Counting points on Calabi-Yau threefolds
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1 Introduction

Let f1,...,fx € Qzo,...,zn] be homogenous polynominals and consider
the projective variety

X={(xo:...:zNn) E]P’g; filzo,...,zNn) = ... = fr(zo,--.,zNn) = 0}.
Note that after clearing denominators we can assume that fi,...,fr €
Z|xg,...,xn]. For each prime p we define

Ny = #X(Fp),

i.e. Np is the number of points of X considered as an algebraic variety over
the field F,. One can try and calculate N, by means of a computer. The
time needed to do this depends on the equations f;, but in any case the
difficulty grows immensely as p increases.

Let X, = X(F,) xg, Fp. Then there exists the Frobenius morphism
F, : X, = X, whose fixed point set is exactly X (FF,). We shall assume
at this point that X, is smooth. If [ # p is a different prime, then by the
Lefschetz fixed point formula

2dim X
Ny= > (F1)'Tx(Ey; Hy(Xp, Q). (1)

=0

The theme of this talk is that it is sometimes easier to control the right
hand side of this formula than to compute N,. In exceptional case one can
compute the right hand side by computing the coefficients of some modular
form or by computing N, of a different and possibly easier to handle variety.
We shall explain this in examples.

We would like to stress here that the theoretical background is well
known to specialists. Qur only claim to a genuine contribution is our contri-
bution to the joint paper [HSvGvS] with B. van Geemen and D. van Straten
in which we treat the case of the Barth-Nieto quintic and its relatives. It
seemed to us worthwile, however, to advertise the computational aspects



of the Weil conjectures to a wider audience which includes mathematicians
who are interested in applications of algebraic geometry.

Acknowledgement. We are grateful to E. Schellhammer who helped
us with the running of the programmes.

2 Counting points on Calabi-Yau varieties

Let X be a smooth projective n-fold which is smooth and defined over the
integers. The Frobenius morphism Fj, : X, — X, defines endomorphisms

Fpy: Hy(X,Q) — Hy (X, Q).

(In order to simplify the notation we simply write HY, (X) = HZ, (X, Q) for
the l-adic cohomology.) Let

Pi(t) = Pip(t) = det(1 — tF7,).
The zeta-function for the prime p is then defined by

0 = P (t)P3(t) ... Pan_1(2)
P Pyt Py(t) ... Py (t)

This is a priori a rational function with coefficients in (), but one can show
that it is in fact contained in (¢). One has Py(t) = 1—t and Py, (t) = 1—p™t.
An important theorem of Deligne says that the P;(t) have integer coefficients

and moreover
Pi(t) = [[(1 - ayjt)
J
where the o;; are algebraic integers with |a;;| = p'/2. The most interesting

part of the cohomology is the midde cohomology HZ (X). For each prime p
we define the Euler factor of this prime by

1
Ly (HG(X),9) = s
n,p
and the L-function by
1
LHLZ(X),s)=|| =————.
“ 1;[ Prp(p—?)

We shall now specialize to the case where X is a rigid Calabi-Yau threefold.
By a Calabi-Yau threefold we mean a projective threefold X with Kx = Ox
and q(X) = h'(Ox) = 0. By Serre duality it follows that also h?(Ox) = 0.
The Calabi-Yau 3-fold X is rigid if H'(X,Tx) = H'(X,0%) = 0, ie. if
and only if h'? = h?! = 0. In this case H} (X,Q) is 2-dimensional. Note
that the absolute Galois group Gal(Q/Q) acts on the l-adic cohomology. In



particular the action on HJ (X, Q) defines a 2-dimensional representation

of Gal(Q/Q).
The determinant of Fy, is known to be p3. This is a consequence of
Poincaré duality (see also [Me, Lemma 4.4].) Hence

P3p(t) = 1 — apt + p°t* where a, = Tr(Fj5 )

and the L-function is of the form

3 _ s
L(Hét(X)aS) - H 1-a p_s + p3p2s Za’kk

For a prime p the coefficient a;, = Tr(Fj,) whereas for general k the coeffi-
cient ay is a product of a,’s where p is a prime divisor of k.

Conjecture (Fontaine/Mazur) : The L-function L(H} (X),s) is (up to
the factors associated to bad primes) the Mellin transform of a modular
form f.

