\varphi : \widetilde{X} \to X$ ein projektiver, birationaler Morphismus normaler, algebraischer Q-Gorenstein-Varietäten. Dann heißt φ maximale projektive, krepante, partielle Desingularisierung (MPCP-Desingularisierung) von X, falls φ krepant ist und \widetilde{X} höchstens Q-faktorielle, terminale Singularitäten besitzt.

Nun gibt es zunächst folgende Charakterisierung für krepante Morphismen torischer Varietäten.

Lemma 2.9 Ein eigentlicher, birationaler Morphismus $\varphi_* : P_{\widetilde{\Sigma}} \to P_{\Sigma}$ zwischen r-dimensionalen, torischen Q-Gorenstein-Varietäten ist genau dann krepant, wenn für jeden r-dimensionalen Kegel $\sigma \in \Sigma$ die primitiven Erzeuger aller eindimensionalen Kegel $\widetilde{\varrho} \in \widetilde{\Sigma}$ mit $\varphi(\widetilde{\varrho}) \subset \sigma$ in der Hyperebene $H(ak_{\sigma}, 1)$ liegen, wobei $ak_{\sigma} \in M$ das nach Satz 1.31 existierende, darstellende Element der antikanonischen Trägerfunktion ak auf σ sei.

Beweis. [Ba, Proposition 2.2.12.]

Für die Charakterisierung von MPCP-Desingularisierungen werden noch einige weitere Begriffe und Aussagen benötigt, die im folgenden zusammengestellt werden.

Definition 2.10 Es sei $\Delta \subset \mathbb{R}^r$ ein Gitter-Polytop bezüglich des kanonisch eingebetteten Gitters $\mathbb{Z}^r \subset \mathbb{R}^r$.

- (i) Eine endliche Teilmenge A ⊂ Δ ∩ Z^r heißt zulässig, falls A die Menge der Ecken von Δ enthält.
- (ii) Es sei A eine zulässige Teilmenge von $\Delta \cap \mathbb{Z}^r$. Eine A-Triangulierung von Δ ist eine endliche Menge $\mathcal{T} = \{\Theta\}$ von Simplizes Θ in \mathbb{R}^r mit folgenden Eigenschaften:
 - Die Ecken eines jeden Simplizes $\Theta \in \mathcal{T}$ liegen in der Menge A.
 - Mit einem Simplex $\Theta \in \mathcal{T}$ sind auch alle seine Seiten in \mathcal{T} enthalten.
 - Der Schnitt zweier Simplizes Θ und Θ' in T ist eine gemeinsame Seite der beiden Simplizes. (Die leere Menge ist Seite eines jeden Simplizes.)

• Das Gitter-Polytop Δ ergibt sich als Vereinigung über alle Simplizes in \mathcal{T} , d.h.

$$\Delta = \bigcup_{\Theta \in \mathcal{T}} \Theta.$$

- Jeder Punkt in A ist Ecke eines Simplizes $\Theta \in \mathcal{T}$.
- (iii) Eine A-Triangulierung des Gitter-Polytopes Δ heißt maximal, falls $A = \Delta \cap \mathbb{Z}^r$ gilt.

Bemerkung 2.11 Eine maximale Triangulierung eines Gitter-Polytopes Δ induziert durch Einschränkung auf eine Seite $F < \Delta$ eine maximale Triangulierung des Gitter-Polytopes F ([Ba, Bemerkung 2.2.17.]).

Betrachtet man nun eine A-Triangulierung eines Gitter-Polytopes Δ mit einer zulässigen Menge A, so kann jedes Element $\alpha \in \mathbb{Q}^A$, des Vektorraumes der Abbildungen von A nach \mathbb{Q} , eindeutig zu einer stückweise affinen Funktion $\alpha(\mathcal{T})$ auf Δ fortgesetzt werden, d.h. für jeden Simplex $\Theta \in \mathcal{T}$ ist die Einschränkung von $\alpha(\mathcal{T})$ auf Θ eine affine Funktion. Die Menge der Elemente $\alpha \in \mathbb{Q}^A$, die auf diese Weise eine konvexe Funktion $\alpha(\mathcal{T})$ auf Δ festlegen, ist ein konvexer Kegel in \mathbb{Q}^A und wird mit $C(\mathcal{T})$ bezeichnet.

Definition 2.12 Eine A-Triangulierung eines Gitter-Polytopes $\Delta \subset \mathbb{R}^r$ für eine zulässige Menge $A \subset \Delta \cap \mathbb{Z}^r$ heißt *projektiv*, falls der Kegel $C(\mathcal{T})$ einen inneren Punkt enthält, d.h. es gibt eine streng konvexe Funktion $\alpha(\mathcal{T})$.

Lemma 2.13 Es sei A eine zulässige Menge für das Gitter-Polytop Δ . Dann gibt es mindestens eine projektive A-Triangulierung für Δ , insbesondere gibt es also mindestens eine maximale, projektive Triangulierung von Δ .

Beweis. [Ba, Proposition 2.2.19.]

Nun gibt es folgende konstruktive Beschreibung von MPCP-Desingularisierungen für torische Fano-Varietäten.

Satz 2.14 Es sei P_{Σ} eine torische Fano-Varietät und $\Delta(\Sigma, ak)$ das durch die streng konvexe, ganzzahlige, antikanonische Trägerfunktion ak definierte Gitter-Polytop. Dann definiert jede maximale, projektive Triangulierung \mathcal{T} des Gitter-Polytops $\Delta^*(\Sigma, ak) \subset N_{\mathbb{R}}$ eine MPCP-Desingularisierung $\mathrm{id}_* : P_{\widetilde{\Sigma}} \to P_{\Sigma}$, die von der Identität $\mathrm{id} : N \to N$ induziert wird. Es gilt

$$\Sigma = \{ \mathbb{R}_{\geq 0} \Theta : \Theta \in \mathcal{T}, \ \Theta \subset \partial \Delta^*(\Sigma, \mathrm{ak}) \},\$$

dabei bezeichne $\partial \Delta^*(\Sigma, ak)$ den Rand des Polytops. Andersherum definiert jede MPCP-Desingularisierung von P_{Σ} eine maximale, projektive Triangulierung von $\Delta^*(\Sigma, ak)$.

Beweis. [Ba, Theorem 2.2.24.]

Bemerkung 2.15

- (i) Da es nach Lemma 2.13 für jedes Gitter-Polytop Δ eine maximale, projektive Triangulierung gibt, existiert also für jede torische Fano-Varietät eine MPCP-Desingularisierung.
- (ii) Nach einer eventuellen Translation legt eine streng konvexe, stückweise affine Funktion $\alpha(\mathcal{T})$ eine streng konvexe, ganzzahlige Trägerfunktion des Fächers $\tilde{\Sigma}$ fest.

2.2 Der Fächer $\widetilde{\Sigma}(\Delta_r)$ der MPCP-Desingularisierung von P_{Δ_r}

Da nach Satz 2.14 jede MPCP-Desingularisierung von P_{Δ_r} durch eine maximale projektive Triangulierung des dualen Polytopes

$$\Delta_r^* = \overline{\{e_J : \emptyset \neq J \varsubsetneq \{1, \dots, r+1\}\}}^{\operatorname{con}}$$

gegeben ist, wird nun eine solche Triangulierung gesucht. Da bei einer maximalen Triangulierung die zulässige Teilmenge A als $\Delta_r^* \cap N$ gewählt wird, ist hier

 $A = \Delta_r^* \cap N = \{0\} \cup \{e_J : \emptyset \neq J \subsetneq \{1, \dots, r+1\}\}.$

In folgendem Lemma wird eine maximale projektive Triangulierung von Δ_r^* bestimmt.

Lemma 2.16 Es sei $p \in S_{r+1}$ eine Permutation der Menge $\{1, \ldots, r+1\}$ und Θ_p sei die konvexe Hülle der folgenden (r+1)-elementigen Menge

$$\{0\} \cup \{e_{\{p(1),\dots,p(k)\}} : 1 \le k \le r\}$$

in $N_{\mathbb{R}}$. Dann ist

$$\mathcal{T} := \{\Theta < \Theta_p : p \in S_{r+1}\}$$

eine maximale projektive Triangulierung von Δ_r^* .

Beweis. Folgende Eigenschaften der Menge $\mathcal T$ ergeben sich direkt aus der Definition:

- (i) Jedes $\Theta \in \mathcal{T}$ ist als Seite eines Simplizes selbst ein Simplex.
- (ii) Die Ecken eines $\Theta \in \mathcal{T}$ liegen in A.
- (iii) Mit Θ sind auch alle Seiten in \mathcal{T} enthalten.

(iv) Jeder Punkt in A ist Ecke eines Simplizes.

(v) Es gilt

$$\bigcup_{\Theta \in \mathcal{T}} \Theta = \bigcup_{p \in S_{r+1}} \Theta_p$$
$$= \overline{\{0\} \cup \{e_{\{p(1),\dots,p(k)\}} : p \in S_{r+1}, \ 1 \le k \le r+1\}}^{\operatorname{con}} = \Delta^*.$$

Für einen beliebigen Simplex Θ gilt

$$\{F < \Theta\} = \{F : F = \overline{S}^{\operatorname{con}}, \ S \subset \Theta(0)\}.$$

Dementsprechend ergibt sich jeder Simplex $\Theta \in \mathcal{T}$ als konvexe Hülle einer Menge $S \subset \{0\} \cup \{e_{\{p(1),\dots,p(k)\}} : 1 \leq k \leq r\}$ für eine Permutation $p \in S_{r+1}$ und es gilt $S = \Theta(0) = \Theta \cap N$, da $\{e_{\{p(1),\dots,p(k)\}} : 1 \leq k \leq r\}$ eine \mathbb{Z} -Basis von N ist.

Sind nun $\Theta < \Theta_p$ und $\Theta' < \Theta_{p'}$ zwei Simplizes in \mathcal{T} , so enthalten beide Simplizes außer den Ecken keine weiteren Gitterpunkte. Da Θ bzw. Θ' die konvexe Hülle von $\Theta(0) = \Theta \cap N$ bzw. $\Theta'(0) = \Theta' \cap N$ ist und jede der beiden Mengen affin unabhängig ist, gilt $(\Theta \cap \Theta') \cap N = \Theta(0) \cap \Theta'(0)$ und $\Theta \cap \Theta'$ ist die konvexe Hülle von $\Theta(0) \cap \Theta'(0)$. Also gilt

$$(\Theta \cap \Theta')(0) = \Theta(0) \cap \Theta'(0)$$

und damit folgt

$$\Theta\cap\Theta'=\overline{\Theta(0)\cap\Theta'(0)}^{\rm \ con}$$

Dementsprechend ist $\Theta \cap \Theta'$ ein Simplex, der sowohl Seite von Θ als auch von Θ' ist. Zusammen mit den obigen Aussagen folgt, daß \mathcal{T} eine maximale Triangulierung von Δ_r^* ist.

Bleibt zu zeigen, daß dies eine projektive Triangulierung ist. Der Beweis hierzu wird im nächsten Abschnitt geführt, da er dort mit wesentlich geringerem Aufwand erfolgen kann. $\hfill \Box$

Bemerkung 2.17 Im folgenden soll die durch die maximale Triangulierung \mathcal{T} mittels des in Satz 2.14 gegebenen Fächers $\widetilde{\Sigma}(\Delta_r)$ definierte Desingularisierung bereits MPCP-Desingularisierung genannt werden, auch wenn der Beweis, daß es sich um eine projektive Triangulierung und damit um eine projektive Desingularisierung handelt, noch nicht geführt wurde. Die Projektivität wird aber an keiner Stelle benutzt.

Da für den zu einer maximalen (projektiven) Triangulierung gehörigen Fächer nur diejenigen Simplizes, die im Rand des dualen Polytopes liegen, entscheidend sind, sollen diese im folgenden Korollar charakterisiert werden.

Korollar 2.18 Die Simplizes $\Theta \in \mathcal{T}$ mit $\Theta \subset \partial \Delta_r^*$ sind genau diejenigen von der Form

$$\Theta_{\mathcal{J}} = \overline{\{e_{J^{(i)}} : 1 \le i \le s\}}^{\operatorname{con}},$$

wobei $\mathcal{J} = (J^{(1)}, J^{(2)}, \dots, J^{(s)}), 0 \leq s \leq r$, eine echt aufsteigende Kette von echten, nichtleeren Teilmengen von $\{1, \dots, r+1\}$ sei, d.h. es gelte

$$\emptyset \neq J^{(1)} \subsetneq J^{(2)} \varsubsetneq \dots \subsetneq J^{(s)} \varsubsetneq \{1, \dots, r+1\}.$$

Bemerkung 2.19 Für s = 0, also wenn \mathcal{J} die leere Kette ist, sei $\Theta_{\mathcal{J}} = \emptyset$.

Beweis. Sei also $\Theta \in \mathcal{T}$, dann gibt es ein $p \in S_{r+1}$ mit $\Theta < \Theta_p$. Der Simplex Θ liegt genau dann im Rand von Δ_r^* , wenn auch

$$\Theta < \Theta_p \cap \partial \Delta_r^* = \overline{\{e_{\{p(1),\dots,p(k)\}} : 1 \le k \le r\}}^{\operatorname{cor}}$$

gilt. Es seien nun $p_1, \ldots, p_t \in S_{r+1}, t \ge 1$, alle Permutationen p mit $\Theta < \Theta_p \cap \partial \Delta_r^*$. Dann gilt

$$\Theta = \bigcap_{i=1}^{t} \Theta_{p_i} \cap \partial \Delta_r^*$$

=
$$\bigcap_{i=1}^{t} \overline{\{e_{\{p_i(1),\dots,p_i(k)\}} : 1 \le k \le r\}}^{\operatorname{con}}$$

=
$$\overline{\{e_J : \exists \ 1 \le k \le r \ \operatorname{mit} \ J = \{p_i(1),\dots,p_i(k)\} \ \forall 1 \le i \le t\}}^{\operatorname{con}}$$

Seien $1 \le k_1 < k_2 < \dots < k_s \le r$ alle $k \in \{1, \dots, r\}$ mit

$$\{p_1(1),\ldots,p_1(k)\} = \cdots = \{p_t(1),\ldots,p_t(k)\}$$

und $J^{(i)} := \{p_1(1), \dots, p_1(k_i)\}, 1 \leq i \leq s$. Dann gilt $\emptyset \neq J^{(1)} \subsetneq J^{(2)} \subsetneq \cdots \subsetneq J^{(s)} \subsetneq \{1, \dots, r+1\}$ und mit $\mathcal{J} = (J^{(1)}, J^{(2)}, \dots, J^{(s)})$ folgt

$$\Theta = \overline{\{e_{J^{(i)}} : 1 \le i \le s\}}^{\operatorname{con}} = \Theta_{\mathcal{J}}.$$

Ist andersherum $\Theta_{\mathcal{J}}$ ein solcher Simplex, dann gibt es eine Permutation $p \in S_{r+1}$ mit $J^{(i)} = \{p(1), \ldots, p(\#J^{(i)})\}$ und es gilt $\Theta_{\mathcal{J}} < \Theta_p$. Da die 0 nicht in $\Theta_{\mathcal{J}}$ liegt, ist der Simplex Teilmenge des Randes von Δ_r^* .

Mit Hilfe dieses Lemmas kann der Fächer der durch diese Triangulierung gegebenen "MPCP-Desingularisierung" von P_{Δ_r} leicht bestimmt werden. Es gilt folgendes

Lemma 2.20 Der Fächer $\widetilde{\Sigma}(\Delta_r)$ der durch \mathcal{T} definierten MPCP-Desingularisierung $\widetilde{P}_{\Delta_r} = P_{\widetilde{\Sigma}(\Delta_r)}$ von P_{Δ_r} besteht genau aus den Kegeln der Form

$$\sigma_{\mathcal{J}} := \sum_{i=1}^{s} \mathbb{R}_{\geq 0} e_{J^{(i)}}$$

mit $\mathcal{J} = (J^{(1)}, J^{(2)}, \dots, J^{(s)}), \ \emptyset \neq J^{(i)} \subsetneq J^{(i+1)} \subsetneq \{1, \dots, r+1\}, \ f\ddot{u}r \ s = 0 \ sei$ dabei $\sigma_{\mathcal{J}} = \{0\}.$ Außerdem gilt mit $J^{(0)} := \emptyset \ und \ J^{(s+1)} := \{1, \dots, r+1\}$

$$\sigma_{\mathcal{J}} = \{ n \in N_{\mathbb{R}} : n_{t_1} = n_{t_1'} \le n_{t_2} = n_{t_2'} \le \dots \le n_{t_{s+1}} = n_{t_{s+1}'}, t_i, t_i' \in J^{(i)} \setminus J^{(i-1)} \}.$$

Beweis. Nach Satz 2.14 besteht der Fächer der MPCP-Desingularisierung zu einer Triangulierung \mathcal{T} aus den Kegeln $\mathbb{R}_{\geq 0}\Theta$ über allen Simplizes Θ der Triangulierung, die im Rand von Δ^* liegen. Nach Lemma 2.18 sind diese Simplizes von der Form

$$\Theta_{\mathcal{J}} = \overline{\{e_{J^{(i)}} : 1 \le i \le s\}}^{\operatorname{con}},$$

mit einer echt aufsteigenden Kette $\mathcal{J} = (J^{(1)}, J^{(2)}, \dots, J^{(s)}), 0 \leq s \leq r$, von echten, nichtleeren Teilmengen von $\{1, \dots, r+1\}$. Der von einem solchen $\Theta_{\mathcal{J}}$ erzeugte Kegel ist

$$\begin{split} \sigma_{\mathcal{J}} &= & \mathbb{R}_{\geq 0} \overline{\{e_{J^{(i)}} : 1 \leq i \leq s\}}^{\text{ con}} \\ &= & \sum_{i=1}^{s} \mathbb{R}_{\geq 0} e_{J^{(i)}}. \end{split}$$

Für die Koordinaten $(\varepsilon_1, \ldots, \varepsilon_{r+1})$ eines Erzeugers $e_{J^{(i)}}$ bezüglich der Standardbasis von \mathbb{Z}^{r+1} , also $\varepsilon_t = -\frac{r+1-\#J^{(i)}}{r+1}$ für $t \in J^{(i)}$ und $\varepsilon_t = \frac{\#J^{(i)}}{r+1}$ für $t \in (J^{(i)})^c$, gilt

$$\varepsilon_t = \varepsilon_{t'} < \varepsilon_{\bar{t}} = \varepsilon_{\bar{t}'}$$

für alle $t, t' \in J^{(i)}$ und $\bar{t}, \bar{t}' \in (J^{(i)})^c$. Für nicht-negative Linearkombinationen $n = (n_1, \ldots, n_{r+1})$ solcher Elemente gilt dann

$$n_{t_1} = n_{t_1'} \le n_{t_2} = n_{t_2'} \le \dots \le n_{t_{s+1}} = n_{t_{s+1}'}$$

für alle $t_i, t'_i \in J^{(i)} \setminus J^{(i-1)}$.

Erfülle nun andererseits $n \in N_{\mathbb{R}}$ diese Bedingungen. Es sei \mathcal{I} eine echt aufsteigende Kette echter, nichtleerer Teilmengen von $\{1, \ldots, r+1\}$ der Länge r, also $\mathcal{I} = (I^{(1)}, \ldots, I^{(r)})$ mit $\emptyset \neq I^{(1)} \subsetneq \cdots \subsetneq I^{(r)} \subsetneq \{1, \ldots, r+1\}$, mit der Eigenschaft, daß jedes $J^{(i)}$ in dieser Kette enthalten ist, d.h. $J^{(i)} = I^{(\#J^{(i)})}, 1 \leq i \leq s$. Dann ist die Menge

$$\{e_{I^{(i)}}: 1 \le i \le r\}$$

eine Basis von $N_{\mathbb{R}}$ (sogar Z-Basis von N), da sie durch eine Permutation der Koordinaten auf die Basis $\{e_{\{1,\ldots,i\}}\}$ von N abgebildet werden kann. Also läßt sich nals Linearkombination dieser Basis schreiben, wobei aber wegen der Gleichheitsbedingungen, die die Koordinaten von n erfüllen, die $e_{I^{(i)}}$ mit $I^{(i)} \neq J^{(j)}$ für alle $1 \leq j \leq s$ nicht mit einem von 0 verschiedenen Faktor in die Linearkombination eingehen können. Also läßt sich n als Linearkombination der $e_{J^{(i)}}$ schreiben und wegen der Ungleichheitsbedingungen müssen alle Skalare der Linearkombination nicht-negativ sein, so daß

$$\sigma_{\mathcal{J}} = \{ n \in N_{\mathbb{R}} : n_{t_1} = n_{t_1'} \le n_{t_2} = n_{t_2'} \le \dots \le n_{t_{s+1}} = n_{t_{s+1}'}, t_i, t_i' \in J^{(i)} \setminus J^{(i-1)} \}$$
gilt.

0

Bemerkung 2.21

(i) Die *r*-dimensionalen Kegel in $\Sigma(\Delta_r)$ sind gegeben durch

$$\mathcal{J}_p := (\{p(1)\}, \dots, \{p(1), \dots, p(i)\}, \dots, \{p(1), \dots, p(r)\})$$

mit einem $p \in S_{r+1}$, also von der Form

$$\sigma_p := \sigma_{\mathcal{J}_p} = \{ n \in N_{\mathbb{R}} : n_{p(1)} \le n_{p(2)} \le \dots \le n_{p(r+1)} \}.$$

(ii) Die eindimensionalen Kegel von $\tilde{\Sigma}(\Delta_r)$ sind genau die eindimensionalen Kegel von $\Sigma(\Delta_r)$. Insbesondere ist also jedes e_J , $\emptyset \neq J \subsetneq \{1, \ldots, r+1\}$, der primitive Erzeuger eines Kegels in $\tilde{\Sigma}(\Delta_r)(1)$.

Nun gilt

Lemma 2.22 Die torische Varietät \widetilde{P}_{Δ_r} ist glatt.

Beweis. Nach Satz 1.9 genügt es zu zeigen, daß die Erzeuger eines jeden Kegels in $\widetilde{\Sigma}(\Delta_r)$ zu einer Z-Basis von N fortgesetzt werden können. Sei also $\sigma_{\mathcal{J}}$ ein Kegel in $\widetilde{\Sigma}(\Delta_r)$, d.h. $\mathcal{J} = (J^{(1)}, \ldots, J^{(s)})$ eine echt aufsteigende Kette nichtleerer, echter Teilmengen von $\{1, \ldots, r+1\}$. Dann ist

$$\sigma_{\mathcal{J}} = \sum_{i=1}^{s} \mathbb{R}_{\geq 0} e_{J^{(i)}},$$

und es gibt eine Permutation $p \in S_{r+1}$, die $e_{J^{(i)}}$ für $i = 1, \ldots, s$ auf $e_{\{1,\ldots,\#J^{(i)}\}}$ abbildet. Da die $e_{\{1,\ldots,t\}}$ eine Z-Basis von N bilden, ist auch $\{e_{\{p(1)\}}, \ldots, e_{\{p(1),\ldots,p(r)\}}\}$ eine Basis und damit der Kegel $\sigma_{\mathcal{J}}$ nichtsingulär.

2.3 Beschreibung der MPCP-Desingularisierung von P_{Δ_r}

Im folgenden Abschnitt soll die Varietät \widetilde{P}_{Δ_r} und die MPCP-Desingularisierung id_{*} : $\widetilde{P}_{\Delta_r} \to P_{\Delta_r}$ beschrieben werden. Aus der Charakterisierung von \widetilde{P}_{Δ_r} kann auf die Projektivität der maximalen Triangulierung \mathcal{T} geschlossen werden. **Definition 2.23** Die torische Varietät $\widetilde{\mathbb{P}}^r$ sei definiert durch die folgende Hintereinanderschaltung von Blow-Ups

$$\widetilde{\mathbb{P}}^r := \widetilde{\mathbb{P}}^r_{r-2} \xrightarrow{\pi_{r-2}} \cdots \xrightarrow{\pi_{s+1}} \widetilde{\mathbb{P}}^r_s \xrightarrow{\pi_s} \cdots \xrightarrow{\pi_2} \widetilde{\mathbb{P}}^r_1 \xrightarrow{\pi_1} \widetilde{\mathbb{P}}^r_0 \xrightarrow{\pi_0} \mathbb{P}^r.$$

Dabei sei π_0 die Aufblasung aller Punkte der Form $(0 : \cdots : 0 : 1 : 0 : \cdots : 0)$ in \mathbb{P}^r und π_s für $1 \leq s \leq r-2$ der Blow-Up der eigentlichen Urbilder der sdimensionalen Koordinatenebenen des \mathbb{P}^r unter der Abbildung $\pi_{s-1} \circ \cdots \circ \pi_1 \circ \pi_0$ in $\widetilde{\mathbb{P}}^r_{s-1}$.

