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Abstract

In [15] we defined braid monodromy invariants for equivalence classes of
hypersurfaces singularities. The objective here is to determine the invariants in
case of plane curve singularities of Brieskorn Pham type.

In particular we obtain a very natural presentation of the fundamental
groups of their discriminant complements.

Introduction

In this paper we address the topic of discriminant complements of hypersurface
singularities.

In the case of simple singularities such complements are identified as spaces of
regular orbits for the Weyl group of the same type and are shown to be aspherical.
Their fundamental groups are given by the Artin-Brieskorn groups of the same type
with a natural presentation encoded by the corresponding Dynkin diagram. So there
is a strong link to natural combinatorial structures.

Sadly enough only partial aspects can be generalized — especially to parabolic
and hyperbolic singularities — but progress to arbitrary singularities has been slow
since Brieskorn, in [4], listed some problems, which he intended for guidelines to the
case of more general singularities. Among other he asked for the fundamental group
and suggests to obtain these groups from a generic plane section using the theorem
of Zariski and of van Kampen.

Here we want to present some new results using the braid monodromy invariants
for discriminants introduced in [15, ch. 2].

To get a flavour of the basic set up, first recall that a holomorphic function, more
precisely a holomorphic function germ is studied by means of versal unfoldings, e.g.
given by a function

F(z,z,u)= f(z) —z+ Zbﬂti-

In case of a semi universal unfolding the unfolding dimension is given by the
Milnor number p = p(f) and we get a diagram

Z,Uu1, ety CP D D o= {(z,u)|F(0,z,u) =0=VF(0,zu)}
+ +
Upy . uu—y CPL D B = {u|F(,0,u) is not Morse}

The restriction p|p of the projection to the discriminant D is a finite map, such that
the branch set coincides with the bifurcation set B.



The key observation for the present work is, that a suitable restriction of p to
a subset of p~ (C*~'\ B) \ D is a fibre bundle in a natural way. Its fibres are dif-
feomorphic to the p-punctured disc and its isomorphism type depends only on the
right equivalence class of f.

Thanks to Moishezon the study of complements of plane curves by the methods of
Zariski and van Kampen has been revived [17], and has found a lot of applications.
Conceptionally recast as braid monodromy theory it has been successfully used
for projective surfaces and symplectic four-manifolds alike by investigating branch
curves of finite branched maps to P?, [18].

The theory of braid monodromy has been generalized to the complements of
hyperplane arrangements and it has found an interesting new interpretation in the
theory of polynomial coverings by Hansen, [7, 11].

Based on this interpretation the fibre bundle obtained from p|p naturally gives
rise to a braid monodromy homomorphism, which is in fact given by the Lyashko
Looijenga map up to an inner automorphism of Br,,.

As in the case of plane curves the method of van Kampen leads to an explicit
presentation of the fundamental group of the discriminant complement C# \ D in
terms of generators and relations.

We address the problem to find the invariants and the group presentations for
7 (C#\ D) in case of polynomial functions of the kind f(z) = 21T 4 z2+1,

Pham [19] investigated functions of this type in arbitrary dimensions in the spirit
of Lefschetz. He computed the homology of the regular fibre and then gave the global
monodromy transformation thus generalizing the Picard Lefschetz situation [; = 1.

Brieskorn exploited the same class of functions [5]. In response to one of his
problems in [4] Hefez and Lazzeri computed the intersection lattice of f [12]. We
owe them the description of a Milnor fibre and the choice of a natural geometrically
distinguished path system.

Following common convention we call functions of this class Brieskorn Pham
polynomials.

Our main results are most naturally stated referring to the geometrically distin-
guished Dynkin diagram associated to f by Pham, Gabrielov and Hefez & Lazzeri,
[19, 9, 12].
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The vertex set is I = {iyiz|1 < iy < 1,1 < iy < Iy} ordered lexicographically
and the edge set ¥ = E; U E/_; is the union of edges of weight 1 resp. —1:
Ev = {00 =71, li2 = g2l = 1V [in = il = 1,42 = ja}
Eov = AG)lii=h —Lia=ja—1Vii =1 =j1,12 - 1=js}

Main Theorem The braid monodromy group of a plane Brieskorn-Pham polyno-
mial :vlll'H + :vgf"'l is generated by the following twist powers:

0-;-212-2,](21](22 : (Z7 k) € E7
3 .
Uilig,klkg (’L?k) E E7
_9 . .o . .
02'212'27]'1]'20-2'212'27161162Ui1i27]'1j2 : (Z’])’ (-]’ k) € by, (Z’ k) € b

The most important corollary drawn from this theorem is a presentation of the
fundamental group of the discriminant complement which can be computed by the
Zariski van Kampen method.

Main Corollary The fundamental group of the discriminant complement in a ver-
ly+1

sal unfolding of a Brieskorn-Pham polynomial mlll'i'l + 2,7 is presented by
i€l | bt =1, (i,k) ¢ F,
titit; =ttt (i, ]{‘) e F,
Litjtpt; = titytt;, (4,7), (4, k) € Fy, (i,k) € F_y

These presentations of fundamental groups are natural generalizations of the
presentations of Artin Brieskorn groups associated to the simple singularities with
a new flavour added by the fact that also triangles, i.e. 2-simplices of the Dynkin
diagram, make their contribution to the relations of the presentation. Asin the case
of simple singularities they are determined by an intersection graph of f. Thus a
further result has found an adequate generalization.