For a discussion of this see [FM, Conjecture 3]. The Mellin transform of a
modular form f(q) =) a,q" is defined as Mell(f) = > a,n~%.

n n
On the other hand the numbers a, are closely related to the numbers
N,. In our case H}, (X) = HZ(X) = 0. Using Poincaré duality for HZ (X)
and H,(X) formula (1) becomes

Ny =1+ (1+p)TrFs, +p° - ay. (2)

In some cases it is possible to determine TrF3 , This is, for example, the
case if H?(X,7Z) is spanned by divisors which are defined over Z. Then all
eigenvalues of TrFy , are equal to p, hence TrFy , = by(X)p. But even if
this is not the case it is sometimes possible to compute TrFy,, without too
many difficulties (see [HSvGvS, Remark 3.3, resp. the proof of Theorem 1]
for such an example).

Now, if one can prove that the L-function L(H},(X),s) is modular, i.e.
is the Mellin transform of a modular form f, then computing N, is under
the above conditions equivalent to computing the coefficients a,. Indeed, the
latter can be much easier. Fortunately there is a technique which one can
use to prove the modularity of L(H3,(X),s). The main point is a theorem of
Serre based on work of Faltings and recast by Livné. To explain this we work
with the prime [ = 2. We have already remarked that the action of Frobenius
defines a 2-dimensional representation p; : Gal(Q/Q) — Aut(H2 (X, Qy)) &
GL(2,Q;). On the other hand, if f is a new form of weight k, then by a
theorem of Deligne [D] one can associate to f a piece of the [-adic cohomology
HY(X (k),(@l) where X *) is the k-fold fibre product over C, of a universal



elliptic curve X over a modular curve C. Which curve C one has to take
depends on the modular group for which f is a modular form. In this way one
can associate to f another 2-dimensional representation py : Gal(Q/Q) —
GL(2,Q2). The crucial theorem of Faltings, Serre and Livné is now the
following

Theorem 2.1 Let p1, p2 be two continuous 2-dimensional 2-adic represen-
tations of Gal(Q/Q) unramified outside a finite set S of prime numbers.
Let Qg be the compositum of all quadratic extensions of Q which are un-
ramified outside S. Let T be a set of primes, disjoint from S, such that
Gal(Qs/Q) = {Fplos;p € T} where F, again denotes the Frobenius homo-
morphism. Suppose that

(a) Trp1(Fp) = Tr po(Fy) for allp €T,
(b) det p1(Fp) = det p2(Fp) for allp € T,
(¢) Trp; = Trpy, = 0mod?2 and det p; = det p2 mod 2.

Then p1 and py have isomorphic semisimplifications, and hence L(p1,s) =
L(pa, s). In particular the good Euler factors of p1 and ps coincide.

Proof. See [L, Theorem 4.3]. O

In particular examples condition (c) is often not difficult to check and in
this case this theorem says that by checking finitely many numbers a, one
can conclude the equality of almost all numbers a,! This theorem has been
used in a number of cases in exactly this way (see [SY],[V],[Y]).

In this situation one can replace the computation of the numbers N,
by the computation of the Fourier coefficients of a modular form. Another
possible application is when one has two varieties which have the same L-
function. Then one can choose the variety which is computationally easier
to deduce the numbers N, for the other variety.

3 The Barth-Nieto quintic and its relatives

We consider the following three varieties.

(1) The Barth-Nieto quintic N is given by the equations

o +...+ zm = 0
(N) 1 1

— 4+...4+4 — = 0.

i) Iy

This defines a variety N C P° contained in the hyperplane given by the first
equation. Hence N is a quintic threefold and it is singular along 20 lines



and has 10 isolated A;-singularities. Barth and Nieto have shown that N
has a smooth Calabi-Yau model Y with Euler number e(Y) = 100. Their
construction shows that Y is defined over Z and it can be checked that YV
has good reduction for p > 5.

(2) Let N be the pullback of N under the double cover of P® branched along
the union S = USj, of the 6 coordinate hyperplanes S = {zx = 0}. In affine
coordinates (o = 1) the variety N is given by the equations

2
Yy =T1...Ts

(N) 14+z1+...425=0

T1...T5+T2...T5+T1x3...T5+ ...+ x1...24 = 0.