Satz 2.24 Die oben beschriebene MPCP-Desingularisierung \tilde{P}_{Δ_r} ist isomorph zu $\tilde{\mathbb{P}}^r$.

Korollar 2.25 Die maximale Triangulierung \mathcal{T} ist projektiv.

Beweis. Da \widetilde{P}_{Δ_r} nach Satz 2.24 isomorph zu einem aufgeblasenen projektiven Raum ist und die Eigenschaft der Projektivität bei Aufblasungen erhalten bleibt, ist \widetilde{P}_{Δ_r} projektiv. Da $\widetilde{\Sigma}(\Delta_r)$ vollständig ist, gibt es nach Satz 1.15 eine streng konvexe, ganzzahlige Trägerfunktion h zu dem Fächer $\widetilde{\Sigma}(\Delta_r)$. Eingeschränkt auf das Polytop Δ_r^* ist dies eine streng konvexe, stückweise affine Funktion und damit ist die in Lemma 2.16 gegebene maximale Triangulierung projektiv.

Beweis zu Satz 2.24. Es genügt zu zeigen, daß $\widetilde{\mathbb{P}}^r$ durch denselben Fächer wie \widetilde{P}_{Δ_r} definiert wird. Der Fächer Σ_r , der als *r*-dimensionale Kegel genau die Kegel σ_t enthält, die von den Elementen $e_{\{1\}}, \ldots, e_{\{t-1\}}, \widehat{e_{\{t\}}}, e_{\{t+1\}}, \ldots, e_{\{r+1\}}$ erzeugt werden (dabei bedeutet $\widehat{e_{\{t\}}}$, daß dieses Element ausgelassen wird), ist ein Fächer in N, der \mathbb{P}^r erzeugt. Dabei ist

$$e_{\{t\}} = \frac{1}{r+1}(1, \dots, 1, \underbrace{-r}_{t}, 1, \dots, 1).$$

Es genügt zu zeigen, daß das sukzessive Aufblasen der abgeschlossenen Orbits $V(\tau)$ für

$$\tau = \mathbb{R}_{\geq 0} e_{\{1\}} + \dots + \mathbb{R}_{\geq 0} e_{\{r-1\}} + \mathbb{R}_{\geq 0} e_{\{r\}},$$
$$\mathbb{R}_{\geq 0} e_{\{1\}} + \dots + \mathbb{R}_{\geq 0} e_{\{r-1\}},$$
$$\vdots$$
$$\mathbb{R}_{\geq 0} e_{\{1\}} + \mathbb{R}_{\geq 0} e_{\{2\}}$$

zu einem Kegel der Form σ_p mit $p \in S_{r+1}$ aus $\Sigma(\Delta_r)$ führt. Für den projektiven Raum sind die abgeschlossenen Orbits genau die Koordinatenpunkte, -geraden, -ebenen etc. Man kann sich auf die oben genannten abgeschlossenen Orbits beschränken, da in der ersten Aufblasung alle Punkte der Form $(0 : \cdots : 0 : 1 : 0 : \cdots : 0)$ in \mathbb{P}^r aufgeblasen werden, dies eine lokale Operation ist und alle Punkte durch Koordinatenpermutationen ineinander transformierbar sind. Also kann man sich hier auf einen dieser Punkte beschränken, z.B. den, der durch $V(\mathbb{R}_{\geq 0}e_{\{1\}}+\cdots+\mathbb{R}_{\geq 0}e_{\{r-1\}}+\mathbb{R}_{\geq 0}e_{\{r\}})$ gegeben ist. Dieses Argument gilt entsprechend für jede weitere Aufblasung, da auch die Menge der eigentlichen Urbilder von *s*-dimensionalen Koordinatenebenen jeweils invariant unter Permutationen ist und die eigentlichen Urbilder zu zwei verschiedenen Koordinatenebenen disjunkt sind.

Hat man gezeigt, daß die betrachtete Aufblasung des \mathbb{P}^r zu einem Kegel der Form σ_p führt, bedeutet dies, daß die Menge der Kegel maximaler Dimension des Fächers zu \mathbb{P}^r eine Teilmenge der Kegel maximaler Dimension von $\tilde{\Sigma}(\Delta_r)$ ist. Da beide Fächer vollständig sind, müssen deshalb die maximaldimensionalen Kegel übereinstimmen, diese legen die Kegel niedriger Dimension fest, und damit sind beide Fächer gleich.

Nach [Oda, Proposition 1.26.] wird die äquivariante Aufblasung eines abgeschlossenen Orbits $V(\sigma)$ in einer glatten torischen Varietät P_{Σ} durch eine sogenannte Stern-Verfeinerung $\widetilde{\Sigma}(\sigma)$ des Fächers Σ festgelegt. Hierbei werden alle Kegel, die σ als Seite enthalten, aus dem Fächer entfernt und dafür neue Kegel hinzugefügt.

Induktionsanfang: Es sei $\tau = \mathbb{R}_{\geq 0}e_{\{1\}} + \cdots + \mathbb{R}_{\geq 0}e_{\{r\}}$. Die primitiven Erzeuger der eindimensionalen Seiten von τ sind genau die Elemente $e_{\{1\}}, \ldots, e_{\{r\}}$ und ihre Summe ist $n^{(0)} = \frac{1}{r+1}(-1, \ldots, -1, r)$. Der einzige Kegel, der τ als Seite enthält, ist τ selbst, so daß für die Aufblasung von $V(\tau)$ nur der Kegel τ aus dem Fächer entfernt werden muß. Stattdessen werden die folgenden Kegel mit ihren Seiten zum Fächer hinzugefügt:

$$\begin{aligned} \tau_{1} &= \mathbb{R}_{\geq 0} n^{(0)} + \mathbb{R}_{\geq 0} e_{\{2\}} + \mathbb{R}_{\geq 0} e_{\{3\}} + \cdots + \mathbb{R}_{\geq 0} e_{\{r-1\}} + \mathbb{R}_{\geq 0} e_{\{r\}}, \\ \tau_{2} &= \mathbb{R}_{\geq 0} e_{\{1\}} + \mathbb{R}_{\geq 0} n^{(0)} + \mathbb{R}_{\geq 0} e_{\{3\}} + \cdots + \mathbb{R}_{\geq 0} e_{\{r-1\}} + \mathbb{R}_{\geq 0} e_{\{r\}}, \\ \vdots &\vdots &\vdots &\vdots &\vdots \\ \tau_{r} &= \mathbb{R}_{\geq 0} e_{\{1\}} + \mathbb{R}_{\geq 0} e_{\{2\}} + \mathbb{R}_{\geq 0} e_{\{3\}} + \cdots + \mathbb{R}_{\geq 0} e_{\{r-1\}} + \mathbb{R}_{\geq 0} n^{(0)} \end{aligned}$$

Mit $n^{(0)} = \frac{1}{r+1}(-1, \dots, -1, r) = e_{\{1,\dots,r\}}$ ergeben sich also *r*-dimensionale Kegel mit Erzeugermengen der Form

$$e_{\{1\}},\ldots,\widehat{e_{\{t\}}},\ldots,e_{\{r\}},e_{\{1,\ldots,r\}}.$$

Der einzige dieser Kegel, der von der nächsten Aufblasung ($\tau = \mathbb{R}_{\geq 0}e_{\{1\}} + \cdots + \mathbb{R}_{\geq 0}e_{\{r-1\}}$) betroffen ist, ist der mit den Erzeugern

$$e_{\{1\}},\ldots,e_{\{r-1\}},e_{\{1,\ldots,r\}}.$$

D.h. in der ersten Aufblasung ist aus σ_{r+1} insbesondere dieser Kegel entstanden. Induktionsschritt: Nach den Blow-Ups π_0, \ldots, π_{s-1} $(1 \le s \le r-2)$ sei aus dem r-dimensionalenKegel σ_{r+1} insbesondere der r-dimensionaleKegel mit Erzeugermenge

$$e_{\{1\}}, \ldots, e_{\{r-s\}}, e_{\{1,\ldots,r+1-s\}}, \ldots, e_{\{1,\ldots,r\}}$$

entstanden. Als nächstes wird nun $V(\tau)$ mit $\tau = \mathbb{R}_{\geq 0}e_{\{1\}} + \cdots + \mathbb{R}_{\geq 0}e_{\{r-s\}}$ aufgeblasen. Die primitiven Erzeuger der eindimensionalen Seiten sind dann die Elemente $e_{\{1\}}, \ldots, e_{\{r-s\}}$, ihre Summe ist

$$n^{(0)} = \frac{1}{r+1} (\underbrace{-(s+1), \dots, -(s+1)}_{(r-s)-\text{mal}}, r-s, \dots, r-s) = e_{\{1,\dots,r-s\}}.$$

Da nur interessiert, was mit dem Kegel

$$\sigma := \mathbb{R}_{\geq 0} e_{\{1\}} + \dots + \mathbb{R}_{\geq 0} e_{\{r-s\}} + \mathbb{R}_{\geq 0} e_{\{1,\dots,r+1-s\}} + \dots + \mathbb{R}_{\geq 0} e_{\{1,\dots,r\}}$$

geschieht, können alle anderen Kegel, die τ als Seite enthalten, vernachlässigt werden. Es ist $\sigma = \tau + \mathbb{R}_{\geq 0}e_{\{1,\dots,r+1-s\}} + \cdots + \mathbb{R}_{\geq 0}e_{\{1,\dots,r\}} =: \tau + \sigma'$ und dieser Kegel wird ersetzt durch die Kegel $\tau_1 + \sigma', \dots, \tau_{r-s} + \sigma'$ mit

$$\begin{aligned} \tau_1 &= \mathbb{R}_{\geq 0} n^{(0)} + \mathbb{R}_{\geq 0} e_{\{2\}} + \mathbb{R}_{\geq 0} e_{\{3\}} + \cdots + \mathbb{R}_{\geq 0} e_{\{r-s-1\}} + \mathbb{R}_{\geq 0} e_{\{r-s\}}, \\ \tau_2 &= \mathbb{R}_{\geq 0} e_{\{1\}} + \mathbb{R}_{\geq 0} n^{(0)} + \mathbb{R}_{\geq 0} e_{\{3\}} + \cdots + \mathbb{R}_{\geq 0} e_{\{r-s-1\}} + \mathbb{R}_{\geq 0} e_{\{r-s\}}, \\ \vdots &\vdots &\vdots &\vdots &\vdots \\ \tau_{r-s} &= \mathbb{R}_{\geq 0} e_{\{1\}} + \mathbb{R}_{\geq 0} e_{\{2\}} + \mathbb{R}_{\geq 0} e_{\{3\}} + \cdots + \mathbb{R}_{\geq 0} e_{\{r-s-1\}} + \mathbb{R}_{\geq 0} n^{(0)}. \end{aligned}$$

Insbesondere wird der Kegel $\tau_{r-s} + \sigma'$ erzeugt von den Elementen

$$e_{\{1\}},\ldots,e_{\{r-s-1\}},e_{\{1,\ldots,r-s\}},\ldots,e_{\{1,\ldots,r\}}.$$

Das bedeutet, daß nach den r-1 Blow-Ups aus dem r-dimensionalen Kegel σ_{r+1} insbesondere der r-dimensionale Kegel mit den Erzeugern

$$e_{\{1\}}, e_{\{1,2\}}, \ldots, e_{\{1,\ldots,r-1\}}, e_{\{1,\ldots,r\}}$$

entsteht. Dies ist gerade der Kegel $\sigma_{id} \in \widetilde{\Sigma}(\Delta_r)$ mit $id \in S_{r+1}$.

Bemerkung 2.26 Dieser Satz ist bereits in einem Artikel von C. Procesi [Pr] und einem Artikel von I. Dolgachev und V. Lunts [DL] zu finden. In diesen Artikeln wird darüberhinaus auch gesagt, daß jedes eigentliche Urbild einer *s*dimensionalen Koordinatenebene im \mathbb{P}^{r+1} unter den Aufblasungen $\pi_{s-1} \circ \cdots \circ \pi_0$ isomorph zu \widetilde{P}_{Δ_s} ist. Außerdem operiert auf einem solchen eigentlichen Urbild die Untergruppe $S_{s+1} \times S_{r-s}$ von S_{r+1} , und diese Operation entspricht unter obigem Isomorphismus derjenigen von S_{s+1} auf \widetilde{P}_{Δ_s} . **Bemerkung 2.27** Die MPCP-Desingularisierung \widetilde{P}_{Δ_r} ist für $r \geq 3$ keine Fano-Varietät, da wegen $\Sigma(\Delta_r)(1) = \widetilde{\Sigma}(\Delta_r)(1)$ die antikanonische Trägerfunktion ak des Fächers $\Sigma(\Delta_r)$ auch die antikanonische Trägerfunktion des Fächers $\widetilde{\Sigma}(\Delta_r)$ ist. Diese ist auf dem Fächer $\widetilde{\Sigma}(\Delta_r)$ zwar noch konvex, aber für $r \geq 3$ nicht mehr streng konvex, da die darstellenden Elemente dieser Funktion auf zwei rdimensionalen Kegeln σ_p und $\sigma_{p'}$ genau dann übereinstimmen, wenn p(1) = p'(1)und p(r+1) = p'(r+1) gilt. Ist $r \geq 3$, so gibt es Permutationen, die diese Bedingung erfüllen, aber nicht identisch sind. Also ist ak als Trägerfunktion auf $\widetilde{\Sigma}(\Delta_r)$ keine streng konvexe Funktion, der antikanonische Divisor nicht ampel und damit die torische Varietät nicht Fano.

Es liegt nun also folgende Situtation vor. Man hat eine (singuläre) torische Varietät P_{Δ_r} , mittels einer MPCP-Desingularisierung erhält man die (glatte) torische Varietät \tilde{P}_{Δ_r} . Letztere erhält man aber auch aus der Hintereinanderschaltung $\pi_{r-2} \circ \cdots \circ \pi_0$ von Blow-Ups aus dem *r*-dimensionalen projektiven Raum.

Die Abbildung $\widetilde{P}_{\Delta_r} \to \mathbb{P}^r$ wird in der Definition 2.23 genau beschrieben, nun soll die MPCP-Desingularisierung $\mathrm{id}_* : \widetilde{P}_{\Delta_r} \to P_{\Delta_r}$ analysiert werden.

Da man hierfür eine Beschreibung des Abschlusses $V(\sigma)$ einiger Orbits orb σ benötigt, wird zunächst eine Charakterisierung von $V(\sigma)$ für einen beliebigen Kegel $\sigma \in \widetilde{\Sigma}(\Delta_r)$ gegeben. Sei also $\sigma = \sigma_{\mathcal{J}}$ ein s-dimensionaler Kegel in $\widetilde{\Sigma}(\Delta_r)$, d.h. $\mathcal{J} = (J^{(1)}, \ldots, J^{(s)})$ mit $\emptyset \neq J^{(1)} \subsetneq \cdots \subsetneq J^{(s)} \subsetneq \{1, \ldots, r+1\}$. Dabei sei o.B.d.A. $1 \leq s \leq r-1$, da für s = 0 der Abschluß des Orbits des Kegels $\{0\}$ die gesamte torische Varietät \widetilde{P}_{Δ_r} ist und für einen *r*-dimensionalen Kegel der Abschluß des zugehörigen Orbits aus genau einem Punkt besteht. Darüberhinaus sei o.B.d.A.

$$J^{(j)} = \{1, \dots, k_j\}$$

mit $k_j := \#J^{(j)}$, da diese Situtation durch eine Permutation $p \in S_{r+1}$ stets hergestellt werden kann. Außerdem sei $J^{(0)} := \emptyset$, $J^{(s+1)} := \{1, \ldots, r+1\}$ und $k_0 := 0$ bzw. $k_{s+1} := r+1$. Damit sei \mathcal{J}_j für $0 \leq j \leq s$ folgende aufsteigende Kette

$$\{1\} \subsetneq \{1,2\} \subsetneq \cdots \varsubsetneq \{1,\ldots,k_j-1\}$$
$$\subsetneq \{1,\ldots,k_j\} \varsubsetneq \{1,\ldots,k_{j+1}\} \varsubsetneq \{1,\ldots,k_{j+1}+1\} \varsubsetneq \cdots \subsetneq \{1,\ldots,r\}.$$

Diese Kette erhält man am einfachsten, indem man aus der "vollständigen" Kette $(\{1\}, \ldots, \{1, \ldots, t\}, \ldots, \{1, \ldots, r\})$ alle Mengen entfernt, die echt zwischen

 $\{1, \ldots, k_j\}$ und $\{1, \ldots, k_{j+1}\}$ liegen (also exklusive der beiden Mengen selbst). Jede Kette \mathcal{J}_j legt einen Kegel $\sigma_{\mathcal{J}_j}$ fest, der $\sigma_{\mathcal{J}}$ als Seite enthält, da die Erzeuger eines durch eine solche Kette definierten Kegels zu den Mengen der Kette korrespondieren und jede Menge, die in \mathcal{J} auftritt, auch in \mathcal{J}_j vorkommt.

Mit diesen Bezeichnungen gilt folgendes

Lemma 2.28 Es ist

$$V(\sigma_{\mathcal{J}}) = \prod_{j=0}^{s} V(\sigma_{\mathcal{J}_j}).$$

Für den Beweis dieses Lemmas wird folgende Aussage über das endliche Produkt torischer Varietäten benötigt.

Lemma 2.29 Es sei $d \in \mathbb{N}$ und für i = 1, ..., d sei $\Sigma^{(i)}$ ein Fächer in einem Gitter N_i . Dann ist das Produkt der dadurch definierten torischen Varietäten $P_{\Sigma^{(i)}}$ ebenfalls eine torische Varietät, die durch folgenden Fächer in $N := \bigoplus_{i=1}^{d} N_i$ definiert ist:

$$\Sigma := \bigoplus_{i=1}^{a} \Sigma^{(i)} := \{ \sigma^{(1)} + \dots + \sigma^{(d)} : \sigma^{(i)} \in \Sigma^{(i)} \}$$

Beweis. Es genügt die Behauptung für d = 2 zu zeigen, die allgemeine Aussage folgt dann mittels Induktion. Sei also d = 2 und $\Sigma^{(1)}$ resp. $\Sigma^{(2)}$ seien Fächer in N_1 resp. N_2 .

Dann gilt für $\Sigma = \Sigma^{(1)} \oplus \Sigma^{(2)}$ und $N = N_1 \oplus N_2$:

(i) Das duale Gitter M zu N ergibt sich als direkte Summe der dualen Gitter M_i zu den N_i , also

$$M = M_1 \oplus M_2.$$

- (ii) Die Summe zweier streng konvexer, rationaler, polyhedraler Kegel $\sigma^{(1)} \in \Sigma^{(1)}$ und $\sigma^{(2)} \in \Sigma^{(2)}$ ist wieder ein solcher Kegel.
- (iii) Ist $\tau < \sigma = \sigma^{(1)} + \sigma^{(2)} \in \Sigma$, so gibt es ein $m^{(0)} = m_1^{(0)} + m_2^{(0)} \in M_1 \oplus M_2$ mit

$$\tau = \sigma \cap \{m^{(0)}\}^{\perp} = \sigma^{(1)} \cap \{m_1^{(0)}\}^{\perp} + \sigma^{(2)} \cap \{m_2^{(0)}\}^{\perp} =: \tau^{(1)} + \tau^{(2)} \in \Sigma.$$

(iv) Für den Durchschnitt zweier Kegel $\sigma_i = \sigma_i^{(1)} + \sigma_i^{(2)} \in \Sigma, i = 1, 2, \text{ gilt}$

$$\sigma_1 \cap \sigma_2 = (\sigma_1^{(1)} + \sigma_1^{(2)}) \cap (\sigma_2^{(1)} + \sigma_2^{(2)}) = (\sigma_1^{(1)} \cap \sigma_2^{(1)}) + (\sigma_1^{(2)} \cap \sigma_2^{(2)}).$$

Dieser ist in Σ enthalten und eine Seite sowohl von σ_1 als auch von σ_2 .

Damit ist Σ ein Fächer in N.

Seien nun $\sigma^{(i)} \in \Sigma^{(i)}$, i = 1, 2, und $\sigma = \sigma^{(1)} + \sigma^{(2)}$. Dann ist $\check{\sigma} = \check{\sigma}^{(1)} + \check{\sigma}^{(2)}$ und damit $S_{\sigma} = S_{\sigma^{(1)}} + S_{\sigma^{(2)}}$. Nun ist

$$U_{\sigma,N} = \{ u : \mathbb{C}[\mathcal{S}_{\sigma}] \to \mathbb{C} : u \text{ ist Algebrahomomorphismus} \}$$

und ein Homomorphismus $u \in U_{\sigma,N}$ ist durch die Werte, die er auf einem endlichen Erzeugendensystem von \mathcal{S}_{σ} über $\mathbb{Z}_{\geq 0}$ annimmt, eindeutig festgelegt. Ein solches Erzeugendensystem erhält man durch die Vereinigung von endlichen Erzeugendensystemen der $\mathcal{S}_{\sigma^{(i)}}$, deren Elemente aus N_i aufgefaßt werden als Elemente in der Summe N. Damit definiert ein solches u eindeutig Algebrahomomorphismen $u_i : \mathbb{C}[\mathcal{S}_{\sigma^{(i)}}] \to \mathbb{C}, i = 1, 2$. Dies sind Elemente in $U_{\sigma^{(i)},N_i}$.

Andersherum legen zwei Homomorphismen $u_i \in U_{\sigma^{(i)},N_i}$ auf die gleiche Weise genau ein $u \in U_{\sigma,N}$ fest. Also ergibt sich

$$U_{\sigma,N} = U_{\sigma^{(1)},N_1} \times U_{\sigma^{(2)},N_2}.$$

Das zeigt, daß sich die affine Toruseinbettung zu einem Kegel in Σ als Produkt der affinen Toruseinbettungen zu den beiden Summanden ergibt. Diese werden nun mittels der Seitenrelationen verklebt. Da jede Seite eines Kegels in Σ die Summe zweier Kegel ist, die Seiten der beiden Summanden sind, ist die Verklebung mit dem Produkt verträglich. Dadurch ergibt sich, daß die durch Σ definierte torische Varietät das Produkt der beiden einzelnen Varietäten ist. \Box

Beweis zu Lemma 2.28. Die Fächer der auftretenden torischen Varietäten $V(\mathcal{J})$ und $V(\mathcal{J}_j)$ können nach Lemma 1.3 bestimmt werden. Nach obigem Lemma muß also gezeigt werden, daß der definierende Fächer von $V(\mathcal{J})$ die Summe über $j = 0, \ldots, s$ der Fächer der $V(\mathcal{J}_j)$ ist.