On one hand a major motivation for this paper was to make a contribution to
the understanding of discriminant complements of unrestricted complexity and to
give a solution to a problem posed by Brieskorn [4] three decades ago. But we were
also interested for the following reasons:

First our results link Dynkin diagrams to presentations, so there is an implicit
conjecture concerning all remaining hypersurface singularities and we hope to find
an induction proof similar to Gabrielov’s method [10] for the computation of inter-
section matrices.

The given presentations of fundamental groups 7 arrise in a natural setting gen-
eralising the standard presentations of Artin Brieskorn groups of finite type. There
has recently been a surge of activities in combinatroial group theory thanks to the
new ideas und techniques centering around the concept of Garside groups, [8]. In
this framework the question should be addressed whether there exists a finite di-
mensional K (7, 1). It could well prove to become a major ingredient to settle the
question of asphericity of the discriminant complement, cf. Thom [22].



Finally our groups are the source of various monodromy homomorphisms, e.g.
algebraic, geometric or the recently proposed symplectic monodromy, [1, 20]. A
more detailed study of the kernel and of presentations for the image groups thus
seems promissing.

Acknowledgment It is my pleasure to express my thanks to W. Ebeling, who
introduced me to the beautiful topic of singularity theory, and to my colleges in
Hannover for their interest and many fruitful discussions.

1 prerequisites

A natural approach to find the braid monodromy of a plane curve consists of two
steps. First, identify the mapping class group of a generic reference fibre with the
braid group and second, compute the parallel transport of the reference fibre along
enough embedded simple loops enclosing just a single critical value.

In practise a local model is exploited to determine the conjugacy class associated
to a simple loop — incidentally it is the class of o1, 07,07 respectively in case of a
simple tangency, an ordinary node or an ordinary cusp.

The difficult part is to get hold of the parallel transport, which needs very close
inspection and a good grasp of the specific geometric situation. This was ingenously
mastered by Moishezon [17] using an approximate description of the curve in case
of essentially short distances.

In our case Brieskorn [4] suggested to restrict the projection p to a sufficiently
generic line in its range, but we failed to find equations such that parallel transport
became tractable.

Instead we extract all monodromy data from the unfolding of f € C[zy, 23] given by
2
F(z,o,z) = f(z)+2z- Z a;(l; + 1)z,
=1
which we call Hefez-L.azzeri unfolding, since it has been employed sucessfully in [12].
We gain an explicit discription for the discriminant divisor, a formal factorization
with & a primitive [;-th root of 1.
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On the other hand we loose the genericity of the local degenerations, so we may not
compute the braid monodromy of the Hefez-Lazzeri unfolding. As a remedy we have
to assign a set of braids to each degeneration reflecting the fact, that in a nearby
generic family we would encounter several degenerations corresponding to several
braids.

We will actually consider for small g5 > 0 the two families

fa(acl, .'EQ) = £C%|1+1 — Ot(ll + 1):61 + $122+1 — 82([2 + 1)$2
ga(z1,29) = mlll’"] —(h+ 1)z + ml;’H —agy(ly + Dy, |af <1



Like in the generic case this suffices, for loops in their bases map to a generating set
for the fundamental group of the bifurcation complement in the Hefez-Lazzeri base.

Such claims are put into rigorous framework by the concept of versal braid mono-
dromy developed in [15, ch.4]. It will be cited in the appropriate places — notable in
sections 8 and 9.

We will actually start this paper with an extensive computation of parallel trans-
port in a line arrangement associated to f, by a change of formal parameters. Since
we want to transport only classes conjugate to some power of o1, we may as well
transport embedded arcs between two punctures such that the mapping class can
be chosen with support in a regular neighbourhood of the arc.

In section 8 we transfer the results on parallel transport to the discriminant
family of f,. For all its degenerations we give the local generators we have to assign
and identify them with twists on arcs for which we know the parallel transport then.

We finish with a last section exploiting both families and their relation to arrive
at aproof for bout our main claims.

2 parallel transport in the model family

Let us consider the punctured disc bundle associated to the line arrangement

H (Z — A — 77252) = 0.

1 1
6117 22:1

which we call the model discriminant family associated to [y, [y, 1o < 1.

The fibre at A = 1 is a punctured disc for which Hefez and Lazzeri [12] have
given a strongly distinguished system of paths w; ;,, 1 <2 < 13,1 <4y <y, ordered
lexicographically. Up to isotopy they can be obtained from two figures like the
following in case [; = 8,1y = 4.

O O

In the first figure a path has to be selected according to #;. It terminates at a
disc which should be replaced by the second figure.



The path selected in the second figure according to i3 can be joint to the first to
represent the isotopy class of w; .

Accordingly indices from the set {i1iy |1 <4y <1y, 1 < iy <y} are also assigned
to the punctures in the fibre at A = 1, to the lines of the arrangement and hence to
any puncture in any fibre.

Our aim is to describe the parallel transport along radial paths and along circle
segments with radius 1 or close to 0. We will find appropriate diffeomorphisms and
obtain transported arcs.

Notation 2.1: We introduce polar coordinates A = tey, ey := €'’ of unit absolute
value and ¢ € R2",

Definition 2.2: A parameter tey is called critical, if there is a pair 7119, 7172 of
indices such that the corresponding lines meet at tey.
The pair may be specified and teg called critical for the pair i11q, j172.

Let us first outline our general approach. For a family we first give a vector
field on its total space. Next we check that the punctures form integral curves,
so the corresponding flow preserves the punctures. Then we obtain some of the
properties of the induced diffeomorphisms, to get finally the parallel transport of
some geometric objects.

As most important technical tool we employ smooth bump functions xy,x- : C = R
for any real ¢ > 0:

X 0SX(E) =x(2) S 1x(2) =0 o] 2 1,x(:) = 132 < 5,
Xe ¢ XE(Z)ZX(Z/‘S)a

with support contained in the unit disc, resp. the disc of radius e.