The variety N is singular and has a desingularization Y which is defined over
the integers and which has the property that there exists a morphism Y — Z
which contracts 20 quadrics to lines. The variety Z is a Calabi-Yau variety
with Euler number e(Z) = 80. Since the morphism ¥ — Z comes from Mori
theory we do not know whether Z is defined over the integers. The map
Y — Z induces an isomorphism H?(Z) = H3(Y) and we shall work with the
l-adic cohomology group H, g’t(f/, Q). Again Y has good reduction for p > 5.
It is also worth noting that N (and hence also Y and Z) are birationally
equivalent to the moduli of (1,3)-polarized abelian surfaces with a level-2
structure.

(3) The universal elliptic curve with a point of order 6 is given by the pencil
of cubics

t()(:v() +x1 + 1172)(:131.’172 + zoxy + $0.T1) =t1xpx122.

Let W be the product of this pencil with itself over the base P! = P!(tg, 7).
Then W C P? x P! x P? and using the affine coordinate ¢ it is given by the
equations

(@o+a1+22) (55 + -+ 55) = ¢

(W)
(yo+y1+y2)(y%+y%+y%) =t

W is also singular and it is well known that it has a desingularisation W
which is a rigid Calabi-Yau variety.

Theorem 3.1 The varieties Y and Z are rigid Calabi- Yau threefolds.

Proof. For the technical details we refer the reader to [HSvGvS]. The basic
idea is a method which was first pioneered by B. van Geemen and which
also uses a counting argument. One can show for Y that the Néron-Severi
group is generated by divisors which are defined over the integers. Hence
all eigenvalues of Fy , are equal to p. We know that e(Y) = 100. Let
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a=hH2(Y) = h?1(Y). Then h'}(Y) = h%2(Y) = 50+ a. Moreover one can
check easily that det F , = p®. Hence by formula (2)

ap = Tr(F3,) = 1+ (a +50)(p +p°) +p* — N
By the Riemann hypothesis
11+ (a+50)(p +p?) + 0> — Np| < b3(Y)p*? = (2a + 2)p*/2.

Computing N13(Y) = 11260 by a computer then shows a = 0.

The situation for Z is more complicated. We first note that it is enough
to prove h'2(Y) = h%1(Y) = 0. In this case it is no longer true that
all eigenvalues of Fy , are equal to p. One can, however, show [HSvGvS,
Proposition 2.21] that this is still true for p = 1 mod 4. Then the same
argument goes through where we can again work with the prime p =13. O

Remark We know that Tr(FQ*,p) = 60p, if p = 1 mod 4 and conjecture
that Tr(FQ*m) = 40p if p = 3 mod 4. We have checked this for all primes
p < 59. In any case we know that all eigenvalues are +p.

The varieties described above are modular in the sense that their L-
functions are (up to possibly the bad primes) the Mellin transform of a
modular form. Let

To(6) = {(‘Z Z) € SL(2,Z); ¢ =0 mod 6}

and

T, (6) = {(Z Z) €To(6); a =1 mod 6}.

Note that both groups have the same images in PSL(2,Z). Hence the corre-
sponding modular curves X(6) and X (6) are isomorphic. They parametrize
elliptic curves with a subgroup of order 6, resp. elliptic curves with a point
of order 6. The space Sy(I'0(6)) = S4(T'1(6)) of cusps forms of weight 4 has
dimension 1. The form

fle) = m@n(@®)n(@®)n(¢®)?
oo
= ¢ [T(1—¢"*(1-¢*")*(1—-¢*")*(1-¢")?
n=1
= q—2¢° —3¢® +4q¢* + 6¢° + 6¢° — 1647
—8¢® +9¢° — 12¢'0 + 12¢™ — 12¢'2 4 38¢™3 + ...

= Z bnqn

is the normalized generator of this space. Here
o0
77(Q) — q1/24 H(l - qn)
n=1
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is the Dedekind n-function. The L-function of f is the Mellin transform
o0
L(f,s) = Z bpn °.
n=1

Since b, = O(n3/?) for n — oo it converges for Re(s) > 5/2. It has an ana-
lytic continuation to an entire function. Furthermore, there is a functional
equation relating L(f,s) and L(f,4 — s). Since f is a Hecke eigenform its
L-function is an Euler product

L(f,S): H Lp(fas)
pprime

with Euler factors

L(f, s) !