Sei $\sigma = \sigma_{\mathcal{J}}$ ein Kegel in $\Sigma(\Delta_r)$, also

$$\sigma = \sum_{j=1}^{s} \mathbb{R}_{\geq 0} e_{J^{(j)}},$$

und τ sei ein Kegel, der σ als Seite enthält. Dann ist $\tau = \sigma_{\mathcal{I}}$ für eine echt aufsteigende Kette $\mathcal{I} = (I^{(1)}, \ldots, I^{(\mu)})$ echter, nichtleerer Teilmengen von $\{1, \ldots, r+1\}$ mit $s \leq \mu$. Da $\sigma < \tau$ gilt, gibt es für jedes $1 \leq j \leq s$ ein $1 \leq i \leq \mu$ mit $J^{(j)} = I^{(i)}$ und es ist

$$\tau = \sigma + \sum_{I \in \mathcal{I} \setminus \mathcal{J}} \mathbb{R}_{\geq 0} e_I,$$

wobei die Schreibweise $I \in \mathcal{I} \setminus \mathcal{J}$ symbolisch dafür stehe, daß die Menge I in der Kette \mathcal{I} vorkomme, nicht aber in der Kette \mathcal{J} . Nun sei wie in Lemma 1.3 $\bar{N}(\sigma) = N/\mathbb{Z}(\sigma \cap N)$ und $\bar{N}(\sigma)_{\mathbb{R}} = N_{\mathbb{R}}/\mathbb{R}\sigma$. Das Bild von τ in $\bar{N}(\sigma)_{\mathbb{R}}$ ist dann

$$\bar{\tau} = (\mathbb{R}\sigma + \sum_{I \in \mathcal{I} \setminus \mathcal{J}} \mathbb{R}_{\geq 0} e_I) / \mathbb{R}\sigma = \sum_{I \in \mathcal{I} \setminus \mathcal{J}} \mathbb{R}_{\geq 0} \bar{e}_I,$$

dabei sei \bar{e}_I das Bild von e_I in $\bar{N}(\sigma)$. Der Fächer

$$\widetilde{\Sigma}(\Delta_r)(\sigma) = \{ \overline{\tau} : \tau \in \widetilde{\Sigma}(\Delta_r), \sigma < \tau \}$$

in $N(\sigma)$ definiert dann die torische Varietät $V(\sigma_{\mathcal{J}})$. Ersetzt man in diesen Berechnungen \mathcal{J} durch $\mathcal{J}_j, j = 0, \ldots, s$, erhält man die Fächer $\overline{\widetilde{\Sigma}(\Delta_r)}(\sigma_{\mathcal{J}_j})$ der torischen Varietäten $V(\sigma_{\mathcal{J}_j})$. Zu zeigen ist also

$$\overline{\widetilde{\Sigma}(\Delta_r)}(\sigma_{\mathcal{J}}) = \bigoplus_{j=0}^s \overline{\widetilde{\Sigma}(\Delta_r)}(\sigma_{\mathcal{J}_j})$$

und

$$\bar{N}(\sigma_{\mathcal{J}}) = \bigoplus_{j=0}^{s} \bar{N}(\sigma_{\mathcal{J}_j}).$$

Letzteres gilt, da sich die betrachteten Quotienten wie folgt darstellen lassen. Die Vektoren $\{e_{\{1\}}, \ldots, e_{\{1,\ldots,r\}}\}$ bilden eine Z-Basis von N. Das Untergitter $\mathbb{Z}(\sigma_{\mathcal{J}} \cap N)$ hat damit als Basis die Vektoren $\{e_{\{1,\ldots,k_j\}}: j = 0,\ldots,s\}$ und der Quotient läßt sich auffassen als das Komplement dieses Gitters in N, also das Erzeugnis der Vektoren $e_{\{1,\ldots,t\}}, t \notin \{k_1,\ldots,k_s\}$. Entsprechend läßt sich für jedes $j = 0,\ldots,s$ das Quotientengitter $\overline{N}(\sigma_{\mathcal{J}_i})$ auffassen als Erzeugnis von

$$e_{\{1,\ldots,k_j+1\}}, e_{\{1,\ldots,k_j+2\}}, \ldots, e_{\{1,\ldots,k_{j+1}-1\}},$$

also genau denjenigen $e_{\{1,\dots,t\}}$, deren Indexmenge nicht in \mathcal{J}_j auftritt. Die direkte Summe dieser Gitter wird dann von

$$e_{\{1\}}, \dots, e_{\{1,\dots,k_1-1\}}, e_{\{1,\dots,k_1+1\}}, \\ \dots, e_{\{1,\dots,k_j-1\}}, e_{\{1,\dots,k_j+1\}}, \dots, e_{\{1,\dots,k_{j+1}-1\}}, \\ \dots, e_{\{1,\dots,k_s-1\}}, e_{\{1,\dots,k_s+1\}}, \dots, e_{\{1,\dots,r\}}$$

erzeugt und ist damit das Gitter $\overline{N}(\sigma_{\mathcal{J}})$.

Betrachtet man nun die Bilder eines Vektors e_I mit $J^{(j)} \subsetneq I \subsetneq J^{(j+1)}$ für ein $j \in \{0, \ldots, s\}$ in $\bar{N}(\sigma_{\mathcal{J}})$ und $\bar{N}(\sigma_{\mathcal{J}_j})$, so sind diese beiden Bilder unter den vorgenommenen Identifizierungen gleich. Dies ist der Fall, da für ein beliebiges $\emptyset \neq J \subsetneq \{1, \ldots, r+1\}$

$$e_J = \sum_{t=1}^r \lambda_t e_{\{1,\dots,t\}}$$

 mit

$$\lambda_t = \begin{cases} 1 & \text{falls } t \in J , t+1 \in J^c \\ -1 & \text{falls } t \in J^c, t+1 \in J \\ 0 & \text{sonst} \end{cases}$$

gilt und damit für ein $J^{(j)} = \{1, ..., k_j\} \subsetneq I \subsetneq \{1, ..., k_{j+1}\} = J^{(j+1)}$

$$e_I = \sum_{t=k_j}^{k_{j+1}} \lambda_t e_{\{1,\dots,t\}}$$

gilt. Denn für ein $t \leq k_j - 1$ gilt $t, t+1 \in \{1, \ldots, k_j\} \subset I$ und für ein $t \geq k_{j+1} + 1$ ist $t, t+1 \in \{1, \ldots, k_{j+1}\}^c \subset I^c$, in beiden Fällen ist also das zugehörige λ_t gleich 0. Für die auftretenden Vektoren ist nun aber jeweils das Bild unter den beiden genannten Quotientenabbildungen dasselbe, $e_{\{1,\ldots,k_j\}}$ und $e_{\{1,\ldots,k_{j+1}\}}$ werden auf 0 abgebildet und das Bild eines anderen auftretenden Vektors ist jeweils der Vektor selbst. D.h. beide Bilder ergeben sich zu

$$\bar{e}_I = \sum_{t=k_j+1}^{k_{j+1}-1} \lambda_t e_{\{1,\dots,t\}}.$$

Sei nun $\bar{\tau}$ ein Kegel in $\widetilde{\Sigma}(\Delta_r)(\sigma_{\mathcal{J}})$, d.h. $\tau = \sigma_{\mathcal{I}}$ mit einer Kette $\mathcal{I} = (I^{(1)}, \ldots, I^{(\mu)})$, in der jede Menge $J^{(j)}, j = 1, \ldots, s$, vorkommt. Dann findet sich für jedes $I \in \mathcal{I} \setminus \mathcal{J}$ genau ein $0 \leq j \leq s$ mit

$$J^{(j)} = \{1, \dots, k_j\} \subsetneq I \subsetneq J^{(j+1)} = \{1, \dots, k_{j+1}\},\$$

und damit ergibt sich

$$\bar{\tau} = \sum_{I \in \mathcal{I} \setminus \mathcal{J}} \mathbb{R}_{\geq 0} \bar{e}_I = \sum_{j=0}^s \left(\sum_{I \in \mathcal{I} \setminus \mathcal{J} \\ J^{(j)} \subsetneq I \notin J^{(j+1)}} \mathbb{R}_{\geq 0} \bar{e}_I \right) =: \sum_{j=0}^s \bar{\tau}_j.$$

Jeder Kegel $\bar{\tau}_j$ mit $j = 0, \ldots, s$ ist ein Kegel in $\widetilde{\Sigma}(\Delta_r)(\sigma_{\mathcal{J}_j})$. Sei dazu \mathcal{I}_j die Kette, die aus \mathcal{J}_j durch Hinzufügen aller Mengen I entsteht, die in der Kette \mathcal{I} auftreten und $J^{(j)} \subsetneq I \subsetneq J^{(j+1)}$ erfüllen. Es werden also alle Mengen aus \mathcal{I} hinzugenommen, die noch nicht in \mathcal{J}_j auftauchen. Dann legt \mathcal{I}_j einen Kegel $\sigma_{\mathcal{I}_j} \in \widetilde{\Sigma}(\Delta_r)$ fest, der $\sigma_{\mathcal{J}_j}$ als Seite enthält. Also ist $\bar{\sigma}_{\mathcal{I}_j}$ ein Kegel in $\overline{\widetilde{\Sigma}(\Delta_r)}(\sigma_{\mathcal{J}_j})$ und es gilt

$$\bar{\sigma}_{\mathcal{I}_j} = \sum_{I \in \mathcal{I}_j \setminus \mathcal{J}_j} \bar{e}_I,$$

wobei \bar{e}_I das Bild von e_I in $\bar{N}(\sigma_{\mathcal{J}_j})$ bezeichne. Nach Konstruktion sind die beiden Summationsbedingungen $I \in \mathcal{I}_j \setminus \mathcal{J}_j$ und $I \in \mathcal{I} \setminus \mathcal{J}, J^{(j)} \subsetneq I \subsetneq J^{(j+1)}$ äquivalent. Oben wurde gezeigt, daß die Bilder von e_I unter den beiden betrachteten Quotientenabbildungen gleich sind, also gilt

$$\bar{\sigma}_{\mathcal{I}_j} = \bar{\tau}_j,$$

und damit ist

$$\bar{\tau} = \sum_{j=0}^{s} \bar{\sigma}_{\mathcal{I}_j}$$

ein Kegel in $\bigoplus_{j=0}^{s} \overline{\widetilde{\Sigma}(\Delta_r)}(\sigma_{\mathcal{J}_j}).$

Ist nun andererseits für $j = 0, \ldots, s \ \overline{\tau}_j$ ein Kegel in $\overline{\widetilde{\Sigma}(\Delta_r)}(\sigma_{\mathcal{J}_j})$ und $\overline{\tau} := \sum_{j=0}^s \overline{\tau}_j$, so ist dies ein Kegel in $\overline{\widetilde{\Sigma}(\Delta_r)}(\sigma_{\mathcal{J}})$. Für jeden Kegel $\overline{\tau}_j$ gibt es nämlich eine Kette \mathcal{I}_j mit $\tau_j = \sigma_{\mathcal{I}_j}$, in der alle Mengen aus \mathcal{J}_j auftreten, da τ_j den Kegel $\sigma_{\mathcal{J}_j}$ als Seite enthält. Aus den Ketten \mathcal{I}_j kann man wie folgt eine Kette \mathcal{I} konstruieren. Man füge in die Kette \mathcal{J} sukzessive für $j = 0, \ldots, s$ alle Mengen aus der Kette \mathcal{I}_j ein, die zwischen $J^{(j)}$ und $J^{(j+1)}$ liegen. Dies ist möglich, da \mathcal{I}_j die Mengen der Kette \mathcal{J}_j enthält und in dieser Kette $J^{(j)}$ und $J^{(j+1)}$ auftreten. Die entstandene Kette \mathcal{I} enthält nach Konstruktion alle Mengen der Kette \mathcal{J} und definiert damit einen Kegel $\sigma_{\mathcal{I}}$, der $\sigma_{\mathcal{J}}$ als Seite enthält. Also liegt $\overline{\sigma}_{\mathcal{I}}$ in $\widetilde{\Sigma}(\Delta_r)(\sigma_{\mathcal{J}})$. Diese Konstruktion ist invers zu der aus dem letzten Absatz, und somit gilt

$$\bar{\tau} = \bar{\sigma}_{\mathcal{I}}$$

Also ist jeder Kegel $\bar{\tau} \in \bigoplus_{j=0}^{s} \overline{\widetilde{\Sigma}(\Delta_r)}(\sigma_{\mathcal{J}_j})$ ein Kegel in $\overline{\widetilde{\Sigma}(\Delta_r)}(\sigma_{\mathcal{J}})$ und zusammen mit dem vorhergehenden Absatz gilt

$$\bigoplus_{j=0}^{s} \overline{\widetilde{\Sigma}(\Delta_{r})}(\sigma_{\mathcal{J}_{j}}) = \overline{\widetilde{\Sigma}(\Delta_{r})}(\sigma_{\mathcal{J}}).$$

Mit Hilfe dieses Lemmas kann nun folgende Charakterisierung der torischen Varietät $V(\sigma_{\mathcal{J}})$ für einen s-dimensionalen Kegel $\sigma_{\mathcal{J}}$ im Fächer $\widetilde{\Sigma}(\Delta_r)$ der MPCP-Desingularisierung \widetilde{P}_{Δ_r} gegeben werden.

Satz 2.30 Set $0 \le s \le r$ and $\sigma_{\mathcal{J}} \in \widetilde{\Sigma}(\Delta_r)$ mit $\mathcal{J} = (J^{(1)}, \ldots, J^{(s)}), J^{(0)} := \emptyset, J^{(s+1)} := \{1, \ldots, r+1\}$ and $k_j := \#J^{(j)}$ für $j = 0, \ldots, s+1$. Dann gilt

$$V(\sigma_{\mathcal{J}}) = \prod_{j=0}^{s} \widetilde{P}_{\Delta_{r_j}}$$

 $mit r_j := k_{j+1} - k_j - 1.$

Bemerkung 2.31

- (i) Für r = 0 sei dabei P_{Δ_0} die Varietät, die aus genau einem Punkt besteht.
- (ii) Es gilt $\#(J^{(j+1)} \setminus J^{(j)}) = r_j + 1$ und damit gibt r_j die maximale Länge einer echt aufsteigenden Kette von Mengen, die echt zwischen $J^{(j)}$ und $J^{(j+1)}$ liegen, an.

Beweis. Zunächst einmal ist für s = 0 die Kette \mathcal{J} leer und der Satz besagt, daß

$$\widetilde{P}_{\Delta_r} = V(\{0\}) = \prod_{j=0}^{0} \widetilde{P}_{\Delta_{r_0}} = \widetilde{P}_{\Delta_r}$$

ist, da $r_0 = k_1 - k_0 - 1 = (r+1) - 0 - 1 = r$ ist.

Der zweite Spezialfall ergibt sich für s = r; hier ist für jedes $j = 0, \ldots, s r_j = k_{j+1} - k_j - 1 = (k_j + 1) - k_j - 1 = 0$, und damit besagt der Satz nichts weiter, als daß sich der T_N-Fixpunkt $V(\sigma_{\mathcal{J}})$ als ein Produkt von einpunktigen Varietäten darstellen läßt. In diesen beiden Fällen ist der Satz also richtig. Deshalb sei im folgenden $1 \le s \le r - 1$.

Darüberhinaus sei o.B.d.A. $J^{(j)} = \{1, \ldots, k_j\}$ für alle $j = 0, \ldots, s + 1$; durch Permutation der Menge $\{1, \ldots, r + 1\}$ ist diese Situation stets erreichbar, und die Abschlüsse der zugehörigen Orbits in \widetilde{P}_{Δ_r} sind isomorph. Im folgenden wird das *r*-dimensionale Gitter *N* genauer mit N_r bezeichnet. Nun liefert Lemma 2.28, daß

$$V(\sigma_{\mathcal{J}}) = \prod_{j=0}^{s} V(\sigma_{\mathcal{J}_j})$$

ist, wobei wieder \mathcal{J}_j für j = 0..., s die Kette sei, die aus der vollständigen Kette durch Herausnehmen aller Mengen, die echt zwischen $J^{(j)}$ und $J^{(j+1)}$ liegen, entsteht. Damit genügt es zu zeigen, daß der Satz für die Ketten \mathcal{J}_j gilt. Denn damit würde

$$V(\sigma_{\mathcal{J}_j}) = \prod_{i=0}^{k_j} \widetilde{P}_{\Delta_0} \times \widetilde{P}_{\Delta_{r_j}} \times \prod_{i=k_{j+1}}^r \widetilde{P}_{\Delta_0} = \widetilde{P}_{\Delta_{r_j}}$$

und

$$V(\sigma_{\mathcal{J}}) = \prod_{j=0}^{s} V(\sigma_{\mathcal{J}_{j}}) = \prod_{j=0}^{s} \widetilde{P}_{\Delta_{r_{j}}}$$

gelten.

Sei nun also \mathcal{J} eine Kette mit der Eigenschaft, daß genau ein $0 \leq i \leq s$ existiert mit $r_i \neq 0$. Da in diesem Fall $k_j = j$ für alle $0 \leq j \leq i$ und $k_j = j + r_i$ für alle $i + 1 \leq j \leq s + 1$ gelten muß, heißt das, daß \mathcal{J} die folgende Form hat:

$$\{1\} \subsetneq \{1,2\} \subsetneq \cdots \varsubsetneq \{1,\ldots,i-1\} \\ \varsigma \{1,\ldots,i\} \varsubsetneq \{1,\ldots,i+1+r_i\} \varsubsetneq \{1,\ldots,i+2+r_i\} \\ \varsigma \cdots \subsetneq \{1,\ldots,r-1\} \varsubsetneq \{1,\ldots,r\}$$

Oder anders gesagt, die endliche Folge (k_0, \ldots, k_{s+1}) sieht wie folgt aus

$$(0, 1, \dots, i-1, i, r_i + i + 1, r_i + i + 2, \dots, r, r + 1).$$

Da diese Folge aus genau s + 2 Gliedern besteht, muß $r_i = r - s$ sein. Das bedeutet, daß zumindest die Dimensionen der beiden betrachteten torischen Varietäten $V(\sigma_{\mathcal{J}})$ und $\tilde{P}_{\Delta_{r_i}}$ (die nulldimensionalen Varietäten \tilde{P}_{Δ_0} werden im weiteren vernachlässigt) übereinstimmen, da die Dimension von $V(\sigma_{\mathcal{J}})$ die Kodimension des definierenden Kegels, also r - s ist.

Zu zeigen ist nun, daß der Fächer $\overline{\widetilde{\Sigma}}(\Delta_r)(\sigma_{\mathcal{J}})$ in $\overline{N}_r(\sigma_{\mathcal{J}})$ der Varietät $V(\sigma_{\mathcal{J}})$ mit dem Fächer $\widetilde{\Sigma}(\Delta_{r-s})$ in N_{r-s} übereinstimmt. Aus dem Beweis zu Lemma 2.28 ist bekannt, daß die Vektoren

$$e_{\{1,\ldots,i+1\}}, e_{\{1,\ldots,i+2\}}, \ldots, e_{\{1,\ldots,i+r_i\}}$$

eine Z-Basis des Gitters $\bar{N}_r(\sigma_{\mathcal{J}})$ bilden. Das Gitter N_{r-s} wird nach Lemma 1.17 von den Vektoren $e_{\{1,\ldots,t\}}$ mit $t = 1, \ldots, r-s$ erzeugt, wobei hier $\{1,\ldots,t\}$ als echte Teilmenge von $\{1,\ldots,(r-s)+1\}$ aufgefaßt wird. Durch folgende Zuordnung wird ein Isomorphismus φ der beiden Gitter festgelegt:

$$\begin{array}{rccc} \varphi : \bar{N}_r(\sigma_{\mathcal{J}}) & \longrightarrow & N_{r-s} \\ e_{\{1,\dots,i+t\}} & \longmapsto & e_{\{1,\dots,t\}} \end{array}$$

für $t = 1, \ldots, r_i$, wobei $r_i = r - s$ gilt. Unter dieser Abbildung wird das Bild \bar{e}_I in $\bar{N}_r(\sigma_{\mathcal{J}})$ von $e_I \in N$ mit $\{1, \ldots, i\} \subsetneq I \subsetneq \{1, \ldots, r_i + i + 1\}$ auf $\varphi(\bar{e}_I) = e_{\tilde{\varphi}(I)}$ abgebildet, wobei $\tilde{\varphi}(I) := \{t - i : t \in I \setminus \{1, \ldots, i\}\}$ eine echte, nichtleere Teilmenge von $\{1, \ldots, (r - s) + 1\}$ ist. Dies ist der Fall, da aus dem Beweis von Lemma 2.28 hervorgeht, daß mit

$$\lambda_t = \begin{cases} 1 & \text{falls } t \in I, t+1 \in I^c \\ -1 & \text{falls } t \in I^c, t+1 \in I \\ 0 & \text{sonst} \end{cases}$$

für das Bild \bar{e}_I gilt

$$\bar{e}_I = \sum_{t=i+1}^{i+r_i} \lambda_t e_{\{1,\dots,t\}}.$$

Damit ist

$$\varphi(\bar{e}_I) = \sum_{t=i+1}^{i+r_i} \lambda_t e_{\{1,\dots,t-i\}} = \sum_{t=1}^{r_i} \lambda_t e_{\{1,\dots,t\}} = e_{\tilde{\varphi}(I)}.$$

Die Abbildung $\tilde{\varphi}$ ist eine Bijektion zwischen der Menge $\{I : \{1, \ldots, i\} \subseteq I \subseteq \{1, \ldots, (r-s) + i + 1\}\}$ und der Menge der echten, nichtleeren Teilmengen von $\{1, \ldots, (r-s) + 1\}$, insbesondere gilt $\tilde{\varphi}(\{1, \ldots, i+t\}) = \{1, \ldots, t\}$. Andersherum ist $\tilde{\varphi}^{-1}(J)$ für eine echte, nichtleere Teilmenge J von $\{1, \ldots, (r-s) + 1\}$ folgende Menge

$$\{1, \ldots, i\} \cup \{t+i : t \in J\},\$$

die echt zwischen $\{1, \ldots, i\}$ und $\{1, \ldots, (r-s) + i + 1\}$ liegt.

Sei nun zunächst $\sigma_{\mathcal{I}}$ ein Kegel in $\hat{\Sigma}(\Delta_r)$, der $\sigma_{\mathcal{J}}$ als Seite enthält. Dann ist \mathcal{I} eine echt aufsteigende Kette echter, nichtleerer Teilmengen von $\{1, \ldots, r+1\}$, in der jede Menge aus \mathcal{J} vorkommt. Aufgrund der speziellen Form von \mathcal{J} liegen alle Mengen $I \in \mathcal{I} \setminus \mathcal{J}$ echt zwischen $\{1, \ldots, i\}$ und $\{1, \ldots, (r-s) + i + 1\}$. Nun gilt für den Kegel $\bar{\sigma}_{\mathcal{I}}$ im Fächer $\overline{\tilde{\Sigma}(\Delta_r)}(\sigma_{\mathcal{I}})$

$$\varphi(\bar{\sigma}_{\mathcal{I}}) = \sum_{I \in \mathcal{I} \setminus \mathcal{J}} \mathbb{R}_{\geq 0} \varphi(\bar{e}_I) = \sum_{I \in \mathcal{I} \setminus \mathcal{J}} \mathbb{R}_{\geq 0} e_{\tilde{\varphi}(I)}.$$

Letzteres ist ein Kegel in $\widetilde{\Sigma}(\Delta_{r-s})$, nämlich der Kegel $\sigma_{\widetilde{\varphi}(\mathcal{I})}$, wobei die Kette $\widetilde{\varphi}(\mathcal{I})$ aus den Mengen $\widetilde{\varphi}(I)$ für alle Mengen $I \in \mathcal{I} \setminus \mathcal{J}$ besteht.

Ist andererseits $\sigma_{\mathcal{I}}$ ein Kegel in $\widetilde{\Sigma}(\Delta_{r-s})$, also \mathcal{I} eine Kette von Teilmengen von $\{1, \ldots, (r-s)+1\}$, so ist $\varphi^{-1}(\sigma_{\mathcal{I}})$ ein Kegel in $\overline{\widetilde{\Sigma}}(\Delta_r)(\sigma_{\mathcal{J}})$, nämlich das Bild des Kegels in $\widetilde{\Sigma}(\Delta_r)$, der von der Kette, die aus \mathcal{J} durch Hinzufügen der Mengen $\widetilde{\varphi}^{-1}(I)$ für jede Menge I der Kette \mathcal{I} , definiert wird. Also sind die Fächer unter dem Isomorphismus φ gleich und dementsprechend auch die dadurch definierten torischen Varietäten.

Um nun zu beschreiben, was bei der MPCP-Desingularisierung $\mathrm{id}_* : \widetilde{P}_{\Delta_r} \to P_{\Delta_r}$ geschieht, sollen die Urbilder der Orbits orb σ in P_{Δ_r} unter dieser Abbildung bestimmt werden.