First we investigate the model discriminant family restricted to a radial path

teg,, t € [to,1]. We will consider the case only when this restriction has constant
number of punctures, in which case we call it a regular family.
Our aim is to understand the corresponding parallel transport diffeomorphism map-
ping the initial fibre to the terminal fibre. Considered as an endomorphism of the
plane it is seen to be supported on the set of points which are close enough to some
puncture at some parameter, i.e. close enough to the union of their fraces:



Definition 2.3: The trace of index 711 in a family is the set of points z in the plane
C such that z is a puncture of index #1125 for some parameter of the family base.

This we can make explicit with a quick check:

Lemma 2.4 Lete > 0 be bounded from above by half the minimal distance between
punctures in the fibres of the reqular family over teg,, t € [to, 1]. Then the punctures
form integral curves for the vector field

UE(Z, t) = Z XE(Z —teg & — 77262)6790517

i1 ¢lo
5172=1

and the corresponding diffeomorphisms are supported on the e-neighbourhood of the
union of all traces.

Hence parallel transport only affects small neighbourhoods of the punctures. Any
arc will be changed only due to the movements of its endpoints and of the critical
values which come close enough, to distances less than ¢ in fact. So we can imagine
what happens to a given arc in the fibre at #:

Let the arc be a piece of rope. As the parameter ¢ increases additional rope is
laid out on the traces of both the critical values which form the ends of the arc. A
critical value about to cross the arc will push it ahead and lay out a double rope
behind forming a loop around its trace.

Likewise any time a critical value crosses a trace along which a multiple rope has
previously laid down, it picks this rope up and pushes a multiple loop into it along
its own trace.

So in the end the rope is lain down in an arbitrary small neighbourhood of the
union of all traces, in fact the union can be restricted to that part of each trace
traced after the corresponding critical value picked up rope for the first time.

We want to apply parallel transport to a very restricted set of arcs:

Definition 2.5: Given a critical parameter #yey, for the index pair 2129, 7172, an arc
between the corresponding critical points in the fibre at t;e4, is called local
v-arc if

i) it is supported on the corresponding traces,

ii) the difference t; — ¢ is positive and small compared to the distances of
critical parameters.

In case of j; —iy = [1/2, iy # j2, the traces of the corresponding critical points
in a fibre ¢; ey, meet only if ¥; = J¢. In this case we allow 9, # ¥y nevertheless
and concede that the local v-arc are supported on the traces except for a small
part to join them.

Definition 2.6: Parallel transport of a local v-arc in a radial family by the differ-
entiable flow to radius ¢ = 1 yields an arc called tangled v-arc.



Definition 2.7: An arc in the fibre at tyey, is called local w-arc if
i) it connects punctures of indices 4142, j1j2, 17 < ji1,%2 = jo, by four line
segments, zf =i+ 1,
ii) two segments are supported on the traces of the two punctures,
iii) the central pair forms a sharp wedge over the trace of the puncture of
index i} i,

iv) its length and ¢; are small compared to the distance of critical parameters.

Definition 2.8: Parallel transport of a local w-arc in a radial family by the differ-
entiable flow to radius ¢ = 1 yields an arc called tangled w-arc.

To describe the local situation at a crossing of two or more critical points, we
consider tangled tails of punctures. These one should imagine just as a piece of rope
laid out by a critical point on its trace and tangled by subsequent critical points.
Looking locally at the tail implies that it may decompose into several pieces.

Example 2.9: Imagine a crossing of just two traces, then the tangled tails look
locally like

(The critical points pass from bottom to top, the first from left to right, the
second from right to left.)

By construction a local v-arc is approximately supported on tails hence so is the
transported arc throughout the radial family. In fact more is true. At each crossing
of critical points, to which the transported arc comes close, it is approximately
supported on the tails of the crossing punctures:

Lemma 2.10 lLocally at a crossing P all local components of a tangled v-arc can
be assumed to be arbitrarily close approximations to one of the tangled tails of the
punctures passing through P.

Proof: All local components are laid out by a critical point which pushes them
through P. Hence the smaller ¢ is, the better the approximation will be. a

Example 2.11: For the family with [y = 3,/ = 2 and ¥ = {5 we have the sketches
of a local v-arc at .12ey and its parallel transports at .56es and ey together
with the traces of all critical values.
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In this example only one additional critical value is entangled.

Finally we observe, that for all but finitely many angles ¢y and for all ¢; > 0 the
family over the line segment from #,ey, to eg,

i) is a regular family, i.e. the segment does not pass a critical parameter,
ii) has no pair of distinct traces having more than one point in common.

Just note that distinct traces have at most one point in common, if and only if no
trace contains a point 79&3, Eég =1.

Similar to the case of radial families we can get hold of a diffeomorphism which
represents the parallel transport over circular segments in the base. On particular
subsets the map is in fact quite easily described.

Lemma 2.12 Given the vector field
v(z,9) = z'(z + Z Xan, (2 — €9&1) (e9€1 — Z))
o
then

i) the punctures of the model family over the circle of radiust =1 form integral
curves,

ii) supposing |zy — eg&i| < 2my the flow of v preserves the distance of zy(9) and
esé1.

iii) supposing |zo — &1| > 2n for all 51,5? =1, z9(?¥) = zpeyg is an integral curve.