S l-byptpp

forp > 5

and Ly(f,s) = (1+p-p~°*)~! for p < 5. Recall also that by Deligne [D]
L(f.s) = L(ps.s) where py : Gal(Q/Q) — Aut(H3(W,Q2)) = GL(2,Q:)
and where W is a small resolution of the second fibre product of the universal
elliptic curve S1(6) — X1(6) over the base.

Theorem 3.2 The varieties Y, Z and W are modular. More precisely for

[e}

the L-functions L(H3(Y),s) = L(H}(Z),s) = L(Hg’t(W),s) = L(f,s)

where = means that the Euler factors for p > 5 coincide.

Proof. The modularity of 1% goes, of course, back to Deligne [D]. A proof
for Y and Z can be found in [HSvGvS, Theorem 3.2]. See also the historic
remarks here. The crucial point is the application of Theorem 2.1. For this
one can take the set T = {5,7,11,13,17,19,23,73}. Using slightly more
theory Meyer [Me] showed that it already suffices to compute a, and N, for
pinT' = {5,7,11,13,17,19, 23}. O

By a conjecture of Tate this result should imply the existence of corre-
spondences between these varieties inducing an isomorphism of the middle
cohomology groups. This is easy for Y and Z since Z is (birationally) a 2:1
cover of Y. In [HSvGvS, Theorem 4.1] we found an explicit birational equiv-
alence, which is defined over Z, between Y and Z. We also found [HSvGvS,
Theorem 4.3] a birational equivalence to Verrill’s Calabi-Yau variety V (see
[V]) which has the same L-series and is given by the equation

(t+1)2
t

We now have 5 series of numbers, namely #W (p), #Y (p), #Z(p), #V (p)
and a, and knowing one of these numbers determines the others (in the

(V) I+z+zy+zyz) 1+ 2+ yz +zyz) = TYZ.
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case of Z(p) one has to assume p = 1 mod 4, although one can probably
prove with some more effort that this assumption is unnecessary). The
computation of the numbers #Y (p) etc. falls into two parts of which one
is theoretical and the other uses a computer. We shall explain this here for
Y, the other cases are similar. The variety N given by the equations (N)
is singular along 20 lines and 10 isolated nodes, namely the “Segre”points
given by the orbit of (1:1:1: -1:-1:-1) under the permutation group S¢. One
obtains the non-singular model Y from N as follows. One first blows up
P* = {zg+---+x5 = 0} in the 15 points Py = {2k = ; = 2y = z, = 0}
and then in the strict transforms of the 20 lines Ly, = {zx = z; = z,,, = 0}.
Finally one replaces the 10 nodes by P'’s. All of this can be done over the
integers. We have already introduced the hyperplanes Sy = {zy = 0}. Note
that

5
S,NN = UFkl where Fy; = {z) = z; = 0}.
=0
Let
U= N\U Fy.

The resolution Y — N affects U only in the last step where we replace the
10 nodes by P!’s. Since these P!’s are defined over the integers we have to
add 10p to the number of points. To compute the number #U (p) before
this last step in the resolution we use a computer. What happens outside U
can be controlled by hand. Blowing up the points Py, introduces Cayley
cubics, i.e. a P? blown up in 6 points. The exceptional locus which results
from blowing up the strict transforms L,(cllzn of the lines Ly, is a union of
quadrics and the strict transforms of the planes Fj; are again Cayley cubics.
In each of these case we can count the number of points mod p by hand for
all primes p.

We used a Maple programme to compute the number of points on the
various varieties. All computations were done on a Duron Processor 700
MHz with 64 kB RAM. The variety W is easier to handle than the other
varieties, since it is the product (over the base) of a pencil of plane cubics
with itself. To compute the number of points on Z we count the number
of points in U(p) such that v = z;...z5 is a square modulo p. This is the
case if and only if u? = 1modp where ¢ = (p — 1)/2. We give two times
for each of the calculations. The first column gives for each variety the time
needed (in seconds) using a naive programme which simply runs through
all possibilities. The second programme makes use of the symmetries of
the equations. In either case the time needed is of order O(n?) for W and
of order O(n*) for the other varieties. Our use of the symmetries gives us
roughly a factor of 2 for W and V and a factor of 20 for the other varieties,
but is still not optimal. Meyer [Me] has developed a more subtle approach
for the variety Y. He gains the following factors where the primes are given
in brackets 46(p = 37),43(p = 47),39(p = 59),33(p = 67) and 26(p = 97).