Lemma 2.32 Es sei $\sigma_{J_1J_2}$, $\emptyset \neq J_1 \subset J_2 \subsetneq \{1, \ldots, r+1\}$, ein s-dimensionaler Kegel in $\Sigma(\Delta_r)$, $2 \leq s \leq r$. Dann gilt

$$\mathrm{id}_*^{-1}(\mathrm{orb}\,\sigma_{J_1J_2}) = (\mathbb{C}^*)^{\#J_1-1} \times \widetilde{P}_{\Delta_{s-2}} \times (\mathbb{C}^*)^{r-\#J_2} \subset \widetilde{P}_{\Delta_r}.$$

Der durch die Kette (J_1, J_2) definierte Kegel $\sigma_{(J_1, J_2)}$ (s. Lemma 2.20) in $\Sigma(\Delta_r)$ ist zweidimensional und es gilt sogar

$$\mathrm{id}_*^{-1}(\mathrm{orb}\,\sigma_{J_1J_2}) \subset V(\sigma_{(J_1,J_2)}).$$

Beweis. Da beide Fächer $\Sigma(\Delta_r)$ und $\widetilde{\Sigma}(\Delta_r)$ im selben Gitter N_r liegen, gibt es nach Lemma 2.4 für jeden Kegel $\sigma_{\mathcal{J}} \in \widetilde{\Sigma}(\Delta_r)$ genau einen Kegel $\sigma_{I_1I_2} \in \Sigma(\Delta_r)$ minimaler Dimension mit der Eigenschaft $\sigma_{\mathcal{J}} \subset \sigma_{I_1I_2}$ und für diesen gilt

$$\operatorname{id}_*(\operatorname{orb}\sigma_{\mathcal{J}}) = \operatorname{orb}\sigma_{I_1I_2}.$$

Da die Orbits disjunkt sind, ergibt sich $\operatorname{id}_*^{-1}(\operatorname{orb} \sigma_{J_1J_2})$ als die Vereinigung aller Orbits in \widetilde{P}_{Δ_r} zu Kegeln in $\widetilde{\Sigma}(\Delta_r)$, die in $\sigma_{J_1J_2}$ aber in keiner echten Seite von $\sigma_{J_1J_2}$ enthalten sind. Sei also $\sigma_{J_1J_2}, \emptyset \neq J_1 \subset J_2 \subsetneq \{1, \ldots, r+1\}$, ein s-dimensionaler Kegel in $\Sigma(\Delta_r)$, $2 \leq s \leq r$, dann ist $s = \#J_2 - \#J_1 + 1 \geq 2$ und damit $J_1 \subsetneq J_2$. Dabei kann o.B.d.A. angenommen werden, daß $J_1 = \{1, \ldots, k_1\}$ und $J_2 = \{1, \ldots, k_2\}$ mit $k_i := \#J_i, i = 1, 2$, ist, die anderen Fälle ergeben sich durch Permutation. Dann gilt nach Lemma 1.24

$$\sigma_{J_1J_2} = \{ n \in (N_r)_{\mathbb{R}} : n_i \le n_t \le n_j \text{ für alle } i \in J_1, j \in J_2^c, 1 \le t \le r+1 \}.$$

Für jeden Kegel $\sigma_{\mathcal{J}} \in \widetilde{\Sigma}(\Delta_r), \ \mathcal{J} = (J^{(1)}, \ldots, J^{(\mu)}),$ gilt nach Lemma 2.20 mit $J^{(0)} = \emptyset$ und $J^{(\mu+1)} = \{1, \ldots, r+1\}$

$$\sigma_{\mathcal{J}} = \{ n \in (N_r)_{\mathbb{R}} : n_{t_1} = n_{t_1'} \le n_{t_2} = n_{t_2'} \le \dots \le n_{t_{\mu+1}} = n_{t_{\mu+1}'}, t_i, t_i' \in J^{(i)} \setminus J^{(i-1)} \}$$

Dementsprechend gilt $\sigma_{\mathcal{J}} \subset \sigma_{J_1J_2}$ genau dann, wenn $J_1 \subset J^{(1)}$ und $J_2^c \subset (J^{(\mu)})^c = J^{(\mu+1)} \setminus J^{(\mu)}$ gilt. Nun ist nach Lemma 1.24 ein Kegel $\sigma_{I_1I_2} \in \Sigma(\Delta_r)$ genau dann Seite von $\sigma_{J_1J_2}$, wenn $J_1 \subset I_1$ und $J_2^c \subset I_2^c$ gilt; für diesen gilt dann

$$\sigma_{I_1I_2} = \{ n \in (N_r)_{\mathbb{R}} : n_i \le n_t \le n_j \text{ für alle } i \in I_1, j \in I_2^c, 1 \le t \le r+1 \}.$$

Dies ist eine Obermenge von $\sigma_{\mathcal{J}}$, falls $J_1 \subset I_1 \subset J^{(1)}$ und $J_2^c \subset I_2^c \subset (J^{(\mu)})^c$ gilt. Also ist $\sigma_{\mathcal{J}}$ genau dann in $\sigma_{J_1J_2}$ aber in keiner echten Seite enthalten, wenn $J^{(1)} = J_1$ und $J^{(\mu)} = J_2$ gilt.

Für den Spezialfall s = r ist die Teilmenge von $\widetilde{\Sigma}(\Delta_r)$, die diese Bedingungen erfüllt, genau die Menge der Kegel, die $\tau := \sigma_{\mathcal{I}} \in \widetilde{\Sigma}(\Delta_r)$ mit $\mathcal{I} = (J_1, J_2)$ als Seite enthalten. Also ist in diesem Fall

$$\operatorname{id}_{*}^{-1}(\operatorname{orb} \sigma_{\{1\}\{1,\dots,r\}}) = \prod_{\tau < \sigma_{\mathcal{J}}} \operatorname{orb} \sigma_{\mathcal{J}} = V(\tau).$$

Nach Satz 2.30 ist aber $V(\tau) = P_{\Delta_{\tau-2}}$, da mit den dortigen Bezeichnungen

$$r_0 = \#\{1\} - \#\emptyset - 1 = 0$$

$$r_1 = \#\{1, \dots, r\} - \#\{1\} - 1 = r - 2$$

$$r_2 = \#\{1, \dots, r + 1\} - \#\{1, \dots, r\} - 1 = 0$$

gilt. Zusammen ergibt sich demnach

$$\operatorname{id}_{*}^{-1}(\operatorname{orb}\sigma_{i,j}) = \widetilde{P}_{\Delta_{r-2}}.$$

Für den allgemeinen Fall gilt zwar, daß jeder Kegel $\sigma_{\mathcal{J}}$ mit $J^{(1)} = J_1$ und $J^{(\mu)} = J_2$ den Kegel $\sigma_{(J_1,J_2)}$ als Seite enthält. Aber für einen Kegel $\sigma_{\mathcal{J}} > \sigma_{(J_1,J_2)}$ gilt nur, daß es $1 \leq j_1 < j_2 \leq \mu$ gibt mit $J^{(j_1)} = J_1$ und $J^{(j_2)} = J_2$. Betrachtet man nun den Fächer $\overline{\Sigma}(\sigma_{(J_1,J_2)})$ in $\overline{N}(\sigma_{J_1J_2})$ der torischen Varietät $V(\sigma_{(J_1,J_2)})$, so ist

$$S := \{ \bar{\sigma}_{\mathcal{J}} : \sigma_{\mathcal{J}} \in \widetilde{\Sigma}(\Delta_r), \mu = \dim \sigma_{\mathcal{J}}, J^{(1)} = J_1, J^{(\mu)} = J_2 \}$$

eine Teilmenge dieses Fächers. Um den Satz zu beweisen, genügt es zu zeigen, daß

$$S = \{\{0\}\} \oplus \widetilde{\Sigma}(\Delta_{s-2}) \oplus \{\{0\}\}$$

$$\subset \widetilde{\Sigma}(\Delta_{k_1-1}) \oplus \widetilde{\Sigma}(\Delta_{s-2}) \oplus \widetilde{\Sigma}(\Delta_{r-k_2})$$

$$= \overline{\Sigma}(\sigma_{(J_1,J_2)})$$

gilt. Dabei liegen die beiden Fächer $\{\{0\}\}$ in den Gittern $N_{r_0} = N_{k_1-1}$ bzw. $N_{r_2} = N_{r-k_2}$ und der mittlere in $N_{r_1} = N_{s-2}$. Denn dann ist mit Hilfe von Lemma 2.29

$$\begin{split} \operatorname{id}_{*}^{-1}(\operatorname{orb} \sigma_{J_{1}J_{2}}) &= \prod_{\overline{\sigma}_{\mathcal{J}} \in S} \operatorname{orb} \sigma_{\mathcal{J}} \\ &= P_{\{\{0\}\} \oplus \widetilde{\Sigma}(\Delta_{s-2}) \oplus \{\{0\}\}} \\ &= \operatorname{T}_{N_{k_{1}-1}} \times \widetilde{P}_{\Delta_{s-2}} \times \operatorname{T}_{N_{r-k_{2}}} \\ &= (\mathbb{C}^{*})^{\#J_{1}-1} \times \widetilde{P}_{\Delta_{s-2}} \times (\mathbb{C}^{*})^{r-\#J_{2}} \\ &\subset V(\sigma_{(J_{1},J_{2})}) \subset \widetilde{P}_{\Delta_{r}}. \end{split}$$

Nun ist aus dem Beweis zu Lemma 2.28 bekannt, daß sich für einen Kegel $\sigma_{\mathcal{J}} > \sigma_{(J_1,J_2)}$ in $\widetilde{\Sigma}(\Delta_r)$ das Bild in $\overline{N}_r(\sigma_{(J_1,J_2)})_{\mathbb{R}}$ als

$$\bar{\sigma}_{\mathcal{J}} = \sum_{j=0}^{2} \left(\sum_{\substack{J \in \mathcal{J} \setminus (J_1, J_2) \\ J_j \subsetneq J \subsetneq J_{j+1}}} \mathbb{R}_{\geq 0} \bar{e}_J \right)$$

ergibt, wobei $J_0 := \emptyset$ und $J_3 = \{1, \ldots, r+1\}$ gelte und \bar{e}_J das Bild von e_J in $\bar{N}_r(\sigma_{(J_1,J_2)})$ sei. Nun ist aber für ein $\bar{\sigma}_{\mathcal{J}} \in S$ die innere Summe für j = 0 und j = 2 leer, da für jede Menge $J^{(j)}$ in \mathcal{J}

$$J_1 = J^{(1)} \subset J^{(j)} \subset J^{(\mu)} = J_2$$

gilt. Für ein solches $\bar{\sigma}_{\mathcal{J}}$ gilt also

$$\bar{\sigma}_{\mathcal{J}} = \{0\} + \sum_{\substack{J \in \mathcal{J} \setminus (J_1, J_2) \\ J_1 \subsetneq J \subsetneq J_2}} \mathbb{R}_{\geq 0} \bar{e}_J + \{0\} = \{0\} + \sum_{j=2}^{\mu-1} \mathbb{R}_{\geq 0} \bar{e}_{J^{(j)}} + \{0\}.$$

Mit der Abbildung $\tilde{\varphi}$ aus dem Beweis zu Satz 2.30 erhält man darüberhinaus

$$\bar{\sigma}_{\mathcal{J}} = \{0\} + \sigma_{\widetilde{\varphi}(\mathcal{J})} + \{0\},\$$

dabei ist $\tilde{\varphi}(\mathcal{J})$ die Kette, die aus den Mengen $\tilde{\varphi}(J^{(j)})$ für $j = 2, \ldots, \mu - 1$ besteht. Die Menge $\tilde{\varphi}(J^{(j)})$ ergibt sich hier zu

$$\{t - k_1 : t \in J^{(j)} \setminus J_1 = J^{(j)} \setminus \{1, \dots, k_1\}\}.$$

Da in dem Beweis zu Satz 2.30 gezeigt wurde, daß die Abbildung $\tilde{\varphi}$ eine 1:1-Abbildung der Mengen $\{J : J_1 \subsetneq J \subsetneq J_2\}$ und $\{J : \emptyset \neq J \subsetneq \{1, \ldots, k_2 - k_1\}\}$ ist, gilt also

$$S = \{\{0\}\} \oplus \widetilde{\Sigma}(\Delta_{k_2-k_1-1}) \oplus \{\{0\}\}$$

und mit $k_2 - k_1 - 1 = \#J_2 - \#J_1 - 1 = s - 2$ folgt die Behauptung.

Bemerkung 2.33 Da jeder eindimensionale Kegel $\rho_J \in \Sigma(\Delta_r)$ auch in $\tilde{\Sigma}(\Delta_r)$ liegt und damit der einzige Kegel aus $\tilde{\Sigma}(\Delta_r)$ ist, der in ρ_J aber nicht in der einzigen echten Seite {0} liegt, gilt

$$\operatorname{id}_*^{-1}(\underbrace{\operatorname{orb} \varrho_J}_{\subset P_{\Delta_r}}) = \underbrace{\operatorname{orb} \varrho_J}_{\subset \widetilde{P}_{\Delta_r}}.$$

Eine analoge Aussage gilt auch für die zweidimensionalen Kegel, denn mit $\Sigma(\Delta_r)(2) \subset \widetilde{\Sigma}(\Delta_r)(2)$ via $\sigma_{J_1J_2} \mapsto \sigma_{(J_1,J_2)}$ für $\#J_2 - \#J_1 + 1 = 2$ folgt

$$\operatorname{id}_*^{-1}(\underbrace{\operatorname{orb} \sigma_{J_1 J_2}}_{\subset P_{\Delta_r}}) = \underbrace{\operatorname{orb} \sigma_{(J_1, J_2)}}_{\subset \widetilde{P}_{\Delta_r}}.$$

Das obige Lemma besagt in diesem Fall

$$\begin{aligned} \operatorname{id}_{*}^{-1}(\operatorname{orb} \sigma_{J_{1}J_{2}}) &= (\mathbb{C}^{*})^{\#J_{1}-1} \times \widetilde{P}_{\Delta_{0}} \times (\mathbb{C}^{*})^{r-\#J_{2}} \\ &= (\mathbb{C}^{*})^{r-(\#J_{2}-\#J_{1}+1)} \\ &= (\mathbb{C}^{*})^{r-2} \\ &\cong \operatorname{orb} \sigma_{(J_{1},J_{2})} \end{aligned}$$

Beispiel 2.34

- dim $P_{\Delta_r} = 1$ In diesem Fall ist $P_{\Delta_1} = \mathbb{P}^1 = \widetilde{P}_{\Delta_1}$ und die beiden betrachteten Aufblasungen sind die Identität.
- dim $P_{\Delta_r} = 2$ Nach Satz 2.24 ist \widetilde{P}_{Δ_2} der in drei Punkten aufgeblasene \mathbb{P}^2 . Außerdem gilt hier $\Sigma(\Delta_2) = \widetilde{\Sigma}(\Delta_2)$, da jeder zweidimensionale Kegel $\sigma_{(J_1,J_2)}$ in $\widetilde{\Sigma}(\Delta_2)$ bereits in $\Sigma(\Delta_2)(2)$ liegt, denn für die Kette (J_1, J_2) gilt $\emptyset \neq J_1 \subsetneq J_2 \subsetneq \{1, 2, 3\}$ und damit $\#J_2 \#J_1 + 1 = 2 1 + 1 = 2$. Also stimmen die Mengen der zweidimensionalen Kegel überein, für die null- und eindimensionalen ist dies stets der Fall. Damit gilt $P_{\Delta_2} = \widetilde{P}_{\Delta_2} = \widetilde{\mathbb{P}}^2$ und id_{*} ist die Identität.
- dim $P_{\Delta_r} = 3$ Dies ist der erste interessante Fall. Die Varietät \tilde{P}_{Δ_3} entsteht aus \mathbb{P}^3 durch Aufblasen der vier Koordinatenpunkte und der eigentlichen Urbilder der sechs Koordinatenachsen. Betrachtet man einen T_N -Fixpunkt orb $\sigma_{i,j}$, $1 \leq i \neq j \leq 4$, in P_{Δ_3} , so liegt dieser im Abschluß von genau vier eindimensionalen Orbits und vier zweidimensionalen, da $\sigma_{i,j}$ genau vier zweidimensionale und vier eindimensionale Seiten hat (am Beispiel i = 1, j = 4):

Abbildung 2.1: Verfeinerung des Kegels $\sigma_{1,4} \in \Sigma(\Delta_3)$

Dieser Kegel wird bei der MPCP-Desingularisierung in die Kegel $\sigma_{\mathcal{J}_1}$ und $\sigma_{\mathcal{J}_2}$ mit $\mathcal{J}_1 = (\{1\}, \{1, 2\}, \{1, 2, 3\})$ und $\mathcal{J}_2 = (\{1\}, \{1, 3\}, \{1, 2, 3\})$ aufgeteilt. Der zweidimensionale Kegel $\sigma_{(\{1\}, \{1, 2, 3\})}$ wird neu hinzugefügt. Damit ergibt sich, daß die Abbildung lokal um orb $\sigma_{i,j}$ wie in Abbildung 2.2 aussieht.

Abbildung 2.2: MPCP-Desingularisierung lokal um $V(\sigma_{1,4}) \subset P_{\Delta_3}$

Dabei entspricht der linke Punkt dem abgeschlossenen Orbit $V(\sigma_{\mathcal{J}_1})$, der mittlere $V(\sigma_{\mathcal{J}_2})$ und der rechte dem abgeschlossenen Orbit $V(\sigma_{1,4})$. Über einem Punkt $V(\sigma_{i,j})$ wird also ein \mathbb{P}^1 in Form von $V(\sigma_{(\{1\},\{1,2,3\})})$ eingefügt.

dim $P_{\Delta_r} = 4$ In diesem Fall entspricht \widetilde{P}_{Δ_4} dem sukzessive in den Koordinatenpunkten, -geraden und -ebenen aufgeblasenen \mathbb{P}^4 . Für einen Kegel $\sigma_{i,j}$, $1 \leq i \neq j \leq 5$, gilt $\sigma_{i,j} = \mathbb{R}_{\geq 0} f_{\{i\}\{j\}^c}$ für eine dreidimensionale Seite des Polytopes Δ_4^* . Dabei war $f_{\{i\}\{j\}^c} = \overline{\{e_J : \{i\} \subset J \subset \{j\}^c\}}^{\text{con}}$; dies ist ein Würfel. Die Triangulierung \mathcal{T} , die die MPCP-Desingularisierung id_* definiert, zerlegt diesen und damit den Kegel wie in Bild 2.3 für i = 1, j = 5dargestellt in Simplizes. Damit ergibt sich, daß der Blow-Up id_* lokal um $V(\sigma_{1,5})$ wie in der Abbildung 2.4 abgebildet aussieht.

Dabei entspricht im linken Teil das Sechseck dem abgeschlossenen Orbit $V(\sigma_{(\{1\},\{1,2,3,4\})}) = \widetilde{P}_{\Delta_2}$. Die sechs $\mathbb{P}^1 \times \mathbb{P}^1$ entsprechen den abgeschlossenen

Orbits

$$V(\sigma_{(\{1,2\},\{1,2,3,4\})}) = V(\sigma_{(\{1,3\},\{1,2,3,4\})}) = V(\sigma_{(\{1,3\},\{1,2,3,4\})}) = V(\sigma_{(\{1,3\},\{1,2,3,4\})}) = V(\sigma_{(\{1,3\},\{1,2,3,4\})})$$

Da sich die abgeschlossenen Orbits zu zwei Kegeln genau dann schneiden, wenn es einen Kegel gibt, der beide als Seite enthält, schneiden sich zwei $\mathbb{P}^1 \times \mathbb{P}^1$ genau dann, wenn sie zu Kanten eines Tetraeders der Triangulierung gehören. Die Ecken des Sechsecks gehören zu den sechs Tetraedern und auf der rechten Seite ist der Schnittpunkt der abgeschlossene Orbit $V(\sigma_{1,5})$.

Abbildung 2.3: Triangulierung von $f_{1,5} < \Delta_4^*$

Abbildung 2.4: MPCP-Desingularisierung lokal um $V(\sigma_{1,5})$

Kapitel 3

Calabi-Yau-Hyperflächen

In diesem Kapitel sollen Hyperflächen in den torischen Varietäten P_{Δ_r} und P_{Δ_r} untersucht werden, die zusätzlich Calabi-Yau-Varietäten sind. Ziel ist es, in Abschnitt 3.3 möglichst viele Hodgezahlen einer solchen Hyperfläche zu bestimmen. Zunächst soll aber im folgenden Abschnitt bestimmt werden, wann eine Hyperfläche eine Calabi-Yau-Varietät ist, die Darstellung folgt dabei dem Artikel von V. Batyrev [Ba]. Im darauffolgenden Abschnitt werden die benötigten Grundlagen der Kohomologietheorie in der torischen Geometrie zusammengestellt, diese stammen im wesentlichen aus dem Buch von T. Oda [Oda].

3.1 Calabi-Yau-Hyperflächen in torischen Varietäten

In diesem Abschnitt soll eine Familie $\mathcal{F}(\Delta)$ von Hyperflächen in einer torischen Varietät P_{Δ} , die von einem *r*-dimensionalen Gitter-Polytop Δ definiert ist, betrachtet werden. Es soll bestimmt werden, unter welchen Umständen diese Familie aus Calabi-Yau-Hyperflächen besteht. Um die Familie zu definieren, benötigt man folgende Begriffe.

Definition 3.1 Es sei Σ ein Fächer in einem Gitter N.

(i) Ein Laurent-Polynom über dem dualen Gitter M ist eine endliche Linearkombination der Form

$$f = \sum_{m \in M} c_m \mathbf{e}\left(m\right),$$

mit komplexen Koeffizienten c_m .

(ii) Das Newton-Polytop $\Delta(f)$ eines Laurent-Polynoms f über M ist die konvexe Hülle der Elemente $m \in M$ mit $c_m \neq 0$ in $M_{\mathbb{R}}$, also

$$\Delta(f) = \overline{\{m \in M : c_m \neq 0\}}^{\text{con}}$$

(iii) Zu einem Gitter-Polytop Δ sei

$$L(\Delta) := \{ f : f \text{ ist Laurentpolynom über } M, \Delta(f) \subset \Delta \}.$$

(iv) Ein Laurent-Polynom $f \neq 0$ über M definiert die Hyperfläche

$$Z_{f}^{\{0\}} := \{ t \in \mathbf{T}_{N} : f(t) = \sum_{m \in M} c_{m} \mathbf{e}(m)(t) = 0 \}.$$

- (v) Der Abschluß der von einem Laurent-Polynom $f \neq 0$ definierten Hyperfläche $Z_f^{\{0\}}$ in der torischen Varietät P_{Σ} wird mit Z_f bezeichnet und ist eine Hyperfläche in P_{Σ} .
- (vi) Ist die betrachtete torische Varietät durch ein Polytop Δ in M gegeben, wird die durch $f \neq 0$ definierte Hyperfläche auch mit

$$Z_f^{\Delta} := Z_f^{\sigma(\Delta)} = Z_f^{\{0\}} \subset \mathcal{T}_N$$

bezeichnet und Z_f sei der Abschluß in P_{Δ} .

Bemerkung 3.2

(i) Die Orbitzerlegung von P_{Σ} induziert eine Zerlegung der Hyperfläche Z_f , es gilt mit $Z_f^{\sigma} := Z_f \cap \operatorname{orb} \sigma$ für einen Kegel $\sigma \in \Sigma$

$$Z_f = \coprod_{\sigma \in \Sigma} Z_f^{\sigma},$$

dabei gilt orb $\{0\} = T_N$ und damit erhält man die Hyperfläche im Torus als

$$Z_f \cap \operatorname{orb} \{0\} = Z_f \cap \mathcal{T}_N = Z_f^{\{0\}}$$

zurück. Analog sei für eine nichtleere Seite F eines Gitter-Polytopes Δ

$$Z_f^F := Z_f^{\sigma(F)} = Z_f \cap \operatorname{orb} \sigma(F)$$

und damit

$$Z_f = \coprod_{\emptyset \neq F < \Delta} Z_f^F.$$

(ii) Wählt man eine Z-Basis $\{m^{(1)}, \ldots, m^{(r)}\}$ von M, so legt diese mittels $X_i = \mathbf{e}(m^{(i)})$ Koordinaten $X := (X_1, \ldots, X_r)$ des Torus \mathbf{T}_N fest. Bezüglich dieser ergibt sich für ein $m = \sum_{i=1}^r \lambda_i m^{(i)} \in M$

$$\mathbf{e}(m) = \mathbf{e}\left(\sum_{i=1}^r \lambda_i m^{(i)}\right) = \prod_{i=1}^r X_i^{\lambda_i} =: X^m.$$

Damit ergibt sich für ein Laurent-Polynom f

$$f = \sum_{m \in M} c_m \mathbf{e}(m) = \sum_{m \in M} c_m X^m$$

und f liegt ganau dann in $L(\Delta)$, wenn

$$f = \sum_{m \in \Delta \cap M} c_m X^m$$

gilt.

Es sollen Hyperflächen Z_f betrachtet werden, die in allgemeiner Lage sind, genauer gesagt, soll $Z_f \Sigma$ -regulär sein:

Definition 3.3

- (i) Eine Hyperfläche Z in einer torischen Varietät P_{Σ} ist Σ -regulär, falls für jeden s-dimensionalen Kegel $\sigma \in \Sigma$, $1 \leq s \leq r$, der Schnitt von Z mit dem Orbit orb $\sigma \cong (\mathbb{C}^*)^{r-s}$ eine glatte Hyperfläche oder leer ist. Insbesondere ist der Schnitt mit jedem nulldimensionalen Orbit leer, d.h. die Fixpunkte der Torus-Operation liegen nicht in Z.
- (ii) Entsprechend ist eine Hyperfläche Z in $P_{\Delta} = P_{\Sigma(\Delta)} \Delta$ -regulär, falls sie $\Sigma(\Delta)$ -regulär ist.
- (iii) Die Familie aller Δ -regulären Hyperflächen $Z_f \subset P_\Delta$ mit $f \in L(\Delta)$ wird mit $\mathcal{F}(\Delta)$ bezeichnet.