Proof: 1) Each puncture forms a curve eg&y + 122, fil , 5? =1, for which we can
check the integrality condition:

%(eﬂfl +m&a) = deg&s = ilesbi+ mbe —m&e) = v(egéy +m2€a, 9).

ii) We have to show that the following complex numbers considered as real vectors
are perpendicular for all 9:

(cat = 20(4) - 75(cats = 20(4).

Both points move along integral curves, hence d%egfl = 1eg&y and



L@ = v(z0(d),)

d?d
= 120(?) + ixan, (20(9) — es&a) (es&s — 20(9)).

Since y is a real valued function, the second function is a purely imaginary
multiple of the first, hence they are orthogonal at all 9.
iii) Again we have only to check an integrality condition

d .
qpoes = izes = v(zo€g, V).

Let us rephrase the result of the lemma in more geometrical terms:

i) the flow realises parallel transport in the model family over circle segments of
radius ¢t = 1,

ii) the 2ny-discs at points &, f? = 1 are mapped bijectively to 27.-discs of the
transported points preserving the distance,

iii) points outside these discs are mapped by a rigid rotation around the origin.

Lemma 2.13 Given the vector field for e <<

v(z) = 1 Z Xae (2 = m262) (2 — m262)

o _
;=1

i) the punctures of the model family over the circle of radiust = ¢ form integral
curves,

ii) suppose |zy — n2éa| < 2, féz = 1 then the curves zy(9) = (20 — m2€2)es + €1&2
are integral for the flow of v,

iii) suppose |zg—mn2€a| > 4e for all &, 5\2 =1, then zy(¥) = 2o is an integral curve.

Proof: 1) Since each puncture is on a curve geg; + n2€,, the assertion follows
from case ii).
ii) We check the integrality condition:

d :
@((Zo —m&)es +mb) = i(zo—mées = v((20 — m&)es + &), V).
iii) Since the vector field vanishes at these points constant curves are integral
curves. ]

Again we restate these results in geometrical terms:

i) the flow realises parallel transport in the model family over circle segments of
radius t = ¢,

ii) the 2e-discs at points 7€, Eéz = 1, are rotated rigidly under parallel transport,

iii) points outside 4e-discs of these points stay fix.

10



3 from tangled v-arcs to isosceles arcs

In this section we consider two different kinds of mapping classes in a fibre of large
radius. Both kinds are twists on embedded arcs. So we may equally well investigate
these arcs. Arcs of the first kind are called tangled v-arcs, they are obtained from
local v-arcs by parallel transport along a radial path using the differentiable flow of
the preceding section.

Arcs of the second kind are called isosceles arcs. They are supported on traces
of two punctures and form the two sides of an approximate isosceles triangle. Again
the degenerate case requires extra care. If two traces are parallel but close, an arc
which is supported on these traces except for a small join between them is called a
straight isosceles arc.

An isosceles arc is said to correspond to a tangled v-arc if it connects the same
punctures. In general these two arcs are not isotopic. But we will define a group of
mapping classes such that they belong to one orbit. In fact we will give some arcs,
such that the group generated by the full twists on these arcs will do. They will be
called bisceles arcs for the reason that they are supported on segments of two traces
not necessarily of similar length.

Note that by this definition all isosceles arcs are subsumed under the notion of
bisceles arcs except for the straight isosceles arcs.

We want to encode the isotopy class of a tangled v-arc into a planar diagram in
the fibre at ey. This diagram will consist of all the traces each of which is directed
from its source point — which is one of &;, féz = 1 - to its puncture.

Apart from the source points, there are only ordinary crossings, which are given
by the mutual transversal intersection of several traces.

Crossings which are sufficiently close to the tangled v-arc are called wvertices of
the diagram. The segments of traces close to the tangled v-arc are called essential
traces, they connect a vertex to a puncture.

At each vertex we put an order on the essential traces. The first or dominant trace
is the one which passed last, which is incidentally the one such that the puncture
end is closest. The other follow according to increasing distance to their puncture
end. The order can be made explicit by labels assigned to the essential traces at
each vertex. We can also make the dominant trace pass over by replacing the other
traces by broken lines. Finally the lines are labeled at their ends by the index of the
corresponding puncture.

We define the essential diagram to be obtained by discarding all lines except
the essential traces and we notice that the tangled v-arc is still determined by this
datum.

Definition 3.1: No essential diagram contains a directed cycle, hence the height
function on vertices is well-defined by

ht(P) = max(ht(P'),0)+ 1.

(P) = max(h(P),0)+

where the maximum is taken over all vertices P’ between P and a puncture
on an essential trace. Each such vertex is called subordinate to P.

11



Given an essential diagram we consider simple transformations at vertices. We
may change the crossing order at a vertex P if and only if all traces through P are
dominant at each subordinate vertex. Note that on transformed diagrams we have
to make the order explicit, since it can no longer be read off the distances to the
punctures.

The first observation is that we can change an essential diagram by simple trans-
formations only to get a diagram in which the traces of the v-arc punctures are
dominant at all vertices they cross.

Lemma 3.2 Given any vertex there is a composition of simple transformations
which changes the crossing order at this vertex but nowhere else.

Proof: If the vertex is of height one we can change it by a simple transformation.
If not, a simple transformation can only be performed if the essential traces are
dominant on subordinate vertices. But then we can argue inductively on the height
of the vertex. All subordinate vertices are of less height, so by induction we may
assume the existence of a composite transformation which makes the traces under
consideration dominant there.

Then we can perform the simple transformation to change the local order. Finally
we invoke the inverse of the composite transformation to put all other transformed
vertices back to their initial state. O

In particular, a series of simple transformations can be found such that the traces
of the v-arc punctures become dominant.