Another way to speed up the computations is to write a C++ programme
instead of using Maple (this was done in [Me]). Running these programmes
on our machine we found an improvement of a factor 77.

The computation of the Fourier expansion of f can be done in more than
one way, at least in this case. The naive approach is to make use of the fact
that the form f has a product expansion and to simply expand it. This is still
faster than counting points on any of the varieties with the exception of W
which needs roughly the same time. This method has the disadvantage that
one soon encounters integers which produce an error message in MAPLE
because they are too large. On the other hand there is the package HECKE
developed by W. A. Stein [S]. This programme enables one to calculate a
basis of a space of modular forms e.g. for the groups I'g(NNV) for given level,
weight and character. The problem is reduced to computing a basis for the
space of newforms. These spaces are spanned by eigenforms with respect to
the Hecke operator. Using modular symbols and theoretical work of Manin
[Ma] the computation of the coefficients of the Fourier expansion of a basis
consisting of eigenform can thus be reduced to a linear algebra problem.
Note that in our case the form f is a newform and the space of cusp forms
S4(T9(6)) has dimension 1.

Comparing counting points and the computation of the Fourier coeffi-
cients one should be aware of the following difference. Counting points is
done for each prime p separately, whereas the programmes computing the
Fourier coefficients produce the numbers a, simultaneously up to a given
prime. Hence we produce two tables. In the first table we give the times
needed to compute the numbers N(p) for the various varieties for a given
prime p. In the second table we compare the times needed to compute all
numbers N (p) and the Fourier coefficients a, up to a fixed prime.

The final result is that the computation of the Fouriere coefficients a,
using HECKE is much faster than any of the counting methods.



prime Y 7Z A%

5 .000 .000 .010 .000 .010 .000 .009 .000
7 .000 .010 .070 .000 051 .011 .050 .020
11 .010 .010 519 .030 .560 .059 .380 211
13 .021 .010 1.089 .090 1.210 .091 781 420
17 .060 .060 3.669 .229 3.900 271 2.531 1.429
19 .100 .080 5.949 351 6.351 .399 4.100 2.381
23 199 .099 13.561 .830 14.429 .851 9.451 5.229
29 .390 .261 36.610 1.980 38.490 2.140 26.010 13.850
31 .510 .269 48.679 2.550 51.281 2,771 34.760 18.400
37 .870 519 | 102.520 5.241 | 108.809 5.659 74.091 38.801
41 1.210 .669 | 157.819 7.991 | 168.750 8.479 | 114.851 60.011
43 1.409 789 | 192.470 9.620 | 207.481 | 10.391 | 140.850 73.630
47 1.879 | 1.060 | 279.380 | 13.799 | 303.420 | 14.800 | 204.491 | 106.930
53 2.750 | 1.510 | 461.419 | 22.591 | 506.821 | 24.090 | 338.819 | 176.979
59 3.870 | 2.120 | 761.260 | 34.911 | 828.101 | 37.500 | 560.809 | 282.249
61 4.531 | 2.361 | 892.759 | 40.720 | 954.661 | 43.540 | 641.710 | 334.149
67 6.180 | 3.240 | 1320.119 | 60.930 | 1411.191 | 65.731 | 950.260 | 500.380
71 7.359 | 3.929 | 1683.510 | 77.611 | 1813.141 | 83.179 | 1214.620 | 628.411
73 7.859 | 4.390 | 1892.270 | 86.869 | 2022.961 | 93.600 | 1361.969 | 716.341
79 10.281 | 5.529 | 2622.090 | 120.491 | 2811.570 | 129.059 | 1889.000 | 993.580
83 11.989 | 6.540 | 3218.420 | 146.820 | 3448.640 | 157.800 | 2301.000 | 1214.101
89 14.851 | 8.109 | 4245.909 | 194.840 | 4578.831 | 209.641 | 3096.210 | 1615.359
97 19.690 | 10.470 | 6135.649 | 276.121 | 6573.690 | 297.010 | 4404.560 | 2300.080
101 22.381 | 12.270 | 7242.140 | 324.990 | 7526.910 | 349.619 | 5140.050 | 2721.281
103 12.940 352.359 379.471 2940.879
107 14.561 412.059 443.450 3442.550
109 15.450 443.270 480.140 3699.270
113 17.370 511.790 554.081 4211.829
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