In Abschnitt 1.4 wurde gezeigt, daß kleine analytische Umgebungen eines Punktes auf einem s-dimensionalen Orbit orb σ isomorph zu Produkten von s-dimensionalen offenen Kugeln mit offenen analytischen Umgebungen des Punktes $u_{\sigma} \in U_{\sigma,N(\sigma)}$ sind, wobei $N(\sigma)$ das kleinste Untergitter von N ist, welches $N \cap \sigma$ enthält und u_{σ} der einzige Fixpunkt in der (r - s)-dimensionalen, affinen, torischen Varietät $U_{\sigma,N(\sigma)}$ ist. Damit und aufgrund der Σ -Regularität erhält man folgenden

Satz 3.4

- (i) Es sei Z eine Σ -reguläre Hyperfläche in einer torischen Varietät P_{Σ} und σ ein (r-s)-dimensionaler Kegel in Σ , $1 \leq r-s \leq r-1$, mit $Z^{\sigma} \neq \emptyset$. Dann ist Z^{σ} (s-1)-dimensional und kleine analytische Umgebungen in Z eines Punktes von Z^{σ} sind isomorph zu dem Produkt einer (s-1)-dimensionalen, offenen Kugel und einer kleinen analytischen Umgebung des Punktes u_{σ} auf der (r-s)-dimensionalen, affinen, torischen Varietät $U_{\sigma,N(\sigma)}$.
- (ii) Ist $Z \in \mathcal{F}(\Delta)$ und F eine s-dimensionale Seite des Gitter-Polytopes Δ , $1 \leq s \leq r-1$, mit $Z^F \neq \emptyset$, so ist Z^F (s-1)-dimensional und kleine analytische Umgebungen in Z eines Punktes von Z^F sind isomorph zu dem Produkt einer (s-1)-dimensionalen, offenen Kugel und einer kleinen analytischen Umgebung des Punktes $u_{\sigma(F)}$ auf der (r-s)-dimensionalen, affinen, torischen Varietät $U_{\sigma(F),N(\sigma(F))}$.

Beweis. [Ba, Theorem 3.1.5. und Korollar 3.1.6.]

Bemerkung 3.5 Das bedeutet insbesondere, daß eine Σ -reguläre Hyperfläche Z nur die Singularitäten von P_{Σ} "erbt", aber keine neuen Singularitäten entstehen, d.h.

$$\operatorname{Sing}(Z) \subset \operatorname{Sing}(P_{\Sigma}).$$

Nach Bemerkung 3.1.2. in [Ba] schneidet eine Σ -reguläre Hyperfläche Z_f jeden Orbit positiver Dimension und es gilt

Korollar 3.6 Es sei Z_f eine Σ -reguläre Hyperfläche in der torischen Varietät P_{Σ} , dann gilt

- (i) Die offene Teilmenge $Z_f \cap P_{\Sigma^{[1]}}$ enthält keine Singularitäten von Z_f .
- (ii) Wenn P_{Σ} höchstens terminale Singularitäten hat, enthält $Z_f \cap P_{\Sigma^{[2]}}$ keine Singularitäten.
- (iii) Hat P_{Σ} höchstens \mathbb{Q} -faktorielle, terminale Gorenstein-Singularitäten, so enthält $Z_f \cap P_{\Sigma^{[3]}}$ keine Singularitäten.
- (iv) Die Hyperfläche $Z_f = Z_f \cap P_{\Sigma^{[r-1]}}$ ist genau dann glatt, wenn $P_{\Sigma^{[r-1]}}$ glatt ist.

Beweis. [Ba, Korollar 3.1.7.]

Nun soll bestimmt werden, wann die Familie $\mathcal{F}(\Delta)$ in der von einem Gitter-Polytop Δ definierten, torischen Varietät P_{Δ} aus Calabi-Yau-Varietäten besteht.

Dazu zunächst die folgende

Definition 3.7 Eine normale, irreduzible und projektive algebraische Varietät Xüber \mathbb{C} , die höchstens kanonische Gorenstein-Singularitäten besitzt, heißt *Calabi-Yau-Varietät*, falls das kanonische Bündel trivial ist, d.h. $\omega_X = \mathcal{O}_X$, und

$$\mathrm{H}^{i}(X,\mathcal{O}_{X})=0$$

für $1 \le i \le \dim X - 1$ gilt.

Nun gilt folgender

Satz 3.8 Sei Δ ein r-dimensionales Gitter-Polytop in $M_{\mathbb{R}}$, P_{Δ} die dadurch definierte r-dimensionale, projektive, torische Varietät mit amplem Geradenbündel $\mathcal{O}_{P_{\Delta}}(D_{h^{\Delta}})$ und $\mathcal{F}(\Delta) = \{Z_f : \Delta(f) = \Delta, Z_f \text{ ist } \Delta\text{-regulär}\}$. Dann sind äquivalent:

- (i) Die Familie $\mathcal{F}(\Delta)$ besteht aus Calabi-Yau-Varietäten, die höchstens kanonische Singularitäten besitzen.
- (ii) Das Geradenbündel $\mathcal{O}_{P_{\Delta}}(D_{h^{\Delta}})$ ist antikanonisch, d.h. P_{Δ} ist eine torische Fano-Varietät mit höchstens Gorenstein-Singularitäten.
- (iii) Δ enthält genau einen Gitterpunkt $m^{(0)}$ im Inneren und $(\Delta m^{(0)}, M)$ ist ein reflexives Paar.

Beweis. [Ba, Theorem 4.1.9.]

Bemerkung 3.9 Der entscheidende Punkt dieses Satzes ist, daß die Familie $\mathcal{F}(\Delta)$ aus Hyperflächen also Divisoren besteht, die im antikanonischen Linearsystem liegen. Dies ist der Fall, da für eine ganzzahlige Trägerfunktion h auf einem Fächer Σ nach [Oda, Lemma 2.3.] { $\mathbf{e}(m) : m \in M \cap \Delta(\Sigma, h)$ } eine \mathbb{C} -Basis von

$$\mathrm{H}^{0}(P_{\Sigma}, \mathcal{O}_{P_{\Sigma}}(D_{h}))$$

ist. Für die antikanonische Trägerfunktion ak = h^{Δ} ist hier $\Delta(\Sigma(\Delta), ak) = \Delta$ und damit kann man ein Laurentpolynom $f \in L(\Delta)$ als Element in $\mathrm{H}^{0}(P_{\Sigma}, \mathcal{O}_{P_{\Sigma}}(D_{h}))$ auffassen und als solches legt f, da D_{ak} ein antikanonischer Divisor ist, einen Divisor im antikanonischen Linearsystem fest.

Zusätzlich zu der Familie von Hyperflächen $\mathcal{F}(\Delta)$ in einer torischen Varietät P_{Δ} sollen auch die zugehörigen Urbilder dieser Hyperflächen in einer MPCP-Desingularisierung \tilde{P}_{Δ} der Varietät P_{Δ} betrachtet werden. Dazu wird zunächst untersucht, ob sich Eigenschaften einer Hyperfläche in einer torischen Varietät P_{Σ} auf das eigentliche Urbild dieser Hyperfläche unter einer äquivarianten Abbildung $\varphi_*: P_{\widetilde{\Sigma}} \to P_{\Sigma}$ übertragen.

Seien also Σ und $\widetilde{\Sigma}$ Fächer in N bzw. $\widetilde{N}, \varphi : \widetilde{N} \to N$ ein Isomorphismus von Gittern und $\varphi(\widetilde{\Sigma})$ eine lokal endliche Verfeinerung von Σ , d.h. für jeden Kegel $\widetilde{\sigma} \in \widetilde{\Sigma}$ ist $\varphi(\widetilde{\sigma})$ in einem Kegel $\sigma \in \Sigma$ enthalten, für jedes $\sigma \in \Sigma$ ist die Menge $\{\varphi(\widetilde{\sigma}) : \widetilde{\sigma} \in \widetilde{\Sigma}, \varphi(\widetilde{\sigma}) \subset \sigma\}$ endlich und σ ergibt sich als die Vereinigung über diese Menge. Dann induziert φ nach Lemma 2.3 eine äquivariante, eigentliche, birationale Abbildung $\varphi_* : P_{\widetilde{\Sigma}} \to P_{\Sigma}$ und es gilt folgendes

Lemma 3.10 Sei f ein Laurentpolynom über M und $Z_f \subset P_{\Sigma}$ eine Σ -reguläre Hyperfläche. Dann ist $(\varphi_*)^* f = f \circ \varphi_*$ ein Laurentpolynom über \widetilde{M} und $Z_{(\varphi_*)^* f} \subset P_{\widetilde{\Sigma}}$ ist $\widetilde{\Sigma}$ -regulär.

Beweis. Sei also $f = \sum_{m \in M} c_m \mathbf{e}(m)$ ein Laurentpolynom über M. Die Abbildung $\varphi : \widetilde{N} \to N$ induziert einen Isomorphismus $\varphi^* : M \to \widetilde{M}$ der dualen Gitter und einen Isomorphismus $\varphi_*|_{\mathrm{T}_{\widetilde{N}}} : \mathrm{T}_{\widetilde{N}} \to \mathrm{T}_N$. Damit gilt

$$(\varphi_*)^* f = f \circ \varphi_* = \sum_{m \in M} c_m \mathbf{e}(m) \circ \varphi_* = \sum_{m \in M} c_m \mathbf{e}(\varphi^* m) = \sum_{\widetilde{m} \in \widetilde{M}} c_{(\varphi^*)^{-1} \widetilde{m}} \mathbf{e}(\widetilde{m})$$

und $(\varphi_*)^* f$ ist ein Laurentpolynom über \widetilde{M} .

Dieses legt eine Hyperfläche $Z_{(\varphi_*)^*f} \subset P_{\widetilde{\Sigma}}$ als Abschluß der Hyperfläche $Z_{(\varphi_*)^*f}^{\{0\}}$ im Torus $T_{\widetilde{N}}$ fest. Diese ist nach Proposition 3.2.1. in [Ba] $\widetilde{\Sigma}$ -regulär.

Beschränkt man sich auf den Fall, daß P_{Σ} eine projektive torische Gorenstein-Varietät ist, kann man noch folgende weitergehende Aussage treffen.

Lemma 3.11 Sei P_{Σ} eine projektive torische Gorenstein-Varietät, Z_f sei eine Σ -reguläre Hyperfläche und $\varphi_* : P_{\widetilde{\Sigma}} \to P_{\Sigma}$ sei eine MPCP-Desingularisierung von P_{Σ} . Dann ist $Z_{(\varphi_*)^*f}$ eine MPCP-Desingularisierung von Z_f .

Beweis. [Ba, Proposition 3.2.2.]

Sei nun Δ ein reflexives Gitter-Polytop, P_{Δ} die dadurch definierte torische Fano-Varietät und $Z_f \in \mathcal{F}(\Delta)$. Mittels einer maximalen, projektiven Trinagulierung \mathcal{T} des dualen Polytopes Δ^* wird eine MPCP-Desingularisierung id_{*} : $\widetilde{P}_{\Delta} \to P_{\Delta}$ festgelegt. Da $Z_f \Delta$ -regulär ist, ist $\widetilde{Z} = Z_{(\mathrm{id}_*)^*f} \widetilde{\Sigma}(\Delta)$ -regulär und id_{*} : $\widetilde{Z} \to Z_f$ eine MPCP-Desingularisierung von Z_f .

Definition 3.12 Die Abbildung $id_* : \widetilde{Z} \to Z_f$ heißt die von der maximalen, projektiven Triangulierung \mathcal{T} definierte toroidale MPCP-Desingularisierung von Z_f .

Eine solche Desingularisierung existiert stets und die Kodimension des singulären Ortes ist mindestens 4. Dies gilt nach Korollar 3.6, da \tilde{P}_{Δ} höchstens Q-faktorielle

terminale Gorenstein-Singularitäten hat und $\widetilde{Z} \widetilde{\Sigma}(\Delta)$ -regulär ist. Darüberhinaus hat auch \widetilde{Z} höchstens \mathbb{Q} -faktorielle terminale Gorenstein-Singularitäten. Da Z_f zur Familie \mathcal{F} gehört und Δ reflexiv ist, ist Z_f eine Calabi-Yau-Hyperfläche.

Lemma 3.13 Es sei Δ ein reflexives Gitter-Polytop. Die toroidale MPCP-Desingularisierung \widetilde{Z} der Calabi-Yau-Hyperfläche $Z_f \in \mathcal{F}(\Delta)$ ist eine Calabi-Yau-Hyperfläche in \widetilde{P}_{Δ} .

Beweis. [CK, Proposition 4.1.2.]

3.2 Kohomologie torischer Varietäten

In diesem Abschnitt sollen verschiedene Aussagen im Zusammenhang mit der Kohomologie torischer Varietäten zur Verfügung gestellt werden, die im weiteren Verlauf benötigt werden. Für äquivariante Geradenbündel auf kompakten torischen Varietäten lassen sich die Kohomologiegruppen relativ einfach bestimmen. Sei hierzu für eine ganzzahlige Trägerfunktion h zu einem vollständigen Fächer Σ im Gitter N und ein $m \in M$

$$Z(h,m) := \{ n \in N_{\mathbb{R}} : \langle m, n \rangle \ge -h(n) \}.$$

Dies ist eine abgeschlossene Teilmenge von $N_{\mathbb{R}}$. Darüberhinaus sei für $q \ge 0$

 $\mathrm{H}^{q}_{Z(h,m)}(N_{\mathbb{R}},\mathbb{C})$

die Kohomologiegruppe von $N_{\mathbb{R}}$ mit Träger Z(h,m) und Koeffizienten in \mathbb{C} . Mit diesen Bezeichnungen gilt

Satz 3.14 Es sei P_{Σ} eine kompakte torische Varietät und h eine ganzzahlige Trägerfunktion für Σ . Dann operiert für alle $q \geq 0$ der Torus T_N auf der Kohomologiegruppe $H^q(P_{\Sigma}, \mathcal{O}_{P_{\Sigma}}(D_h))$. Für jedes $m \in M$ kann der Eigenraum $H^q(P_{\Sigma}, \mathcal{O}_{P_{\Sigma}}(D_h))_m$ der Torusoperation bezüglich des Charakters $\mathbf{e}(m)$ mit

$$\mathrm{H}^{q}_{Z(h,m)}(N_{\mathbb{R}},\mathbb{C})\mathbf{e}\left(m\right)$$

identifiziert werden und es gilt

$$\mathrm{H}^{q}(P_{\Sigma}, \mathcal{O}_{P_{\Sigma}}(D_{h})) = \bigoplus_{m \in M} \mathrm{H}^{q}_{Z(h,m)}(N_{\mathbb{R}}, \mathbb{C}) \mathbf{e}(m) \,.$$

Beweis. [Oda, Theorem 2.6.]

Es gilt

Lemma 3.15 Es sei h eine konkave ganzzahlige Trägerfunktion auf einem vollständigen Fächer Σ im Gitter N und $m \in M$. Dann ist

$$Z(h,m) = \{n \in N_{\mathbb{R}} : \langle m,n \rangle \ge -h(n)\}$$

ein konvexer Kegel mit Spitze im Ursprung.

Beweis. Sei also h eine konkave ganzzahlige Trägerfunktion auf einem vollständigen Fächer Σ , dann ist -h eine konvexe ganzzahlige Trägerfunktion, d.h. für alle $n, n' \in N_{\mathbb{R}}$ gilt

$$-h(n+n') \le -h(n) - h(n').$$

Ist $n \in Z(h, m)$ und $\lambda \ge 0$, so gilt

$$\langle m, \lambda n \rangle = \lambda \langle m, n \rangle \ge -\lambda h(n) = -h(\lambda n),$$

da -h als Trägerfunktion linear auf dem Strahl $\mathbb{R}_{\geq 0}n$ ist. Sind n und n' zwei Elemente in Z(h, m), so gilt aufgrund der Konvexität von -h

$$\langle m, n+n' \rangle = \langle m, n \rangle + \langle m, n' \rangle \ge -h(n) - h(n') \ge -h(n+n'),$$

und damit ist $n + n' \in Z(h, m)$, d.h. Z(h, m) ist ein konvexer Kegel mit Spitze im Ursprung.

Im nächsten Abschnitt werden Aussagen über die singuläre Kohomologie des Komplementes von Z(h, m) in $N_{\mathbb{R}}$ benötigt. Für den Fall, daß Z(h, m) ein streng konvexer Kegel von positiver Dimension ist, ist diese leicht zu berechnen. Hierbei muß der Kegel nicht rational oder polyhedral sein.

Lemma 3.16 Es sei C ein streng konvexer Kegel in $N_{\mathbb{R}}$ mit dim $C \ge 1$, dann ist

$$\mathrm{H}^{q}(N_{\mathbb{R}} \setminus C, \mathbb{C}) = \begin{cases} \mathbb{C}, & \text{falls } q = 0\\ 0, & \text{falls } q \ge 1. \end{cases}$$

Beweis. Es wird gezeigt werden, daß $N_{\mathbb{R}} \setminus C$ sternförmig ist, d.h. es gibt einen Punkt $n \in N_{\mathbb{R}} \setminus C$, so daß die Verbindungsstrecke mit jedem anderen Punkt in $N_{\mathbb{R}} \setminus C$ ganz in dieser Menge liegt. Für eine solche Menge gilt, daß sie homotopie-äquivalent zu einem Punkt ist, damit sind die Kohomologiegruppen einer sternförmigen Menge isomorph zu denen eines Punktes und diese sind nach [EH]

$$\mathbf{H}^{q}(\{pt\}, \mathbb{C}) = \begin{cases} \mathbb{C}, & \text{falls } q = 0\\ 0, & \text{falls } q \ge 1. \end{cases}$$
Sei also C ein streng konvexer Kegel in $N_{\mathbb{R}}$ mit dim $C \geq 1$ und $N_{\mathbb{R}}(C)$ sei der kleinste \mathbb{R} -Untervektorraum von $N_{\mathbb{R}}$, der C enthält. Dieser hat dann nach Definition positive Dimension. Angenommen, $N_{\mathbb{R}}(C) \setminus C$ ist sternförmig bezüglich eines Punktes $n \in N_{\mathbb{R}}(C) \setminus C$. Dann ist auch $N_{\mathbb{R}} \setminus C$ sternförmig bezüglich dieses Punktes. Ist nämlich $\tilde{n} \in N_{\mathbb{R}}(C) \setminus C$, so liegt die Verbindungsstrecke nach Vorraussetzung in $N_{\mathbb{R}}(C) \setminus C$, also auch in $N_{\mathbb{R}} \setminus C$. Ist andererseits $\tilde{n} \in N_{\mathbb{R}} \setminus N_{\mathbb{R}}(C) \subset N_{\mathbb{R}} \setminus C$, so liegt die Verbindungsstrecke ohne den Punkt n ganz im Komplement von $N_{\mathbb{R}}(C)$ und damit liegt, da $n \notin C$ gilt, die gesamte Strecke im Komplement von C.

Es bleibt also zu zeigen, daß das Komplement eines streng konvexen Kegels C in $N_{\mathbb{R}}$ mit dim $C = \dim N_{\mathbb{R}} \ge 1$ sternförmig ist. Für C gilt also

- (i) $n \in C$ und $\lambda \ge 0 \Rightarrow \lambda n \in C$,
- (ii) $n, \tilde{n} \in C \Rightarrow n + \tilde{n} \in C$,
- (iii) $C \cap (-C) = \{0\}$ und
- (iv) das Innere von C ist nichtleer, da C positive Dimension hat.

Sei also -n ein Punkt im Inneren von C, dann ist $-n \neq 0$, da die 0 im Rand von Cliegt und damit ist $n \notin C$. Es soll gezeigt werden, daß $N_{\mathbb{R}} \setminus C$ sternförmig bezüglich n ist. Sei dazu $\tilde{n} \in N_{\mathbb{R}} \setminus C$. Angenommen, es gibt einen Punkt $(1 - \lambda)n + \lambda \tilde{n}$ auf der Verbindungsstrecke, der in C liegt. Dann wäre $0 < \lambda < 1$ und aufgrund der Konvexität läge $(1 - \lambda) \cdot (-n)$ in C. Damit wäre aber auch

$$((1-\lambda)n + \lambda \widetilde{n}) + (1-\lambda) \cdot (-n) = \lambda \widetilde{n}$$

ein Punkt in dem Kegel C und wegen $\frac{1}{\lambda} > 0$ folgte $\tilde{n} \in C$. Dies ist ein Widerspruch und damit ist $N_{\mathbb{R}} \setminus C$ sternförmig bezüglich n und die Aussage über die Kohomologiegruppen folgt aus obigen Überlegungen. \Box

Für den Fall, daß $Z(h,m) = \{0\}$ ist, d.h. Z(h,m) ist ein streng konvexer Kegel mit Dimension 0, ist die singuläre Kohomologie des Komplementes ebenfalls leicht zu berechnen.

Lemma 3.17 Es sei $r = \dim N_{\mathbb{R}}$, dann gilt

$$\mathbf{H}^{q}(N_{\mathbb{R}} \setminus \{0\}, \mathbb{C}) = \begin{cases} \mathbb{C}, & falls \ q = 0, r - 1\\ 0, & falls \ q \neq 0, r - 1. \end{cases}$$

Beweis. Die Menge $N_{\mathbb{R}} \setminus \{0\}$ ist homotopie-äquivalent zur Sphäre S^{r-1} und damit gilt

$$\mathrm{H}^{q}(N_{\mathbb{R}} \setminus \{0\}, \mathbb{C}) = \mathrm{H}^{q}(S^{r-1}, \mathbb{C}) = \begin{cases} \mathbb{C}, & \text{falls } q = 0, r-1 \\ 0, & \text{falls } q \neq 0, r-1. \end{cases}$$

3.3 Der Hodgediamant einer allgemeinen Calabi-Yau-Hyperfläche in \widetilde{P}_{Δ_r}

In diesem Abschnitt sollen nun, wie bereits erwähnt, Hodgezahlen einer allgemeinen Hyperfläche \tilde{Z} in der MPCP-Desingularisierung \tilde{P}_{Δ_r} der vom Wurzelsystem A_r definierten torischen Varitetät bestimmt werden. Im gesamten Abschnitt sei dafür \tilde{Z} die torische MPCP-Desingularisierung einer Hyperfläche $Z_f \in \mathcal{F}(\Delta_r)$, die durch die in Abschnitt 2.2 gewählte MPCP-Desingularisierung \tilde{P}_{Δ_r} induziert wird. Da Δ_r ein reflexives Polytop ist, sind die Hyperflächen der Familie $\mathcal{F}(\Delta_r)$ nach Satz 3.8 Calabi-Yau-Varietäten und damit ist nach Lemma 3.13 auch \tilde{Z} eine Calabi-Yau-Hyperfläche. Da \tilde{P}_{Δ_r} eine glatte torische Varietät und \tilde{Z} eine $\tilde{\Sigma}(\Delta_r)$ -reguläre Hyperfläche ist, ist \tilde{Z} sogar eine glatte Calabi-Yau-Hyperfläche. Zur Vereinfachung der Notation wird im weiteren $\tilde{P} := \tilde{P}_{\Delta_r}$ verwendet. Außerdem wird noch folgende Definition benötigt.

Definition 3.18 Für einen Kegel $\sigma \in \widetilde{\Sigma}(\Delta_r)$ sei $\delta_{\widetilde{Z},\sigma}$ die Anzahl der Zusammenhangskomponenten von $\widetilde{Z} \cap V(\sigma)$. Für ein $0 \leq \mu \leq r$ sei

$$\delta_{\widetilde{Z}}(\mu) := \sum_{\sigma \in \widetilde{\Sigma}(\Delta_r)(\mu)} \delta_{\widetilde{Z},\sigma}.$$

Nun kann der wesentliche Satz dieses Kapitels formuliert werden; in diesem wird ein Großteil der Hodgezahlen der allgemeinen Calabi-Yau-Hyperfläche \widetilde{Z} in \widetilde{P}_{Δ_r} bestimmt. Der Rest des Abschnittes ist dann dem Beweis dieser Aussage gewidmet.

Satz 3.19 Für die Hodgezahlen $h^{i,j} := \dim \operatorname{H}^{i}(\widetilde{Z}, \Omega^{j}_{\widetilde{z}})$ von \widetilde{Z} gilt

(i)
$$h^{0,0} = h^{0,r-1} = h^{r-1,0} = h^{r-1,r-1} = 1$$

(*ii*)
$$h^{i,j} = h^{r-1-i,r-1-j} = 0$$
, falls $1 \le i+j \le r-2$ und $i \ne j$,

(*iii*)
$$h^{i,i} = h^{r-1-i,r-1-i} = \sum_{\mu=0}^{i} (-1)^{i-\mu} {\binom{r-\mu}{i-\mu}} \delta_{\widetilde{Z}}(\mu)$$
, falls $2 \le 2i \le r-2$.

Ist $r \geq 4$, so gilt darüberhinaus

(*iv*) $h^{r-2,1} = h^{1,r-2} = r^2$.

Bemerkung 3.20 Der Hodgediamant von $\widetilde{Z} \subset \widetilde{P}$ sieht also z.B. für ungerades $r \geq 4$, mit $\widetilde{r} := \frac{r-1}{2}$, wie folgt aus.

Dabei markieren die Fragezeichen diejenigen Hodgezahlen, deren Werte noch offen sind.