The important step is to see, that for any simple transformation at a vertex P
there is a choice of a mapping class such that

i) the mapping class is given by a product of full twists on bisceles arcs supported
on the essential traces through P,

ii) a diagram transformed by a sequence of simple transformations encodes the
isotopy class of the tangled v-arc transformed by the composition of the chosen
mapping classes.

For the induction in the proof of the following lemma we need also a relation
between tails at a vertex.

Definition 3.3: At a vertex a tail dominates another one, if it is isotopic to its
trace up to an isotopy fixing the endpoints of both tails but not necessarily
the punctures not involved.

Lemma 3.4 Given a diagram with orders at its vertices which are obtained by a
composition of simple transformations from those of the essential diagram of a tan-
gled v-arc. Then there is a diffeomorphism such that

i) it represents a mapping class which is a product of full twists on bisceles arcs
supported on essential traces,

ii) it is supported close to the essential traces,

12



iii) locally at every vertex the dominant trace is close to the image of the corre-
sponding tail.

Proof: We assume in addition that each simple transformation reverses the order
of consecutive traces and start an induction on the number of such transformations
in the composite transformation.

So we consider a simple transformation. For simplicity we first assume that
the vertex at which the order is changed is met by only two essential traces. By
assumption these traces are dominant at subordinate vertices, hence we can depict
the tangled tails of the two punctures involved as follows:

(The critical points pass from bottom to top, the first from left to right,
the second from right to left.)

Now a full twist on the bisceles arc with the appropriate choice of orientation
can be performed close to these traces to yield:

Hence our claim is true in this case.

The same applies if there are more essential traces and we want to reverse the
order of the first two, since the corresponding tails are not effected by tails of lower
order.

The situation changes drastically if our simple transformation reverses the order
of traces none of which is dominant. Then the picture is modified by the essential
traces of larger order pushing loops into the depicted tails.

But on the same time they push loops into the bisceles arc and hence into the
support of the diffeomorphism we want to perform. Hence we need only to show
that this pushed diffeomorphism will do.

Of course it has the second property. It also has the first property since the
full twist on the modified bisceles arc is isotopic to the full twist on the bisceles arc
conjugated by full twists on bisceles arcs with apex in the same vertex.

The third property is given, since the dominant traces and the corresponding
tails are locally not changed except for the explicit case considered first, where the
property can be simply checked.

13



Moreover for the induction process we should notice that any of our diffeomor-
phisms preserves domination of a tail over another one, except that it exchanges the
role of the tails corresponding to the traces of which the order has been reversed.

To proceed our induction the first two properties are no obstacle. But we have
to prove that the third property is preserved when performing an additional trans-
formation.

If the additional transformation does not affect a dominant trace, then neither
does the diffeomorphism we perform. Since it also preserves the corresponding tail,
we are done in this case.

So let us assume the additional transformation affects a dominant trace. Then
the diffeomorphism we choose also affects both the trace and the tail. What we have
to show is that the image of the tail which was second before and is first now has
the claimed property.

By assumption this tail is only tangled along the essential traces through the
vertex under consideration. Moreover we may assume that it dominates all tails
through this vertex apart from the dominant one. Hence it is only tangled by the
dominant trace and our diffeomorphism can be chosen to map it close to its trace
as in the case depicted above. a

Lemma 3.5 Given a tangled v-arc there is a mapping class given by a composition
of full twists on bisceles arcs supported on essential traces which maps the tangled
v-arc to the isotopy class of the corresponding isosceles arc.

Proof: By lemma 3.2 there is a composition of simple transformation changing
vertex orders of the essential diagram of the given tangled v-arc in such a way that
the traces of both puncture ends are dominant at each vertex.

Then by lemma 3.4 there is a diffeomorphism representing a mapping class as
in the claim, which maps the tangled tails in such a way that locally at each vertex
the dominant trace is close to its tail.

Thus the images of the tangled tails of both puncture ends may no longer deviate
from the traces at any vertex. So they are isotopic to the traces and we conclude
that the image arc is isotopic to the corresponding isosceles arc. a

We did not bother to adjust our arguments explicitly for j; —i; = {1/2, since we
can choose 0 < € < ty|g — V1| small in comparison with the minimal diameter of
local neighbourhoods of vertices.

We close this section with two observation, which will be used later:

Remark 3.6: All bisceles arcs supported on essential traces are — apart from the
obvious one — not isosceles arcs, since one critical point has to pass after the
other.

For the same reason, the length of each bisceles arc supported on essential
traces of a tangled v-arc is bounded by the length of the corresponding isosceles
arc.

The length is defined to be the maximum of the lengths of the two sides.

14



4 from bisceles arcs to coiled isosceles arcs

We stay in the same fibre as before, so we work in the same group of mapping
classes. And we are still interested into orbits of subgroups generated by full twists
on bisceles arcs.

We have accomplished so far, that we can express a tangled v-arc by means of
an isosceles arc and twists on bisceles arcs. Now in a similar way we want to relate
bisceles arcs and straight isosceles arcs to a third kind of arcs called coiled isosceles
arcs. With straight isosceles arcs we will deal only at the end of the section.

Again a bisceles arc and the associated coiled isosceles arc connect the same pair
of punctures and — though not isotopic in general — belong to one orbit of a group
generated by twists on specific bisceles arcs.

To make these statements precise, we first need to introduce some more geometric
notions.

Definition 4.1: The central coreis the disc of radius 7, at the origin with all source
points distributed on its boundary circle.

Definition 4.2: The peripheral cores are the discs of radius 7, centred at the points
Eleg,fil = 1. All critical points for A = ey are distributed on their boundaries,
the peripheral circles.