Der Rest dieses Abschnittes befaßt sich nun mit dem Beweis des obigen Satzes, wobei die Beweisidee für die zweite und dritte Teilaussage einem Artikel von J. Zintl [Zi] entstammt. Für den Beweis wird zunächst folgende Aussage über das Konormalenbündel einer allgemeinen Calabi-Yau-Hyperfläche benötigt.

Satz 3.21 Es sei $\mathcal{N}^*_{\widetilde{Z}/\widetilde{P}}$ das Konormalenbündel von \widetilde{Z} in \widetilde{P} . Dann gilt für alle $k \geq 1$

$$\mathrm{H}^{q}(\widetilde{Z}, S^{k}\mathcal{N}^{*}_{\widetilde{Z}/\widetilde{P}}) = 0$$

 $f \ddot{u} r \ 0 \le q \le r - 2.$

Beweis. Nach Bemerkung 3.9 ist \widetilde{Z} ein Element im antikanonischen Linearsystem. Weil das Tensorprodukt in der vorliegenden Situtation kommutativ ist, gilt

$$\mathrm{S}^k \mathcal{N}^*_{\widetilde{Z}/\widetilde{P}} = \mathcal{O}_{\widetilde{Z}}(-\widetilde{Z})^{\otimes k} = \mathcal{O}_{\widetilde{Z}}(-k\widetilde{Z}).$$

Um die Berechnung der Kohomologie dieses Geradenbündels auf die einfachere Bestimmung der Kohomologie von Geradenbündeln auf der torischen Varietät zurückzuführen, wird folgende kurze exakte Sequenz betrachtet:

$$0 \to \mathcal{O}_{\widetilde{P}}(-\widetilde{Z}) \to \mathcal{O}_{\widetilde{P}} \to \mathcal{O}_{\widetilde{Z}} \to 0$$

Twisted man diese Sequenz mit $-k\widetilde{Z}$ erhält man

$$0 \to \mathcal{O}_{\widetilde{P}}(-(k+1)\widetilde{Z}) \to \mathcal{O}_{\widetilde{P}}(-k\widetilde{Z}) \to \mathcal{O}_{\widetilde{Z}}(-k\widetilde{Z}) \to 0$$

und damit eine Sequenz von Bündeln über der torischen Varietät \tilde{P} , die die kte symmetrische Potenz des Konormalenbündels enthält. Die zugehörige lange exakte Kohomologiesequenz sieht nun wie folgt aus

$$\begin{split} 0 &\to \mathrm{H}^{0}(\widetilde{P}, \mathcal{O}_{\widetilde{P}}(-(k+1)\widetilde{Z})) \to \mathrm{H}^{0}(\widetilde{P}, \mathcal{O}_{\widetilde{P}}(-k\widetilde{Z})) \\ &\to \mathrm{H}^{0}(\widetilde{P}, \mathcal{O}_{\widetilde{Z}}(-k\widetilde{Z})) \to \mathrm{H}^{1}(\widetilde{P}, \mathcal{O}_{\widetilde{P}}(-(k+1)\widetilde{Z})) \to \cdots \\ \cdots \to \mathrm{H}^{q}(\widetilde{P}, \mathcal{O}_{\widetilde{P}}(-k\widetilde{Z})) \to \mathrm{H}^{q}(\widetilde{P}, \mathcal{O}_{\widetilde{Z}}(-k\widetilde{Z})) \\ &\to \mathrm{H}^{q+1}(\widetilde{P}, \mathcal{O}_{\widetilde{P}}(-(k+1)\widetilde{Z})) \to \cdots \end{split}$$

Also genügt es zu zeigen, daß

$$\mathrm{H}^{q}(\widetilde{P},\mathcal{O}_{\widetilde{P}}(-k\widetilde{Z}))=0$$

für $q = 0, ..., r - 2, k \ge 1$ und $q = r - 1, k \ge 2$ gilt.

Nun ist \widetilde{Z} linear äquivalent zu dem durch die ganzzahlige antikanonische Trägerfunktion ak definierten Divisor D_{ak} , also ergibt sich

$$\mathrm{H}^{q}(\widetilde{P}, \mathcal{O}_{\widetilde{P}}(-k\widetilde{Z})) = \mathrm{H}^{q}(\widetilde{P}, \mathcal{O}_{\widetilde{P}}(-k \cdot D_{\mathrm{ak}})) = \mathrm{H}^{q}(\widetilde{P}, \mathcal{O}_{\widetilde{P}}(D_{-k \cdot \mathrm{ak}})).$$

Nach Satz 3.14 gilt

$$\mathrm{H}^{q}(\widetilde{P}, \mathcal{O}_{\widetilde{P}}(D_{-k \cdot \mathrm{ak}})) = \bigoplus_{m \in M} \mathrm{H}^{q}_{Z(-k \cdot \mathrm{ak}, m)}(N_{\mathbb{R}}, \mathbb{C}) \cdot \mathbf{e}(m)$$

und dementsprechend genügt es zu zeigen, daß für jedes $m \in M$

$$\mathrm{H}^{q}_{Z(-k\cdot\mathrm{ak},m)}(N_{\mathbb{R}},\mathbb{C})=0$$

für $0 \le q \le r - 1$ und $k \ge 1$ gilt.

Die Trägerfunktion $-k \cdot ak$ ist konkav, da nach Bemerkung 2.27 ak konvex ist, und damit ist $Z(-k \cdot ak, m)$ nach Lemma 3.15 für ein beliebiges $m \in M$ ein konvexer Kegel. Darüberhinaus ist dieser Kegel sogar streng konvex. Angenommen es gibt ein $n = (n_1, \ldots, n_{r+1}) \in N_{\mathbb{R}}$ mit $\pm n \in Z(-k \cdot ak, m)$, dann gibt es einen Kegel $\sigma_p \in \widetilde{\Sigma}(\Delta_r)$ mit $n \in \sigma_p$, d.h.

$$n_{p(1)} \le n_{p(2)} \le \dots \le n_{p(r)} \le n_{p(r+1)}$$

Für diesen gilt $ak_{\sigma_p} = e_{p(r+1),p(1)}$ und damit ist

$$\langle m, n \rangle \ge k \cdot \operatorname{ak}(n) = k \langle e_{p(r+1), p(1)}, n \rangle = k(n_{p(r+1)} - n_{p(1)}) \ge 0.$$

Andererseits ist aber $-n \in \sigma_{p'}$ mit p'(i) := p(r+2-i), da

$$-n_{p(r+1)} \le -n_{p(r)} \le \dots \le -n_{p(2)} \le -n_{p(1)}$$

gilt. Hier ist $ak_{\sigma_{p'}} = e_{p'(r+1),p'(1)} = e_{p(1),p(r+1)} = -ak_{\sigma_p}$ und damit

$$\langle m, -n \rangle \ge k \cdot \operatorname{ak}(-n) = k \langle e_{p(1), p(r+1)}, -n \rangle = k(n_{p(r+1)} - n_{p(1)}) \ge 0.$$

3.3. DER HODGEDIAMANT

Beide Ungleichungen zusammen können nur gelten, wenn der Term $k(n_{p(r+1)} - n_{p(1)})$ gleich 0 ist, dann müssen aber alle Koordinaten von n gleich sein und wegen $\sum n_i = 0$ folgt n = 0. Also gibt es kein $n \in N_{\mathbb{R}} \setminus \{0\}$, für das sowohl n als auch -n in $Z(-k \cdot \operatorname{ak}, m)$ liegen. Dementsprechend enthält $Z(-k \cdot \operatorname{ak}, m)$ keine Geraden und ist streng konvex.

Für die singulären Kohomologie
gruppen mit Träger $Z(-k\cdot \mathrm{ak},m)$ gilt nach [Oda, Seite 74]

$$\mathrm{H}^{0}_{Z(-k\cdot\mathrm{ak},m)}(N_{\mathbb{R}},\mathbb{C}) = \begin{cases} \mathbb{C}, & \text{falls } Z(-k\cdot\mathrm{ak},m) = N_{\mathbb{R}} \\ 0, & \text{sonst.} \end{cases}$$

Da $Z(-k \cdot ak, m)$ ein streng konvexer Kegel ist, gilt $Z(-k \cdot ak, m) \neq N_{\mathbb{R}}$ und damit

$$\mathrm{H}^{0}_{Z(-k\cdot\mathrm{ak},m)}(N_{\mathbb{R}},\mathbb{C})=0$$

Für die erste Kohomologiegruppe ist die Sequenz

$$0 \to \mathbb{C} \to \mathrm{H}^{0}(N_{\mathbb{R}} \setminus Z(-k \cdot \mathrm{ak}, m), \mathbb{C}) \to \mathrm{H}^{1}_{Z(-k \cdot \mathrm{ak}, m)}(N_{\mathbb{R}}, \mathbb{C}) \to 0$$

exakt und für $q \ge 2$ gilt (ebenfalls nach [Oda, Seite 74])

$$\mathrm{H}^{q}_{Z(-k\cdot\mathrm{ak},m)}(N_{\mathbb{R}},\mathbb{C})=\mathrm{H}^{q-1}(N_{\mathbb{R}}\setminus Z(-k\cdot\mathrm{ak},m),\mathbb{C}).$$

Da Z(h,m) ein streng konvexer Kegel ist, läßt sich die singuläre Kohomologie entweder nach Lemma 3.16 oder nach Lemma 3.17 bestimmen, in beiden Fällen gilt

$$\mathrm{H}^{q}(N_{\mathbb{R}} \setminus Z(-k \cdot \mathrm{ak}, m), \mathbb{C}) = \begin{cases} \mathbb{C}, & \text{falls } q = 0\\ 0, & \text{falls } 1 \le q \le r-2 \end{cases}$$

für alle $k \geq 1$ und alle $m \in M$ und damit ist die Behauptung bewiesen. Denn dann ist

$$\mathrm{H}^{q}_{Z(-k\cdot\mathrm{ak},m)}(N_{\mathbb{R}},\mathbb{C})=\mathrm{H}^{q-1}(N_{\mathbb{R}}\setminus Z(-k\cdot\mathrm{ak},m),\mathbb{C})=0$$

für $2 \le q \le r - 1$, und in der oben genannten exakten Sequenz ist die zweite Abbildung surjektiv, es gilt also auch

$$\mathrm{H}^{1}_{Z(-k\cdot\mathrm{ak},m)}(N_{\mathbb{R}},\mathbb{C})=0.$$

Insgesamt gilt dann für alle $k \ge 1$, alle $0 \le q \le r - 1$ und jedes $m \in M$

$$\mathrm{H}^{q}_{Z(-k\cdot\mathrm{ak},m)}(N_{\mathbb{R}},\mathbb{C})=0$$

und damit ist

$$\mathrm{H}^{q}(\tilde{P}, \mathcal{O}_{\tilde{P}}(D_{-k \cdot \mathrm{ak}})) = 0$$

für die benötigten Werte von k und q.

Außer der Kohomologie des Konormalenbündels muß noch die Kohomologie eines weiteren Bündels auf der Hyperfläche \widetilde{Z} in einem bestimmten Bereich verschwinden. Dazu muß zunächst Ishida's Komplex eingeführt werden, siehe dazu auch [Zi] und [Oda, Kapitel 3.2.].

Für eine r-dimensionale torische Varietä
t $P_{\Sigma},$ ein $0\leq p\leq r$ und ein $0\leq j\leq p$ sei

$$\mathcal{K}^{j}(P_{\Sigma};p) := \bigoplus_{\sigma \in \Sigma(j)} \mathcal{O}_{V(\sigma)} \otimes_{\mathbb{Z}} \bigwedge^{p-j} M \cap \sigma^{\perp},$$

dabei ist $M \cap \sigma^{\perp}$ ein freier Z-Modul der Dimension codim $\sigma = r - j$ und damit dim $\bigwedge^{p-j} M \cap \sigma^{\perp} = \binom{r-j}{p-j}$. Für eine glatte torische Varietät ist die Sequenz, *Ishida's Komplex vom Grad p* genannt,

$$0 \to \Omega^p_{P_{\Sigma}} \to \mathcal{K}^0(P_{\Sigma}; p) \to \mathcal{K}^1(P_{\Sigma}; p) \to \cdots \to \mathcal{K}^p(P_{\Sigma}; p) \to 0$$

für jedes $0 \le p \le r$ exakt ([Oda, Theorem 3.6.]).

Eine wichtige Frage hierbei ist, wie sich diese exakte Sequenz für die Varietät \tilde{P} beim Einschränken auf die Hyperfläche \tilde{Z} verhält.

Lemma 3.22 Die Sequenz

$$0 \to \Omega^p_{\widetilde{P}}|_{\widetilde{Z}} \to \mathcal{K}^0(\widetilde{P};p)|_{\widetilde{Z}} \to \mathcal{K}^1(\widetilde{P};p)|_{\widetilde{Z}} \to \dots \to \mathcal{K}^p(\widetilde{P};p)|_{\widetilde{Z}} \to 0$$

ist für $0 \le p \le r$ exakt.

Beweis. Da aufgrund der Δ_r -Regularität von \widetilde{Z} für jeden Kegel $\sigma \in \widetilde{\Sigma}(\Delta_r)$ der Durchschnitt $V(\sigma) \cap \widetilde{Z}$ eine glatte Hyperfläche oder leer ist, ist die kurze Sequenz

$$0 \to \mathcal{O}_{V(\sigma)}(-V(\sigma) \cap \widetilde{Z}) \to \mathcal{O}_{V(\sigma)} \to \mathcal{O}_{V(\sigma)}|_{V(\sigma) \cap \widetilde{Z}} \to 0$$

als Idealgarbensequenz von $V(\sigma) \cap \widetilde{Z}$ in der Varietät $V(\sigma)$ exakt. Dabei gilt für den ersten Term $\mathcal{O}_{V(\sigma)}(-V(\sigma) \cap \widetilde{Z}) = \mathcal{O}_{V(\sigma)} \otimes \mathcal{O}_{\widetilde{P}}(-\widetilde{Z})$ und für den dritten $\mathcal{O}_{V(\sigma)}|_{V(\sigma)\cap\widetilde{Z}} = \mathcal{O}_{V(\sigma)}|_{\widetilde{Z}}$. Da sich ein $\mathcal{K}^{j}(\widetilde{P}; p)$ als

$$\bigoplus_{\sigma \in \widetilde{\Sigma}(\Delta_r)(j)} \mathcal{O}_{V(\sigma)} \otimes_{\mathbb{Z}} \bigwedge^{p-j} M \cap \sigma^{\perp} = \bigoplus_{\sigma \in \widetilde{\Sigma}(\Delta_r)(j)} \bigoplus_{i=1}^{\binom{r-j}{p-j}} \mathcal{O}_{V(\sigma)}$$

schreiben läßt und die direkte Summe exakter Sequenzen wieder exakt ist, ist

$$0 \to \mathcal{K}^{j}(\widetilde{P};p) \otimes \mathcal{O}_{\widetilde{P}}(-\widetilde{Z}) \to \mathcal{K}^{j}(\widetilde{P};p) \to \mathcal{K}^{j}(\widetilde{P};p)|_{\widetilde{Z}} \to 0$$

für jedes $0 \leq p \leq r$ und $0 \leq j \leq p$ e
ine kurze exakte Sequenz.

Da $\Omega^p_{\widetilde{P}}$ eine freie Garbe auf \widetilde{P} ist, bleibt die kurze exakte Sequenz

$$0 \to \mathcal{O}_{\widetilde{P}}(-\widetilde{Z}) \to \mathcal{O}_{\widetilde{P}} \to \mathcal{O}_{\widetilde{P}}|_{\widetilde{Z}} \to 0$$

beim Tensorieren mit dieser Garbe exakt:

$$0 \to \Omega^p_{\widetilde{P}} \otimes \mathcal{O}_{\widetilde{P}}(-\widetilde{Z}) \to \Omega^p_{\widetilde{P}} \to \Omega^p_{\widetilde{P}}|_{\widetilde{Z}} \to 0$$

Damit erhält man nun durch Tensorieren von Ishida's Komplex vom Grad p mit der Idealgarbensequenz von \widetilde{Z} in \widetilde{P} das folgende kommutative Diagramm mit exakten Zeilen:

Da \tilde{P} eine glatte torische Varietät ist, ist Ishida's Komplex und damit also die zweite Spalte exakt. Da $\mathcal{O}_{\tilde{P}}(-\tilde{Z})$ ein Geradenbündel über \tilde{P} ist, bleibt Ishida's Komplex beim Tensorieren mit diesem Bündel exakt, so daß auch die erste Spalte des Diagramms exakt ist. Da in einem kommutativen Diagramm aus exakten kurzen Sequenzen als Zeilen mit zwei Spalten auch die dritte Spalte exakt ist, ist Ishida's Komplex eingeschränkt auf die Hyperfläche \tilde{Z} exakt. \Box Als nächstes wird folgendes Lemma benötigt.

Lemma 3.23 Es sei \widetilde{Z} eine allgemeine Calabi-Yau-Hyperfläche in \widetilde{P} . Dann gilt

$$\mathrm{H}^{q}(Z, \mathcal{K}^{\mu}(P; \nu) \otimes S^{j-\nu} \mathcal{N}^{*}_{\widetilde{Z}/\widetilde{P}}) = 0$$

für alle $2 \le j \le r - 1$, $1 \le \nu \le j - 1$, $0 \le \mu \le \nu$ und $0 \le q \le r - 2 - \mu$.

Beweis. Die Beweisidee ist dieselbe wie bei Satz 3.21, wobei noch verwendet wird, daß sich die Kohomologie einer direkten Summe von Garben als direkte Summe der Kohomologie der einzelnen Garben ergibt ([Ha, Kapitel III, Bemerkung 2.9.1.]).

Wie im Beweis zu Satz 3.21 wird die exakte Sequenz

$$0 \to \mathcal{O}_{\widetilde{P}}(-(k+1)\widetilde{Z}) \to \mathcal{O}_{\widetilde{P}}(-k\widetilde{Z}) \to \mathcal{O}_{\widetilde{Z}}(-k\widetilde{Z}) \to 0$$

betrachtet und für $2 \leq j \leq r-1$ mit $\mathcal{K}^{\mu}(\widetilde{P};\nu), 1 \leq \nu \leq j-1, 0 \leq \mu \leq \nu$, tensoriert, man erhält

$$0 \to \mathcal{K}^{\mu}(\widetilde{P};\nu) \otimes \mathcal{O}_{\widetilde{P}}(-(k+1)\widetilde{Z}) \to \mathcal{K}^{\mu}(\widetilde{P};\nu) \otimes \mathcal{O}_{\widetilde{P}}(-k\widetilde{Z}) \to \mathcal{K}^{\mu}(\widetilde{P};\nu) \otimes \mathcal{O}_{\widetilde{Z}}(-k\widetilde{Z}) \to 0$$
(*)

und für $k = j - \nu$ ist der dritte Term das zu betrachtende Bündel

$$\mathcal{K}^{\mu}(\widetilde{P};\nu)\otimes\mathcal{O}_{\widetilde{Z}}(-(j-\nu)\widetilde{Z})=\mathcal{K}^{\mu}(\widetilde{P};\nu)\otimes\mathrm{S}^{j-\nu}\mathcal{N}^{*}_{\widetilde{Z}/\widetilde{P}}$$

Diese Sequenz ist als direkte Summe von exakten Sequenzen der Form

$$0 \to \mathcal{O}_{V(\sigma)}(-(k+1)(V(\sigma) \cap \widetilde{Z})) \\\to \mathcal{O}_{V(\sigma)}(-k(V(\sigma) \cap \widetilde{Z})) \to \mathcal{O}_{V(\sigma) \cap \widetilde{Z}}(-k(V(\sigma) \cap \widetilde{Z})) \to 0$$

wieder exakt.

Betrachtet man die zu (*) gehörige lange exakte Kohomologiesequenz, so genügt es zu zeigen, daß die Kohomologiegruppen von

$$\mathcal{K}^{\mu}(\widetilde{P};\nu)\otimes\mathcal{O}_{\widetilde{P}}(-k\widetilde{Z})=\mathcal{K}^{\mu}(\widetilde{P};\nu)\otimes\mathcal{O}_{\widetilde{P}}(D_{-k\cdot\mathrm{ak}})$$

für $0 \le q \le r - 1 - \mu$ und $1 \le k \le j$ verschwinden.

Nun gilt für einen der direkten Summanden von $\mathcal{K}^{\mu}(\widetilde{P};\nu)$, also für ein $\sigma \in \widetilde{\Sigma}(\Delta_r)(\mu)$,

$$\mathcal{O}_{V(\sigma)} \otimes_{\mathbb{Z}} \bigwedge^{\nu-\mu} M \cap \sigma^{\perp} = \bigoplus_{i=1}^{\binom{r-\mu}{\nu-\mu}} \mathcal{O}_{V(\sigma)},$$

da $\bigwedge^{\nu-\mu} M \cap \sigma^{\perp}$ ein freier Z-Modul der Dimension $\binom{r-\mu}{\nu-\mu}$ ist. Dies ist ein Bündel auf der torischen Varietät $V(\sigma)$. Wenn man nun zeigen kann, daß

$$\mathrm{H}^{q}(V(\sigma), \mathcal{O}_{V(\sigma)} \otimes \mathcal{O}_{\widetilde{P}}(D_{-k \cdot \mathrm{ak}})) = 0$$

ist für $2 \leq j \leq r-1$, $1 \leq \nu \leq j-1$, $0 \leq \mu \leq \nu$, $1 \leq k \leq j$, $0 \leq q \leq r-1-\mu$ und $\sigma \in \widetilde{\Sigma}(\Delta_r)(\mu)$, so ist die Behauptung bewiesen.

Nach [Oda, Lemma 2.11.] ist für eine ganzzahlige Trägerfunktion h die Garbe $\mathcal{O}_{V(\sigma)} \otimes \mathcal{O}_{\tilde{P}}(D_h)$ isomorph zu $\mathcal{O}_{V(\sigma)}(D_{\bar{h}})$, für $\bar{h} = h - h_{\sigma}$ aufgefaßt als ganzzahlige Trägerfunktion auf dem Fächer der torischen Varietät $V(\sigma)$. Dabei ist \bar{h} unabhängig von der speziellen Wahl des darstellenden Elementes h_{σ} . Also ist zu zeigen, daß für das Bündel $\mathcal{O}_{V(\sigma)}(D_{\bar{h}})$ auf $V(\sigma)$ mit $h = -k \cdot \text{ak}$ die Kohomologie für $0 \leq q \leq r - 1 - \mu = \dim V(\sigma) - 1$ verschwindet.