By looking at the following sketches we notice that a bisceles arc can take essen-
tially two different positions relative to a peripheral core which contains one of its
punctures.

Definition 4.3: A bisceles arc is called unobstructed if it is isotopic to some arc
supported outside the peripheral cores. It is called obstructed otherwise.

A bisceles arc of index pair 2174, 7172 is said to be obstructed on the i-side, if
p 1y J1J )
punctures of index 417}, are obstacles to unobstructedness.

If a bisceles arc is obstructed then at least one side cuts through the correspond-
ing peripheral circle and thus divides the set of critical points on the circle into two
subsets.

Definition 4.4: If a bisceles arc is obstructed, then a set of critical points is called
obstructing set, if the bisceles arc is unobstructed in the complement of the
other punctures, i.e. isotopic to some arc supported outside the peripheral
cores.

Since we may not isotopy arcs through punctures, we have to resort to changing
the isotopy class by means of full twists on some suitable bisceles arcs. This has
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to be done in such a way, that up to isotopy the terminal part of the obstructed
bisceles arc is simply replaced by a spiral segment coiled around the peripheral core.

To do so properly we choose a suitable obstructing set and employ twists on arcs
which are supported on pairs of parallels to the sides of the bisceles arc and which
connect a point of the obstructing set to another one or to a puncture of the bisceles
arc.

By construction a bisceles arc bounds a well defined convex cone which we call
the inner cone of the bisceles arc.

Thus given an obstructed bisceles arc, the critical points on its peripheral circles
in the inner cone form a natural obstructing set and the parallels for this obstructing
set are naturally called either inner parallels or obstructing parallels of the bisceles
arc.

Next we choose a topological disc, which contains the obstructed bisceles arc and
its inner parallels, but no further critical point. There is a natural way to identify
the mapping class group of this disc with an abstract braid group:

Number all traces from left to right — supposing the cone opens upwards as in
the sketch above. Let k' be the number of traces parallel to the first an let & be the
total number of traces. If 0;;, 1 < i < k' < j < k is the class of the half twist on
the parallel supported on the i* and j* trace, then we put

05 = Uj7k0i7ka;llc if 1<i<j< kl,
0i; = O']JO’LJ'O']_;- if k,<’l'<j§]€.
Then considering the elements o; ;41 as the Artin generators of an abstract braid
group yields the isomorphism, since it can be checked that arcs for the o; ;41 can be
chosen in such a way that they are disjoint outside the punctures.
Under this identification the full twists on obstructing parallels are given by

ol i<k <j<k (i,7)# (1,k).
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We can now prove the result concerning the new kind of arcs we want to consider:

Definition 4.5: Any arc supported on two radial rays and two spiral segments in
the no-neighbourhoods of peripheral cores is called a coiled isosceles arc.

Given a bisceles arc it is called the associated coiled isosceles arc, if both are
isotopic to each other up to full twists on inner parallels.

Example 4.6: Naturally we imagine a coiled arc to spiral monotonously towards
the peripheral cores. For [y = 6 and [, = 4 the given arc is a coiled isosceles arc.

O

Remark 4.7: By this definition an unobstructed bisceles arc is its own associated
coiled isosceles arc.

Lemma 4.8 Given a bisceles arc, there is an associated coiled isosceles arc unique
up to isotopy.

Proof: Due to the remark above in case of unobstructed bisceles arcs there is
nothing to prove, because there are no inner parallels.

Otherwise, given a bisceles arc connecting punctures of indices 19, J1j2, an
associated coiled isosceles arc — if it exists — must be isotopic to an arc supported
in the topological disc considered above. But up to isotopy there is a unique arc in
this disc which is supported in the complement of the peripheral cores and which
connects the same pair of punctures. Hence the uniqueness claim is proved.

Then we consider the half twists corresponding to the bisceles arc and the arc
just considered. They are identified with oy  and &; ; (as defined on page 41). Since
by A.5 they belong to an orbit under conjugation by full twists on the inner parallels,
so do the corresponding arcs and existence of an associated coiled isosceles arc is
shown. a

From the simple observation that a side of a bisceles arc may only cut through
either the central core or a peripheral core we can conclude that obstructing parallels
are in fact bisceles arcs.

Lemma 4.9 Fach obstructing parallel is a bisceles arc.

Proof: Suppose there is an obstructing parallel which is not a bisceles arc, then
there is a source point D on one of its sides. If B, C' denote the source points of the
bisceles arc, we observe that the triangle BC'D contains the apex A.
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In particular A is contained in the central core and thus the considered bisceles
arc is unobstructed. Hence the assumption lead to the contradiction that there is
no obstructing parallel. |

We prefer to rephrase lemma 4.8 using lemma 4.9.

Proposition 4.10 The class of a bisceles arc and the associated coiled isosceles arc
belong to the same orbit for the action of full twists on bisceles arcs which are inner
parallels.

For the closing remark we come back to the topic of straight isosceles.

Remark 4.11: A straight isosceles arc only occurs for j; —4; = [;/2 and by a short
check we see, that the corresponding traces are directing in opposite ways. So
they come close only if they pass the central core. Immediately we deduce,
that a straight isosceles arc is isotopic to its associated coiled isosceles arc.

5 from coiled isosceles arcs to coiled twists

The aim of this section is to identify the isotopy class of the transported arc at
A = 1 in terms of the Hefez Lazzeri system of paths. In fact this system yields a
well-defined identification of the mapping class group of the corresponding fibre with
the abstract braid group, so we finally can even identify the twists on transported
arcs with abstract braids.