Sei dazu $\sigma_{\mathcal{J}}$ ein μ -dimensionaler Kegel, d.h.

$$\sigma_{\mathcal{J}} = \sum_{i=1}^{\mu} \mathbb{R}_{\geq 0} e_{J^{(i)}}$$

für eine echt aufsteigende Kette $\mathcal{J} = (J^{(1)}, \ldots, J^{(\mu)})$ echter, nichtleerer Teilmengen von $\{1, \ldots, r+1\}$ der Länge μ . Es sei o.B.d.A. $J^{(i)} = \{1, \ldots, \#J^{(i)}\}$. Dann gilt $\sigma_{\mathcal{J}} < \sigma_{id}$ und es gilt $ak_{\sigma_{\mathcal{J}}} = e_{r+1,1}$. Damit ist

$$\bar{h} = h - h_{\sigma_{\mathcal{J}}} = -k \cdot \mathrm{ak} - (-k \cdot e_{r+1,1}) = -k(\mathrm{ak} - e_{r+1,1}).$$

Analog zu dem Beweis des Satzes 3.21 soll nun gezeigt werden, daß

$$Z(\bar{h},\bar{m}) = \{\bar{n} \in \bar{N}(\sigma_{\mathcal{J}})_{\mathbb{R}} : \langle \bar{m},\bar{n} \rangle \ge k(\mathrm{ak} - e_{r+1,1})(\bar{n})\}$$

für alle $\bar{m} \in M(\sigma_{\mathcal{J}})$ ein streng konvexer Kegel ist. Es ist ein konvexer Kegel, da mit –ak auch – $(ak - e_{r+1,1})$ eine konkave Funktion ist und damit \bar{h} als positives Vielfaches hiervon konkav ist. Sei nun also $\bar{n} = (n_1, \ldots, n_{r+1}) \in \bar{N}(\sigma_{\mathcal{J}})$ ein Element mit $\pm \bar{n} \in Z(\bar{h}, \bar{m})$ und $\bar{n} \in \sigma_p$. Dann gilt $\sigma_{\mathcal{J}} < \sigma_p$, $ak_{\sigma_p} = e_{p(r+1),p(1)}$ und $\bar{h}_{\bar{\sigma}_p} = -k(e_{p(r+1),p(1)} - e_{r+1,1})$. Wegen $\bar{n} \in Z(\bar{h}, \bar{m})$ ist

$$\langle \bar{m}, \bar{n} \rangle \ge k(ak - e_{r+1,1})(\bar{n}) = k(n_{p(r+1)} - n_{p(1)} - n_{r+1} + n_1) \ge 0.$$

Letzteres gilt, da wegen $\bar{n} \in \sigma_p$ die Ungleichungen $n_{p(1)} \leq n_1$ und $n_{r+1} \leq n_{p(r+1)}$ gelten. Da auch $-\bar{n} \in Z(\bar{h}, \bar{m})$ gilt und aus dem Beweis zu Satz 3.21 bekannt ist, daß das darstellende Element von ak für $-\bar{n}$ sich zu $-ak_{\sigma_p} = -e_{p(r+1),p(1)}$ ergibt, ist

$$\begin{aligned} \langle \bar{m}, -\bar{n} \rangle &\geq k(ak - e_{r+1,1})(-\bar{n}) \\ &= k(\langle -e_{p(r+1),p(1)}, -\bar{n} \rangle + \langle -e_{r+1,1}, -\bar{n} \rangle) \\ &= k(n_{p(r+1)} - n_{p(1)} + n_{r+1} - n_1) \\ &\geq 0. \end{aligned}$$

Letzteres gilt, da wegen $\bar{n} \in \sigma_p > \sigma_{\mathcal{J}}$ sowohl $n_{r+1} \ge n_1$ als auch $n_{p(r+1)} \ge n_{p(1)}$ gilt. Nun folgt $\langle \bar{m}, \bar{n} \rangle = 0$ und damit $n_{p(r+1)} = n_{p(1)}$. Also sind alle Komponenten von n gleich und wegen $\sum n_t = 0$ ist n = 0. Damit enthält $Z(\bar{h}, \bar{m})$ keine Geraden und ist ein streng konvexer Kegel in $\bar{N}(\sigma_{\mathcal{J}})_{\mathbb{R}}$. Dieser Raum hat Dimension $r - \mu$, da dim $\sigma_{\mathcal{J}} = \mu$ ist. Also gilt

$$\mathrm{H}^{q}(\bar{N}(\sigma_{\mathcal{J}})_{\mathbb{R}} \setminus Z(\bar{h}, \bar{m}), \mathbb{C}) = \begin{cases} \mathbb{C}, & \text{falls } q = 0\\ 0, & \text{falls } 1 \leq q \leq r - 2 - \mu \end{cases}$$

Analog zu dem Beweis des Satzes 3.21 folgt dann

$$\mathrm{H}^{q}(V(\sigma), \mathcal{O}_{V(\sigma)} \otimes \mathcal{O}_{\widetilde{P}}(D_{-k \cdot \mathrm{ak}})) = 0$$

für $2 \leq j \leq r-1, 1 \leq \nu \leq j-1, 0 \leq \mu \leq \nu, 1 \leq k \leq j, 0 \leq q \leq r-1-\mu$ und $\sigma \in \widetilde{\Sigma}(\Delta_r)(\mu)$. Nach obigen Überlegungen genügt dies, um das Lemma zu beweisen.

Nun sind alle Vorraussetzungen gegeben, um den Beweis von [Zi, Proposition 5] auf den hier vorliegenden Fall zu übertragen und damit zu zeigen, daß folgendes gilt.

Satz 3.24 Für die allgemeine Calabi-Yau-Hyperfläche \widetilde{Z} in \widetilde{P} ist die Abbildung

$$\mathrm{H}^{i}(\widetilde{Z}, \Omega^{j}_{\widetilde{P}}|_{\widetilde{Z}}) \longrightarrow \mathrm{H}^{i}(\widetilde{Z}, \Omega^{j}_{\widetilde{Z}})$$

ein Isomorphismus, falls $i + j \le r - 2$ ist, und sie ist injektiv, falls i + j = r - 1 ist.

Für den Beweis wird noch folgende Aussage benötigt.

Lemma 3.25 Es sei

$$0 \to \mathcal{F} \to \mathcal{E}_0 \to \cdots \to \mathcal{E}_k \to 0$$

eine exakte Sequenz von Garben auf einem Schema X. Es gebe ein $q \ge 0$ mit

$$\mathrm{H}^{q-i}(X,\mathcal{E}_i) = \mathrm{H}^{q-i-1}(X,\mathcal{E}_i) = 0$$

für alle $0 \le i \le k - 1$. Dann gilt

$$\mathrm{H}^{q}(X,\mathcal{F}) = \mathrm{H}^{q-k}(X,\mathcal{E}_{k}).$$

Beweis. [Zi, Lemma 1]

Beweis zu Satz 3.24. Für j = 0 besagt dies nichts anderes als

$$\mathrm{H}^{i}(Z, \mathcal{O}_{\widetilde{P}}|_{\widetilde{Z}}) \cong \mathrm{H}^{i}(Z, \mathcal{O}_{\widetilde{Z}})$$

für $0 \leq i \leq r-1$, wegen $\mathcal{O}_{\widetilde{P}}|_{\widetilde{Z}} = \mathcal{O}_{\widetilde{Z}}$ ist das richtig.

Für $j \ge 1$ wird die Konormalensequenz von \widetilde{Z} betrachtet

$$0 \to \mathcal{N}^*_{\widetilde{Z}/\widetilde{P}} \to \Omega^1_{\widetilde{P}} | \widetilde{Z} \to \Omega^1_{\widetilde{Z}} \to 0.$$

Für den Fall, daß j = 1 ist, ergibt sich die lange exakte Kohomologiesequenz zu

$$\mathrm{H}^{i}(\widetilde{Z}, \mathcal{N}^{*}_{\widetilde{Z}/\widetilde{P}}) \to \mathrm{H}^{i}(\widetilde{Z}, \Omega^{1}_{\widetilde{P}}|_{\widetilde{Z}}) \to \mathrm{H}^{i}(\widetilde{Z}, \Omega^{1}_{\widetilde{Z}}) \to \mathrm{H}^{i+1}(\widetilde{Z}, \mathcal{N}^{*}_{\widetilde{Z}/\widetilde{P}}).$$

Für $i + j \leq r - 2$ verschwinden nach Satz 3.21 sowohl der erste als auch der letzte Term, also ist die mittlere Abbildung ein Isomorphismus. Für i + j = r - 1 verschwindet nur der erste Term und die mittlere Abbildung ist injektiv.

Für $j \ge 2$ wird die *j*-te symmetrische Potenz der Konormalensequenz betrachtet

$$0 \to \mathcal{S}^{j} \mathcal{N}^{*}_{\widetilde{Z}/\widetilde{P}} \to \mathcal{S}^{j-1} \mathcal{N}^{*}_{\widetilde{Z}/\widetilde{P}} \otimes \Omega^{1}_{\widetilde{P}}|_{\widetilde{Z}} \to \cdots \to \mathcal{N}^{*}_{\widetilde{Z}/\widetilde{P}} \otimes \Omega^{j-1}_{\widetilde{P}}|_{\widetilde{Z}} \xrightarrow{*} \Omega^{j}_{\widetilde{P}}|_{\widetilde{Z}} \to \Omega^{j}_{\widetilde{Z}} \to 0$$

Teilt man nun diese Sequenz an der mit * markierten Abbildung in zwei exakte Sequenzen, werden dadurch Garben M_i^* definiert und man erhält

$$0 \to \mathcal{S}^{j} \mathcal{N}^{*}_{\widetilde{Z}/\widetilde{P}} \to \mathcal{S}^{j-1} \mathcal{N}^{*}_{\widetilde{Z}/\widetilde{P}} \otimes \Omega^{1}_{\widetilde{P}}|_{\widetilde{Z}} \to \dots \to \mathcal{N}^{*}_{\widetilde{Z}/\widetilde{P}} \otimes \Omega^{j-1}_{\widetilde{P}}|_{\widetilde{Z}} \to M^{*}_{j} \to 0 \qquad (*)$$

und

$$0 \to M_j^* \to \Omega_{\widetilde{P}}^j |_{\widetilde{Z}} \to \Omega_{\widetilde{Z}}^j \to 0.$$

Es genügt nun zu zeigen, daß die Kohomologiegruppen $\mathrm{H}^{i}(\widetilde{Z}, M_{j}^{*})$ für $i+j \leq r-1$ verschwinden, denn dann ergibt sich die lange exakte Kohomologiesequenz der zweiten Sequenz für alle $i+j \leq r-1$ zu

$$\mathrm{H}^{i}(\widetilde{Z}, M_{j}^{*}) = 0 \to \mathrm{H}^{i}(\widetilde{Z}, \Omega_{\widetilde{P}}^{j}|_{\widetilde{Z}}) \to \mathrm{H}^{i}(\widetilde{Z}, \Omega_{\widetilde{Z}}^{j}) \to \mathrm{H}^{i+1}(\widetilde{Z}, M_{j}^{*}).$$

Damit ist also die betrachtete Abbildung für alle $i+j \leq r-1$ injektiv und da für $i+j \leq r-2$ auch der letzte Term dieser Sequenz verschwindet, ist die Abbildung in diesen Fällen sogar ein Isomorphismus und das Lemma ist bewiesen.

Um nun zu zeigen, daß H^{*i*}(\widetilde{Z}, M_j^*) für $i + j \leq r - 1$ verschwindet, wird für $1 \leq \nu + 1 \leq j - 1$ Ishida's Komplex vom Grad $\nu + 1$ tensoriert mit S^{*j*-(ν +1)} $\mathcal{N}^*_{\widetilde{Z}/\widetilde{P}}$ betrachtet:

$$0 \to \Omega_{\widetilde{P}}^{\nu+1}|_{\widetilde{Z}} \otimes \mathrm{S}^{j-(\nu+1)}\mathcal{N}_{\widetilde{Z}/\widetilde{P}}^* \to \mathcal{K}^0(\widetilde{P};\nu+1) \otimes \mathrm{S}^{j-(\nu+1)}\mathcal{N}_{\widetilde{Z}/\widetilde{P}}^* \\ \to \mathcal{K}^1(\widetilde{P};\nu+1) \otimes \mathrm{S}^{j-(\nu+1)}\mathcal{N}_{\widetilde{Z}/\widetilde{P}}^* \to \cdots \to \mathcal{K}^{\nu+1}(\widetilde{P};\nu+1) \otimes \mathrm{S}^{j-(\nu+1)}\mathcal{N}_{\widetilde{Z}/\widetilde{P}}^* \to 0$$

Damit erhält man eine Sequenz, die als ersten Term einen der in der Sequenz (*) auftretenden Terme enthält.

Nun soll Lemma 3.25 angewandt werden, dabei sei mit den dortigen Bezeichnungen

$$\mathcal{F} = \Omega_{\widetilde{P}}^{\nu+1}|_{\widetilde{Z}} \otimes \mathrm{S}^{j-(\nu+1)} \mathcal{N}_{\widetilde{Z}/\widetilde{P}}^*$$

und

$$\mathcal{E}_{\mu} = \mathcal{K}^{\mu}(\widetilde{P}; \nu+1) \otimes \mathrm{S}^{j-(\nu+1)} \mathcal{N}^{*}_{\widetilde{Z}/\widetilde{P}}$$

für $0 \le \mu \le \nu + 1 =: k$. Für \mathcal{E}_{μ} gilt nach Lemma 3.23

$$\mathrm{H}^{q}(\widetilde{Z},\mathcal{K}^{\mu}(\widetilde{P};\nu+1)\otimes\mathrm{S}^{j-(\nu+1)}\mathcal{N}^{*}_{\widetilde{Z}/\widetilde{P}})=0$$

für alle $2 \le j \le r-1$, $1 \le \nu + 1 \le j-1$, $0 \le \mu \le \nu + 1$ und $0 \le q \le r-2-\mu$. Also gilt insbesondere für alle $q \le r-2$

$$\mathrm{H}^{q-\mu}(\widetilde{Z},\mathcal{E}_{\mu}) = \mathrm{H}^{q-\mu-1}(\widetilde{Z},\mathcal{E}_{\mu}) = 0$$

und damit nach Lemma 3.25 und Lemma 3.23

$$\begin{aligned} \mathrm{H}^{q}(\widetilde{Z},\Omega_{\widetilde{P}}^{\nu+1}|_{\widetilde{Z}}\otimes\mathrm{S}^{j-(\nu+1)}\mathcal{N}^{*}_{\widetilde{Z}/\widetilde{P}}) &= \mathrm{H}^{q}(\widetilde{Z},\mathcal{F}) \\ &= \mathrm{H}^{q-(\nu+1)}(\widetilde{Z},\mathcal{E}_{\nu+1}) \\ &= \mathrm{H}^{q-(\nu+1)}(\widetilde{Z},\mathcal{K}^{\nu+1}(\widetilde{P};\nu+1)\otimes\mathrm{S}^{j-(\nu+1)}\mathcal{N}^{*}_{\widetilde{Z}/\widetilde{P}}) \\ &= 0. \end{aligned}$$

Als nächstes soll das Lemma 3.25 auf die Sequenz

$$0 \to \mathcal{S}^{j} \mathcal{N}^{*}_{\widetilde{Z}/\widetilde{P}} \to \mathcal{S}^{j-1} \mathcal{N}^{*}_{\widetilde{Z}/\widetilde{P}} \otimes \Omega^{1}_{\widetilde{P}}|_{\widetilde{Z}} \to \dots \to \mathcal{N}^{*}_{\widetilde{Z}/\widetilde{P}} \otimes \Omega^{j-1}_{\widetilde{P}}|_{\widetilde{Z}} \to M^{*}_{j} \to 0$$

angewandt werden. Hier sei

$$\mathcal{F} = \mathrm{S}^{j} \mathcal{N}_{\widetilde{Z}/\widetilde{P}}^{*},$$
$$\widetilde{\mathcal{E}}_{\nu} = \mathrm{S}^{j-(\nu+1)} \mathcal{N}_{\widetilde{Z}/\widetilde{P}}^{*} \otimes \Omega_{\widetilde{P}}^{\nu+1}|_{\widetilde{Z}}$$

für $0 \leq \nu \leq j-2$ und

$$\widetilde{\mathcal{E}}_{j-1} = M_j^*.$$

Also ist hier k = j - 1. Nach obigen Überlegung gilt insbesondere

$$\mathrm{H}^{q-\nu}(\widetilde{Z},\widetilde{\mathcal{E}}_{\nu}) = \mathrm{H}^{q-\nu-1}(\widetilde{Z},\widetilde{\mathcal{E}}_{\nu})$$

für $q \leq r-2$ und $0 \leq \nu \leq j-2$ und damit nach Lemma 3.25

$$\mathrm{H}^{q}(\widetilde{Z}, \mathrm{S}^{j}\mathcal{N}^{*}_{\widetilde{Z}/\widetilde{P}}) = \mathrm{H}^{q}(\widetilde{Z}, \widetilde{\mathcal{F}}) = \mathrm{H}^{q-(j-1)}(\widetilde{Z}, \widetilde{\mathcal{E}}_{j-1}) = \mathrm{H}^{q-(j-1)}(\widetilde{Z}, M^{*}_{j}).$$

Da nach Satz 3.21 aber

$$\mathrm{H}^{q}(\widetilde{Z}, \mathrm{S}^{j}\mathcal{N}^{*}_{\widetilde{Z}/\widetilde{P}}) = 0$$

3.3. DER HODGEDIAMANT

für alle $q \leq r-2$ und alle $j \geq 1$ gilt, ist damit also $H^{q-(j-1)}(\widetilde{Z}, M_j^*) = 0$ für alle $q \leq r-2$. Das heißt, es ist

$$\mathrm{H}^{i}(Z, M_{i}^{*}) = 0$$

für alle $i \leq r-2-(j-1) \Leftrightarrow i+j \leq r-1$. Also verschwindet die Kohomologie von M_j^* im benötigten Bereich und damit ist nach obigen Überlegungen der Beweis fertig.

Es wird noch eine Aussage über die Kohomologie von $\mathcal{K}^{\nu}(\widetilde{P}; j)|_{\widetilde{Z}}$ benötigt, um dann den Beweis zu Satz 3.19 anzugehen.

Lemma 3.26 Es gilt

$$\mathrm{H}^{q}(\widetilde{Z},\mathcal{K}^{\nu}(\widetilde{P};j)|_{\widetilde{Z}})=0$$

für alle $1 \le q \le r - 2 - \nu$.

Beweis. Wegen

$$\mathcal{K}^{\nu}(\widetilde{P};j)|_{\widetilde{Z}} = \bigoplus_{\sigma \in \widetilde{\Sigma}(\Delta_{r})(\nu)} \left(\mathcal{O}_{V(\sigma)} \otimes_{\mathbb{Z}} \bigwedge^{j-\nu} M \cap \sigma^{\perp} \right) |_{\widetilde{Z}} = \bigoplus_{\sigma \in \widetilde{\Sigma}(\Delta_{r})(\nu)} \bigoplus_{t=1}^{\binom{r-\nu}{j-\nu}} \mathcal{O}_{V(\sigma)} |_{\widetilde{Z}}$$

genügt es zu zeigen, daß

$$\mathrm{H}^{q}(V(\sigma), \mathcal{O}_{V(\sigma)\cap\widetilde{Z}}) = 0$$

gilt für $1 \leq q \leq r - 2 - \nu$ und alle $\sigma \in \widetilde{\Sigma}(\Delta_r)(\nu)$. Dazu wird folgende exakte Sequenz betrachtet

$$0 \to \mathcal{O}_{\widetilde{P}}(-\widetilde{Z}) \to \mathcal{O}_{\widetilde{P}} \to \mathcal{O}_{\widetilde{Z}} \to 0.$$

Diese Sequenz bleibt wegen der Transversalität von \widetilde{Z} und $V(\sigma)$ exakt, wenn mit $\mathcal{O}_{V(\sigma)}$ tensoriert wird:

$$0 \to \mathcal{O}_{V(\sigma)} \otimes \mathcal{O}_{\widetilde{P}}(-\widetilde{Z}) \to \mathcal{O}_{V(\sigma)} \otimes \mathcal{O}_{\widetilde{P}} \to \mathcal{O}_{V(\sigma)} \otimes \mathcal{O}_{\widetilde{Z}} \to 0$$

Nun gilt $\mathcal{O}_{V(\sigma)} \otimes \mathcal{O}_{\widetilde{P}} = \mathcal{O}_{V(\sigma)}$ und $\mathcal{O}_{V(\sigma)} \otimes \mathcal{O}_{\widetilde{Z}} = \mathcal{O}_{V(\sigma) \cap \widetilde{Z}}$, deshalb erhält man für die lange exakte Kohomologiesequenz

$$\cdots \to \mathrm{H}^{q}(V(\sigma), \mathcal{O}_{V(\sigma)}) \to \mathrm{H}^{q}(V(\sigma), \mathcal{O}_{V(\sigma)\cap\widetilde{Z}}) \to \mathrm{H}^{q+1}(V(\sigma), \mathcal{O}_{V(\sigma)} \otimes \mathcal{O}_{\widetilde{P}}(-\widetilde{Z})) \to \cdots$$

Nach Korollar 2.8. in [Oda] gilt für $q \ge 1$

$$\mathrm{H}^{q}(V(\sigma), \mathcal{O}_{V(\sigma)}) = 0.$$

Aus dem Beweis zu Lemma 3.23 ist bekannt, daß

$$\mathrm{H}^{q+1}(V(\sigma), \mathcal{O}_{V(\sigma)} \otimes \mathcal{O}_{\widetilde{P}}(-\widetilde{Z})) = 0$$

gilt für $0 \le q+1 \le r-1-\nu$ und damit verschwindet auch die Kohomologie von $\mathcal{O}_{V(\sigma)\cap \widetilde{Z}}$ für $1 \le q \le r-2-\nu$.

Nun kann folgender Teil des Satzes 3.19 bewiesen werden.

Lemma 3.27 Für die Hodgezahlen $h^{i,j} = \dim H^i(\widetilde{Z}, \Omega^j_{\widetilde{Z}})$ gilt

$$h^{0,0} = h^{0,r-1} = h^{r-1,0} = h^{r-1,r-1} = 1$$

und

$$h^{i,j} = h^{r-1-i,r-1-j} = 0$$

für $i + j \leq r - 2$ und $i \neq j$.

Beweis. Da \widetilde{Z} eine Calabi-Yau-Varietät der Dimension r-1 ist, gilt $\omega_{\widetilde{Z}} = \mathcal{O}_{\widetilde{Z}}$ und damit folgt

$$h^{0,r-1} = \dim \mathrm{H}^{0}(\widetilde{Z}, \Omega^{r-1}_{\widetilde{Z}}) = \dim \mathrm{H}^{0}(\widetilde{Z}, \mathcal{O}_{\widetilde{Z}}) = h^{0,0}.$$

Wegen der Serre-Dualität gilt damit

$$h^{r-1,r-1} = h^{0,0} = h^{0,r-1} = h^{r-1,0}$$

und da \widetilde{Z} zusammenhängend ist, sind diese vier Zahlen gleich 1.

Außerdem gilt für eine Calabi-Yau-Varietät

$$\dim \mathrm{H}^{i}(Z, \mathcal{O}_{\widetilde{Z}}) = 0$$

für $0 \le i \le r-2$. Dementsprechend ist

$$h^{0,i} = h^{i,0} = 0$$

und

$$h^{r-1,i} = h^{i,r-1} = 0$$

für $1 \le i \le r - 2$.

Sei nun also $i + j \leq r - 2$, $i, j \neq 0$ und zunächst i > j. Betrachtet man Ishida's Komplex vom Grad j und schränkt ihn auf die Hyperfläche \tilde{Z} ein, so bleibt die Sequenz nach Lemma 3.22 exakt.

$$0 \to \Omega^{j}_{\widetilde{P}}|_{\widetilde{Z}} \to \mathcal{K}^{0}(\widetilde{P};j)|_{\widetilde{Z}} \to \mathcal{K}^{1}(\widetilde{P};j)|_{\widetilde{Z}} \to \dots \to \mathcal{K}^{j}(\widetilde{P};j)|_{\widetilde{Z}} \to 0$$

Auf diese Sequenz kann wiederum das Lemma 3.25 angewandt werden. Für $\nu=0,\ldots,j-1$ gilt nämlich nach Lemma 3.26

$$\mathrm{H}^{i-\nu}(\widetilde{Z},\mathcal{K}^{\nu}(\widetilde{P};j)|_{\widetilde{Z}}) = \mathrm{H}^{i-\nu-1}(\widetilde{Z},\mathcal{K}^{\nu}(\widetilde{P};j)|_{\widetilde{Z}}) = 0,$$

3.3. DER HODGEDIAMANT

da $1 \le i - (j - 1) - 1 \le i - \nu - 1 \le i - \nu \le r - 2 - \nu$ ist. Also folgt

$$\mathrm{H}^{i}(\widetilde{Z}, \Omega^{j}_{\widetilde{P}}|_{\widetilde{Z}}) = \mathrm{H}^{i-j}(\widetilde{Z}, \mathcal{K}^{j}(\widetilde{P}; j)|_{\widetilde{Z}}) = 0,$$

wieder nach Lemma 3.26, da nach Voraussetzung $1 \leq i-j \leq r-2-j$ ist. Nach Satz 3.24 gilt damit

$$\mathrm{H}^{i}(\widetilde{Z}, \Omega^{j}_{\widetilde{Z}}) = \mathrm{H}^{i}(\widetilde{Z}, \Omega^{j}_{\widetilde{P}}|_{\widetilde{Z}}) = 0,$$

also ist $h^{i,j}=0$ für $i+j\leq r-2$ und $i>j\neq 0.$ Mit Hodgesymmetrie und Serre-Dualität folgt dann

$$h^{j,i} = h^{r-1-j,r-1-i} = h^{r-1-i,r-1-j} = h^{i,j} = 0$$

und damit sind alle Hodgezahlen $h^{i,j}$ mit $1 \le i+j \le 2(r-1)-1$, $i+j \ne r-1$ und $i \ne j$ gleich 0.

Als nächstes soll die folgende Teilbehauptung des Satzes 3.19 bewiesen werden.

Lemma 3.28 Für $2 \le 2i \le r - 2$ gilt

$$h^{i,i} = h^{r-1-i,r-1-i} = \sum_{\mu=0}^{i} (-1)^{i-\mu} \binom{r-\mu}{i-\mu} \delta_{\widetilde{Z}}(\mu).$$

Beweis. Der Beweis stammt im wesentlichen aus [Zi, Theorem 10].