We will see that a coiled isosceles arc transported along a circular segment at
radius t = 1 is a coiled isosceles arc again, so we have to introduce notations and
definitions in such a way, that we get hold of those geometric properties which even-
tually determine the braid associated to a coiled isosceles arc.

We get additional paths in the fibre at A = 1 by a modification of the initial

construction. Instead of a path segment as given in the second figure we may also
join a path which spirals around the core n full times and then down to a puncture
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Such a path is naturally selected by an index i, = i3 + nly and the notation w;,;,
is naturally extended to indices #1175 with iy an arbitrary integer.

Notation 5.1: Denote by wl1) the positive loop around all w; ;,, 1 <13 < [s.

Remark 5.2: For iy # j; the paths w;,;,,w;,;, do not intersect, whatever the inte-
gers 19, jo are.
Moreover the loops w*1) can be chosen disjoint from both.

Now we can introduce twist braids corresponding to arcs which are determined
by suitable joins of paths.

Notation 5.3: 0;,;, j,;, is the 5-twist on the union of w; ;, with w; ;,.

Notation 5.4: 7,4/, is the 1-twist on the union of w;,;, and w;, ;, with the wlkr)
11 < k1 < 71 in between.

Example 5.5:

O 0613,8j2

So far we have dwelled on the topology of the fibre at A = 1. Now we extract
the characteristic properties of the coiled isosceles.
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Definition 5.6: The winding angle of a directed arc I' in the plane of complex
numbers with respect to a disjoint point zg is —in generalization of the winding
number of a closed curve — defined by

- /_'dz, (i2 = —1).
r=— %0

Notation 5.7: We introduce notation for some characteristic angles:

i) 91,9, the angles between consecutive It*, resp. I roots of unity,

ii) ¥° := (j1 — i1)th, the angle at the apex of the coiled isosceles arc with
index pair 7172, j1j2, note that 0 < 9° < 2,

iii) 9;,9;, the winding angle of the i-side, resp. j-side starting at the apex,
with respect to the center of the core of the corresponding peripheral
circle,

iv) 19;? :=19; + 9°, a useful shorthand.

The winding angle of a spiral is positive if it turns positively when approaching
the peripheral core.

Example 5.8: In the example considered before, suppose the horizontal line sup-
ports the i-side then ¥; = —7,9; = %, otherwise ¥; = £,9; = .

37 6

We want now to pin down some geometric properties shared by the coiled isosce-
les arcs associated to bisceles arcs or straight isosceles arcs.

Lemma 5.9 The winding angle of a side of a coiled isosceles arc is in the open
interval | — 2, 2],
Proof: The side of the bisceles arc is parallel to a side of the associated coiled

isosceles arc. If the endpoint is on the half of the peripheral circle facing the origin,

then the side is unobstructed and the winding angle is therefore in the range [- 7, 7].
Otherwise it may be obstructed and there are two ways to make it unobstructed
depending on the other side. But in any case the absolute value of the winding angle

does not exceed 37” O
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Lemma 5.10 The following inclusions hold:

if9° <m: 9 ¢ ]—37”,%],
;€ [—;37#[;
if9°>m: ¢ [—%,37”[,
;€ ]—3777,%]-

Proof: 1If the endpoint of the i-side is on the half circle facing the origin, then its
winding angle is in [-7, 7].
If the endpoint is on the opposite half circle, then the winding angle is in either

]- 2, —Z[or]%, 2] and the sign depends on the second endpoint. The sign is that
of m — ¥° for the i-side and the opposite for the j-side. a

Moreover the considerations of this proof immediately yield the observation:

Lemma 5.11 The j-side of the bisceles arc is disjoint from the central core if and
only if

either V¥’ <7m and 9;€ ]g, —3;[7
3 7w
9° d 9; - —, ==
or >mToan i € ] 5 2[

The next thing we have to exploit is the fact that at a parameter A = ey bisceles
do not exists for all index pairs.

Lemma 5.12 A bisceles arc with index pair 1119, j1jo2 exists at A = ey only if
i) 12 = ja,
i) ¥° < 7w and sin ¥; < sin 97, 97 < 3
or

iii) 9° > m and sin 9; > sin 19;?, 19;? >

[SIE]

Proof: In the first case the claim is obvious since the traces have their source
points in common. So from now on we assume that the source points are distinct.
Let us consider the case 9° < 7 next. Then the possible traces for the index 271y
are sketched near to the central core as well as the direction of possible traces with
index j1j3. The second inequality is now read off easily, since sin ¥; is the vertical
component of the i-side and sin 97 the maximal vertical component of the j-side.
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N |

sin ¥ increases l 9=0

\\‘__’//

Suppose now 97 exceeds 37”, then ; exceeds 7 and by 5.11 the j-side does not
pass the central core. To be cut properly by the trace of the i-side its source point
must be on the right hand half of the circle. But the horizontal component of 97 is
cos U7 which is not positive for 97 € [2Z,9° + 22].

The final case #° > 7 can be handled in strict analogy. a

Since these better bounds hold obviously in the case of straight isosceles we get
an improvement on the assertion of 5.10:

Lemma 5.13 The following inclusions hold:

if 9°<m: O€ ]—37”,%],
T 37 o
,19] [ 277_19[7
if 9°>w: 0 € [;,3777[,
T s
9, — —9° =].
.76 ]2 72]

Now we combine the results to obtain a relation between the winding angles.
Lemma 5.14 The winding angles are subject to
9; Sﬁ;gﬁz—}-Qﬂ'
Proof: Suppose ¥° > m. Then by lemma 5.13 9? €]5, 5 + 9] so

77371'[
2’2"

Also the conditions in the latter case imply ; < 47, since sin 9; > sin 97 by lemma

i) 0; <97 or i) 9,07 €]

— J

T 37

5.12 and the sine function is decreasing in |7, 5F[.