Es genügt die Aussage für $h^{i,i}$ zu beweisen. Sei zunächsti=1, die Behauptung lautet dann

$$h^{1,1} = -r\delta_{\widetilde{Z}}(0) + \delta_{\widetilde{Z}}(1).$$

Betrachtet man die kurze exakte Sequenz

$$0 \to \Omega^{1}_{\widetilde{P}}|_{\widetilde{Z}} \to \mathcal{K}^{0}(\widetilde{P};1)|_{\widetilde{Z}} \to \mathcal{K}^{1}(\widetilde{P};1)|_{\widetilde{Z}} \to 0,$$

so ergibt sich aus der langen exakten Kohomologies
equenz mittels Lemma 3.27 und Lemma 3.26

$$\begin{split} \mathrm{H}^{0}(\widetilde{Z},\Omega^{1}_{\widetilde{P}}|_{\widetilde{Z}}) &= 0 \to \mathrm{H}^{0}(\widetilde{Z},\mathcal{K}^{0}(\widetilde{P};1)|_{\widetilde{Z}}) \to \mathrm{H}^{0}(\widetilde{Z},\mathcal{K}^{1}(\widetilde{P};1)|_{\widetilde{Z}}) \\ &\to \mathrm{H}^{1}(\widetilde{Z},\Omega^{1}_{\widetilde{P}}|_{\widetilde{Z}}) \to 0 = \mathrm{H}^{1}(\widetilde{Z},\mathcal{K}^{0}(\widetilde{P};1)|_{\widetilde{Z}}). \end{split}$$

Die Dimension von $\mathrm{H}^1(\widetilde{Z}, \Omega^1_{\widetilde{P}}|_{\widetilde{Z}})$ läßt sich aus den Dimensionen des zweiten und dritten Termes berechnen:

$$\dim \mathrm{H}^{1}(\widetilde{Z}, \Omega^{1}_{\widetilde{P}}|_{\widetilde{Z}}) = -\dim \mathrm{H}^{0}(\widetilde{Z}, \mathcal{K}^{0}(\widetilde{P}; 1)|_{\widetilde{Z}}) + \dim \mathrm{H}^{0}(\widetilde{Z}, \mathcal{K}^{1}(\widetilde{P}; 1)|_{\widetilde{Z}})$$

Nun ist aber

$$\dim \mathrm{H}^{0}(\widetilde{Z}, \mathcal{K}^{0}(\widetilde{P}; 1)|_{\widetilde{Z}}) = \dim \mathrm{H}^{0}(\widetilde{Z}, \bigoplus_{\sigma \in \widetilde{\Sigma}(\Delta_{r})(0)} \mathcal{O}_{V(\sigma)} \otimes_{\mathbb{Z}} (M \cap \sigma^{\perp})|_{\widetilde{Z}})$$
$$= \dim \mathrm{H}^{0}(\widetilde{Z}, \bigoplus_{i=1}^{r} \mathcal{O}_{\widetilde{P}}|_{\widetilde{Z}})$$
$$= r \cdot \dim \mathrm{H}^{0}(\widetilde{Z}, \mathcal{O}_{\widetilde{P}}|_{\widetilde{Z}})$$
$$= r \cdot \delta_{\widetilde{Z}}(0),$$

da für den einzigen nulldimensionalen Kegel $\{0\}$ in $\widetilde{\Sigma}(\Delta_r)$ folgendes gilt

- (i) $V(\{0\}) = \widetilde{P},$
- (ii) $M \cap \{0\}^{\perp} = M$ und damit
- (iii) $\mathcal{O}_{\widetilde{P}} \otimes_{\mathbb{Z}} M = \bigoplus_{i=1}^r \mathcal{O}_{\widetilde{P}}$, we gen dim M = r.

Die vorletzte Gleichung ergibt sich aus der Tatsache, daß sich die Kohomologie einer direkten Summe als Summe der Kohomologie der einzelnen Summanden ergibt. Für die letzte Gleichung wurde ausgenutzt, daß $\mathcal{O}_{\widetilde{P}}|_{\widetilde{Z}} = \mathcal{O}_{\widetilde{Z}}$ gilt und die Dimension von $\mathrm{H}^{0}(\widetilde{Z}, \mathcal{O}_{\widetilde{Z}})$ die Anzahl der Zusammenhangskomponenten von \widetilde{Z} wiedergibt.

Analog gilt

$$\dim \mathrm{H}^{0}(\widetilde{Z}, \mathcal{K}^{1}(\widetilde{P}; 1)|_{\widetilde{Z}}) = \dim \mathrm{H}^{0}(\widetilde{Z}, \bigoplus_{\sigma \in \widetilde{\Sigma}(\Delta_{r})(1)} \mathcal{O}_{V(\sigma)} \otimes_{\mathbb{Z}} \bigwedge^{0} (M \cap \sigma^{\perp})|_{\widetilde{Z}})$$
$$= \dim \mathrm{H}^{0}(\widetilde{Z}, \bigoplus_{\sigma \in \widetilde{\Sigma}(\Delta_{r})(1)} \mathcal{O}_{V(\sigma)}|_{\widetilde{Z}})$$
$$= \sum_{\sigma \in \widetilde{\Sigma}(\Delta_{r})(1)} \dim \mathrm{H}^{0}(\widetilde{Z}, \mathcal{O}_{V(\sigma)}|_{\widetilde{Z}})$$
$$= \sum_{\sigma \in \widetilde{\Sigma}(\Delta_{r})(1)} \delta_{\widetilde{Z},\sigma}$$
$$= \delta_{\widetilde{Z}}(1).$$

Denn es ist

- (i) $\mathcal{O}_{V(\sigma)} \otimes_{\mathbb{Z}} \bigwedge^{0} (M \cap \sigma^{\perp}) = \mathcal{O}_{V(\sigma)} \otimes \mathbb{Z} = \mathcal{O}_{V(\sigma)}$ und
- (ii) dim $\mathrm{H}^{0}(\widetilde{Z}, \mathcal{O}_{V(\sigma)}|_{\widetilde{Z}}) = \dim \mathrm{H}^{0}(\widetilde{Z} \cap V(\sigma), \mathcal{O}_{V(\sigma)}|_{\widetilde{Z}}) = \mathrm{Anzahl} \operatorname{der} \mathrm{Zusammenhangskomponenten}$ von $\widetilde{Z} \cap V(\sigma) = \delta_{\widetilde{Z},\sigma}$, da \widetilde{Z} und $V(\sigma)$ transversal sind.

Also gilt mit Satz 3.24

$$h^{1,1} = \dim \mathrm{H}^{1}(\widetilde{Z}, \Omega^{1}_{\widetilde{P}}|_{\widetilde{Z}})$$

= $-\dim \mathrm{H}^{0}(\widetilde{Z}, \mathcal{K}^{0}(\widetilde{P}; 1)|_{\widetilde{Z}}) + \dim \mathrm{H}^{0}(\widetilde{Z}, \mathcal{K}^{1}(\widetilde{P}; 1)|_{\widetilde{Z}})$
= $-r \cdot \delta_{\widetilde{Z}}(0) + \delta_{\widetilde{Z}}(1).$

Sei nun $i \ge 2$. Man kann nun Ishida's Komplex vom Grad i eingeschränkt auf \widetilde{Z} in kurze exakte Sequenzen aufspalten, da der eingeschränkte Komplex nach Lemma 3.22 exakt ist:

$$\begin{split} 0 &\to \Omega^{i}_{\widetilde{P}}|_{\widetilde{Z}} \to \mathcal{K}^{0}(\widetilde{P};i)|_{\widetilde{Z}} \to \mathcal{L}^{(1)} \to 0 \\ 0 &\to \mathcal{L}^{(1)} \to \mathcal{K}^{1}(\widetilde{P};i)|_{\widetilde{Z}} \to \mathcal{L}^{(2)} \to 0 \\ \vdots \\ 0 &\to \mathcal{L}^{(\nu)} \to \mathcal{K}^{\nu}(\widetilde{P};i)|_{\widetilde{Z}} \to \mathcal{L}^{(\nu+1)} \to 0 \\ \vdots \\ 0 &\to \mathcal{L}^{(i-2)} \to \mathcal{K}^{i-2}(\widetilde{P};i)|_{\widetilde{Z}} \to \mathcal{L}^{(i-1)} \to 0 \\ \to \mathcal{L}^{(i-1)} \to \mathcal{K}^{i-1}(\widetilde{P};i)|_{\widetilde{Z}} \to \mathcal{K}^{i}(\widetilde{P};i)|_{\widetilde{Z}} \to 0. \end{split}$$

Die $\mathcal{L}^{(\nu)}$ für $1 \leq \nu \leq i-1$ sind dabei induktiv durch diese kurzen Sequenzen definiert, zusätzlich sei $\mathcal{L}^{(0)} := \Omega^i_{\widetilde{P}}|_{\widetilde{Z}}$. Da nach Lemma 3.26

$$\mathrm{H}^{\mu}(\widetilde{Z},\mathcal{K}^{\nu}(\widetilde{P};i)|_{\widetilde{Z}})=0$$

ist für $1 \le \mu \le r - 2 - \nu$, gilt für die ersten i - 1 kurzen Sequenzen, d.h. $\nu = 0, \ldots, i - 2$,

$$\mathrm{H}^{(q-\nu)}(\widetilde{Z},\mathcal{K}^{\nu}(\widetilde{P};i)|_{\widetilde{Z}}) = \mathrm{H}^{(q-\nu)-1}(\widetilde{Z},\mathcal{K}^{\nu}(\widetilde{P};i)|_{\widetilde{Z}}) = 0$$

für ein q mit $i \leq q \leq r-2$. Dementsprechend kann man Lemma 3.25 anwenden und erhält (wegen k = 1)

$$\mathbf{H}^{(q-\nu)}(\widetilde{Z},\mathcal{L}^{(\nu)}) = \mathbf{H}^{(q-\nu)-1}(\widetilde{Z},\mathcal{L}^{(\nu+1)}).$$

Also gilt für alle $q = i, \ldots, r - 2$

0

$$\mathrm{H}^{q}(\widetilde{Z},\Omega^{i}_{\widetilde{P}}|_{\widetilde{Z}}) = \mathrm{H}^{q}(\widetilde{Z},\mathcal{L}^{(0)}) = \mathrm{H}^{q-1}(\widetilde{Z},\mathcal{L}^{(1)}) = \cdots = \mathrm{H}^{q-(i-1)}(\widetilde{Z},\mathcal{L}^{(i-1)}).$$

Im Beweis zu Lemma 3.27 wurde gezeigt, daß diese Termie für q>iverschwinden. Für q=iist

$$\mathrm{H}^{i}(\widetilde{Z},\Omega_{\widetilde{P}}^{i}|_{\widetilde{Z}}) = \mathrm{H}^{i}(\widetilde{Z},\mathcal{L}^{(0)}) = \mathrm{H}^{i-1}(\widetilde{Z},\mathcal{L}^{(1)}) = \cdots = \mathrm{H}^{1}(\widetilde{Z},\mathcal{L}^{(i-1)}).$$

Sei nun $2 \le q < i$, dann gilt für die ersten q-1 Sequenzen, d.h. $0 \le \nu \le q-2$,

$$\mathrm{H}^{(q-\nu)}(\widetilde{Z},\mathcal{K}^{\nu}(\widetilde{P};i)|_{\widetilde{Z}}) = \mathrm{H}^{(q-\nu)-1}(\widetilde{Z},\mathcal{K}^{\nu}(\widetilde{P};i)|_{\widetilde{Z}}) = 0,$$

da dan
n $r-2-\nu\geq q-\nu>q-\nu-1\geq 1$ ist. Wendet man auf diese Sequenzen Lemma 3.25 an, ergibt sich analog zu obigen Überlegungen

$$\mathrm{H}^{q}(\widetilde{Z},\Omega_{\widetilde{P}}^{i}|_{\widetilde{Z}}) = \mathrm{H}^{q}(\widetilde{Z},\mathcal{L}^{(0)}) = \mathrm{H}^{q-1}(\widetilde{Z},\mathcal{L}^{(1)}) = \cdots = \mathrm{H}^{1}(\widetilde{Z},\mathcal{L}^{(q-1)}).$$

Wegen $q \neq i$ gilt dann $\mathrm{H}^{q}(\widetilde{Z}, \Omega^{i}_{\widetilde{P}}|_{\widetilde{Z}}) = 0$ und damit insbesondere

$$\mathrm{H}^{1}(\widetilde{Z},\mathcal{L}^{(q-1)}) = 0$$

für q < i.

Als nächstes sollen die langen exakten Kohomologiesequenzen betrachtet werden. Für die erste kurze Sequenz, d.h. $\nu = 0$, ergibt sich

$$0 \to \mathrm{H}^{0}(\widetilde{Z}, \Omega^{i}_{\widetilde{P}}|_{\widetilde{Z}}) \to \mathrm{H}^{0}(\widetilde{Z}, \mathcal{K}^{0}(\widetilde{P}; i)|_{\widetilde{Z}}) \to \mathrm{H}^{0}(\widetilde{Z}, \mathcal{L}^{(1)}) \to 0,$$

da wegen $i \geq 2$ die erste Kohomologiegruppe von $\Omega^i_{\tilde{P}}|_{\tilde{Z}}$ verschwindet. Da der erste Term dieser Sequenz ebenfalls 0 ist, gilt also

$$\mathrm{H}^{0}(\widetilde{Z}, \mathcal{K}^{0}(\widetilde{P}; i)|_{\widetilde{Z}}) = \mathrm{H}^{0}(\widetilde{Z}, \mathcal{L}^{(1)}).$$

Für $1 \le \nu \le i - 2$ ergibt sich

$$0 \to \mathrm{H}^{0}(\widetilde{Z}, \mathcal{L}^{(\nu)}) \to \mathrm{H}^{0}(\widetilde{Z}, \mathcal{K}^{\nu}(\widetilde{P}; i)|_{\widetilde{Z}}) \to \mathrm{H}^{0}(\widetilde{Z}, \mathcal{L}^{(\nu+1)}) \to 0,$$

da nach obigen Überlegungen $\mathrm{H}^{1}(\widetilde{Z}, \mathcal{L}^{(\nu)}) = 0$ ist. Darüberhinaus gilt nach Lemma 3.26 $\mathrm{H}^{1}(\widetilde{Z}, \mathcal{K}^{i-1}(\widetilde{P}; i)|_{\widetilde{Z}}) = 0$ und damit ergibt sich die lange exakte Kohomologiesequenz der letzten kurzen Sequenz, also $\nu = i - 1$, zu

$$\begin{array}{l} 0 \to \mathrm{H}^{0}(\widetilde{Z}, \mathcal{L}^{(i-1)}) \to \mathrm{H}^{0}(\widetilde{Z}, \mathcal{K}^{i-1}(\widetilde{P}; i)|_{\widetilde{Z}}) \\ \to \mathrm{H}^{0}(\widetilde{Z}, \mathcal{K}^{i}(\widetilde{P}; i)|_{\widetilde{Z}}) \to \mathrm{H}^{1}(\widetilde{Z}, \mathcal{L}^{(i-1)}) \to 0 \end{array}$$

Fügt man diese Sequenzen wieder zusammen und setzt

$$\mathrm{H}^{i}(\widetilde{Z}, \Omega^{i}_{\widetilde{P}}|_{\widetilde{Z}}) = \mathrm{H}^{1}(\widetilde{Z}, \mathcal{L}^{(i-1)})$$

ein, erhält man

$$0 \to \mathrm{H}^{0}(\widetilde{Z}, \mathcal{K}^{0}(\widetilde{P}; i)|_{\widetilde{Z}}) \to \mathrm{H}^{0}(\widetilde{Z}, \mathcal{K}^{1}(\widetilde{P}; i)|_{\widetilde{Z}}) \to \cdots \\ \to \mathrm{H}^{0}(\widetilde{Z}, \mathcal{K}^{i}(\widetilde{P}; i)|_{\widetilde{Z}}) \to \mathrm{H}^{i}(\widetilde{Z}, \Omega^{i}_{\widetilde{P}}|_{\widetilde{Z}}) \to 0.$$

Die Dimension des letzten Termes ergibt sich nun als die alternierende Summe der Dimensionen der anderen Terme. Für ein

$$\mathrm{H}^{0}(\widetilde{Z}, \mathcal{K}^{\nu}(\widetilde{P}; i)|_{\widetilde{Z}}) = \bigoplus_{\sigma \in \widetilde{\Sigma}(\Delta_{r})(\nu)} \mathcal{O}_{V(\sigma)} \otimes_{\mathbb{Z}} \bigwedge^{i-\nu} (M \cap \sigma^{\perp})|_{\widetilde{Z}}$$

ergibt sich in Analogie zu den Überlegungen für den Fall i = 1:

(i)

$$\mathcal{O}_{V(\sigma)} \otimes_{\mathbb{Z}} \bigwedge^{i-\nu} (M \cap \sigma^{\perp}) = \bigoplus_{t=1}^{\binom{r-\nu}{i-\nu}} \mathcal{O}_{V(\sigma)},$$

da dim $M \cap \sigma^{\perp} = {\binom{r-\nu}{i-\nu}}$ und

(ii) dim $\mathrm{H}^{0}(\widetilde{Z}, \mathcal{O}_{V(\sigma)}|_{\widetilde{Z}}) = \dim \mathrm{H}^{0}(\widetilde{Z} \cap V(\sigma), \mathcal{O}_{V(\sigma)}|_{\widetilde{Z}}) = \mathrm{Anzahl} \operatorname{der} \mathrm{Zusammenhangskomponenten}$ von $\widetilde{Z} \cap V(\sigma) = \delta_{\widetilde{Z},\sigma}$, da sich $V(\sigma)$ und \widetilde{Z} tranversal schneiden.

Insgesamt gilt also

$$\dim \mathrm{H}^{0}(\widetilde{Z}, \mathcal{K}^{\nu}(\widetilde{P}; i)|_{\widetilde{Z}}) = \sum_{\sigma \in \widetilde{\Sigma}(\Delta_{r})(\nu)} \dim \mathrm{H}^{0}(\widetilde{Z}, \mathcal{O}_{V(\sigma)} \otimes_{\mathbb{Z}} \bigwedge^{i-\nu} (M \cap \sigma^{\perp})|_{\widetilde{Z}})$$
$$= \sum_{\sigma \in \widetilde{\Sigma}(\Delta_{r})(\nu)} \binom{r-\nu}{i-\nu} \dim \mathrm{H}^{0}(\widetilde{Z}, \mathcal{O}_{V(\sigma)}|_{\widetilde{Z}})$$
$$= \binom{r-\nu}{i-\nu} \sum_{\sigma \in \widetilde{\Sigma}(\Delta_{r})(\nu)} \delta_{\widetilde{Z},\sigma}$$
$$= \binom{r-\nu}{i-\nu} \delta_{\widetilde{Z}}(\nu).$$

Mit den richtigen Vorzeichen versehen und summiert, ergibt sich

$$h^{r-1-i,r-1-i} = h^{i,i} = \sum_{\nu=0}^{i} (-1)^{i-\nu} \binom{r-\nu}{i-\nu} \delta_{\widetilde{Z}}(\nu)$$

für $2 \le 2i \le r-2$.

Als letztes steht nur noch der Beweis für $h^{r-2,1} = h^{1,r-2} = r^2$ für $r \ge 4$ aus. Dieser ist aber sehr kurz.

Lemma 3.29 Es gilt

$$h^{r-2,1} = h^{1,r-2} = r^2$$

für $r \ge 4$.

Beweis. Nach [Ba, Theorem 4.3.7.] gilt für $r \ge 4$

$$h^{r-2,1} = \#M \cap \Delta_r - r - 1 - \sum_{F \in \Delta_r(r-1)} \#M \cap F^{\circ} + \sum_{F \in \Delta_r(r-2)} \#M \cap F^{\circ} \cdot \#N \cap (F^*)^{\circ},$$

dabei bezeichne F° das Innere der Seite F und F^* sei die duale Seite zu F aus Lemma 1.44. Nach Lemma 1.51 enthält Δ_r genau $r \cdot (r+1) + 1 = r^2 + r + 1$

Gitterpunkte und keine Seite von Δ_r enthält Gitterpunkte im Inneren. Also sind beide Summen gleich 0 und es gilt

$$h^{r-2,1} = r^2 + r + 1 - r - 1 = r^2.$$

Bemerkung 3.30 In dem Artikel von Batyrev [Ba, Proposition 4.4.2.] wird auch gezeigt, daß sich für $r \ge 4$

$$h^{1,1} = \#N \cap \Delta_r^* - r - 1 - \sum_{F^* \in \Delta_r^*(r-1)} \#N \cap (F^*)^\circ + \sum_{F^* \in \Delta_r^*(r-2)} \#N \cap (F^*)^\circ \cdot \#M \cap F^\circ$$

ergibt, dabei sind die F^* Seiten des dualen Polytopes und F die duale Seite zu F^* von Δ_r . $(F^*)^\circ$ bezeichne wieder das Innere der Seite F^* . Da Δ_r^* außer den Ecken und der 0 keine weiteren Gitterpunkte enthält, verschwinden die beiden Summen und es gilt

$$h^{1,1} = #\Delta_r^*(0) + 1 - r - 1 = #\{e_J : \emptyset \neq J \subsetneq \{1, \dots, r+1\}\} - r = 2^{r+1} - 2 - r.$$

Beispiel 3.31

dim $\widetilde{Z} = 3$ In diesem Fall ist also r = 4 und der Hodgediamant ist mittels Satz 3.19 und obiger Bemerkung vollständig bestimmt:

Für diesen Fall findet sich der Hodgediamant auch in [HV].

 $\dim \widetilde{Z} = 4\,$ In diesem Fall ist r = 5 und der Hodge
diamant von \widetilde{Z} sieht wie folgt aus

Abbildungsverzeichnis

2.1	Verfeinerung des Kegels $\sigma_{1,4} \in \Sigma(\Delta_3)$	57
2.2	MPCP-Desingularisierung lokal um $V(\sigma_{1,4}) \subset P_{\Delta_3} \ldots \ldots \ldots$	57
2.3	Triangulierung von $f_{1,5} < \Delta_4^*$	58
2.4	MPCP-Desingularisierung lokal um $V(\sigma_{1,5})$	58

ABBILDUNGSVERZEICHNIS

Literaturverzeichnis

- [Ba] V.V. Batyrev, Dual polyhedra and mirror symmetry for Calabi-Yau hypersurfaces in toric varieties, Journal of Algebraic Geometry 3, 1994, S. 493-535.
- [BaC] V.V. Batyrev und D.A. Cox, On the Hodge structure of projective hypersurfaces in toric varieties, Duke Mathematical Journal 75, 1994, S. 293-338.
- [Br] H.-J. Brasch, Singularitäten von Modulräumen abelscher Flächen mit Polarisierung vom Typ (1, p), Doktorarbeit, Universität Erlangen-Nürnberg, 1994, S. 107-111.
- [CK] D.A. Cox und S. Katz, Mirror symmetry and algebraic geometry, Mathematical Surveys and Monographs Vol. 68, AMS, Providence, Rhode Island, 1999.
- [DL] I. Dolgachev und V. Lunts, A character formula for the representation of a Weyl group in the cohomology of the associated toric variety, Journal of Algebra 168, 1994, S. 741-772.
- [EH] W. Ebeling und K. Hulek, Algebraische Topologie, Skript, Universität Hannover.
- [Er] C. Erdenberger, Die Kodairadimension Siegelscher Modulvarietäten vom Geschlecht 2, Diplomarbeit, Universität Hannover, 2002.
- [Ha] R. Hartshorne, Algebraic Geometry, Springer-Verlag, New York, 1977.
- [HV] K. Hulek und H.A. Verrill, On modularity of Calabi-Yau varieties associated to the root lattice A₄, Preprint, 2002.
- [KV] A.A. Klyachko und V.E. Voskresenskii, Toroidal Fano varieties and root systems, Math. USSR-Izv. 24, 1985, S. 221-244.
- [KMM] Y. Kawamata, K. Matsuda und K. Matsuki, Introduction to the Minimal Model Problem, Advanced Studies in Pure Mathematics 10, 1987, S. 283-360.
- [Oda] T. Oda, Convex Bodies and Algebraic Geometry, Springer-Verlag, Berlin/Heidelberg, 1988.

- [Pr] C. Procesi, The toric variety associated to Weyl chambers, in "Mots"(M. Lothaire, Ed.), S. 153-161, Hermés, Paris, 1990.
- [Re] M. Reid, Young person's guide to canonical singularities, Proceedings of Symposia in Pure Mathematics, 46 (1987), S. 345-414.
- [St1] J.R. Stembridge, Eulerian numbers, tableaux, and the Betti number of a toric variety, Discrete Math. 99, 1992, S. 307-320.
- [St2] J.R. Stembridge, Some permutation representations of Weyl groups associated with the cohomology of toric varieties, Adv. Math. 106, 1994, S. 244-301.
- [Ve] H.A. Verrill, Root lattices and pencils of varieties, Journal of Mathematics of Kyoto University 36-2, 1996, S. 423-446.
- [Zi] J. Zintl, A Barth-Lefschetz theorem for toric varieties, ar-Xiv:math.AG/0112198 v2, 2002. 2002.