On the other hand by lemma 5.13

. .. 3r 5
i) U427 > 97 or it) Y+ 2w, 90 E]—ﬂ-, —ﬂ-[
j A D)
and again the second case is a subcase of the first, since the sine function is increasing
3 57
on [, *F[.
The case 9° < 7 is done analogously. O

Next we investigate the impact of parallel transport.
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Lemma 5.15 Under parallel transport along a circle segment of winding angle ¥ at
radius t = 1 a coiled isosceles arc is mapped up to isotopy to a coiled isosceles arc
with winding angles changed by —9.

Proof: The line segments of the isosceles arc belong to the part which is rotated
rigidly by the flow of the vector field in 2.12. The total rotation is of angle 9.
On the other hand the spirals are wound resp. unwound, since the endpoints are
fixed relative to their peripheral centres, while the points on the boundary of the
2ny-discs are relatively rotated in opposite direction, hence the amount and sign of
the change in the winding angles. O

Remark 5.16: If we introduce ¥} := 9; — 9, (similarly 9; := 9; — ), then 9; is the
i-side winding angle of the isosceles arc transported from angular parameter

9 toA=1.

Lemma 5.17 Suppose a coiled isosceles arc is associated to a bisceles arc or to an
isosceles arc with index pair i1i3, j1j2, 11 < J1, t2 # J2, then the full twist on any of
its parallel transports to A = 1 along a circle segment of radius t = 1 is identified
with one of the abstract braid elements

Syl <idyp < gy <y 1< g% — i) < o

Ti212"2,]'1]2

Proof: The transported coiled isosceles arc at A = 1 can be represented in a
unique way by the join of loops w*) i; < k; < j; and two paths Wity Wi
with @}, j5 suitable chosen. Hence the corresponding half twist is identified with the
abstract braid element ;

We note further that

(g =Dy = 95 —7m+ (i — 1)dh,
(2/2—1)192 = 19;-—7T+(i1—1)?91.

TR
12947172

Computing the difference using ¥, — 9} = 9; — ¥; and (ji — i1)¥; = 9° we get:

(Ja—ip)d2 = ;-0 +9° = 97—,

In case j5 — 14, < 0 this implies 19;? —19; <0, in case j§ — 1, > l; we conclude
2r < 97 — 9;, so both these cases contradict the assertion of lemma 5.14, since
neither 19? = 19; nor 19? = 9¥;+2r is possible under the assumption iy # jo. Therefore
we get 1 < jh — i, < [y, as claimed. O

Example 5.18: Suppose the example from page 17 has been transported by an
angle ¥ = 27 along the circle arc of radius ¢ = 1. Following the recipe above

3
we get:

o

Hence assuming /; = 6,/, = 4 the associated abstract braid is 793 45.
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Let us call a coiled isosceles arc in the fibre at A = 1 associated to a local v-arc,
if it is obtained from the local v-arc by parallel transport along a radial segment, a
transformation by full twists to get the associated coiled isosceles arc and parallel
transport along a circle segment at £ = 1.

We note then the following converse to 5.17:

Lemma 5.19 Fach element 7'22”-2’j1]-2, 1<iy <51 <y, 1< gy —iy < Uy, is the full

twist on a coiled isosceles arc associated to a local v-arc.

Proof: There is a local v-arc for each index pair t129,J172, 1 < 41 < j1 < [y,
1 < 19,72 < Iy. For each such local v-arc there is an associated coiled isosceles arc in
the fibre at A = 1, which determines some 7 as above by 5.17. All others are then
obtained by changing the winding angle of the circular path by suitable multiples of
27. O

The case 13 = jo requires extra care. We have analogues to lemma 5.17 and
lemma 5.19.

Lemma 5.20 Suppose a coiled isosceles arc is associated to a bisceles arc or to an

isosceles arc with index pair 1112, j1J2, 11 < J1, 12 = J2, then the full twist on any of

its parallel transports to A = 1 along a circle segment of radius t = 1 is identified
with one of the abstract braid elements

2 . . . .

Tivil jail 1< <1 <y, ]é - zI2 € {0712}-

Proof: With the same argument as in the proof of lemma 5.17 we can exclude

the cases j, — i, < 0 and g, — i}, > ly. Since ig,4, and jq, s, may only differ by

multiples of I we are left with the two possibilities of the claim. a

Lemma 5.21 Given an index pair i11q, j1j2, 1 < i1 < j1 < Iy, jo — i = Iy, at least
one of Ti iy irins Tiviajrjo 15 the half twist on a coiled isosceles arc associated to a local
v-arc.

Proof: There is an local v-arc for the index pair 2142, 7172, 1 < 41 < j1 < 4,
1 < iy < [ly. We know that for each such local v-arc there is an associated coiled
isosceles arc in the fibre at A = 1, which determines one of Tivil, jriy Tirid gy 88 above
by 5.20. All others are then obtained by changing the winding angle of the circular
path by suitable multiples of 2. a

We close this section be identifying the twists unambiguously under special geo-
metric assumptions.

Lemma 5.22 Given any coiled isosceles arc with punctures of indices 111z, J1]2,
11 < J1, 19 = Jo, facing the origin, then the twist on any of its parallel transports to
A = 1 along a circle segment of radius t = 1 is identified with one of the abstract
braid elements

Tivil g1

with iy, = 7, if 9° < 7w and i, + Iy = j, if 9° > 7.

1< <ji <y,
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Proof: We run through the same consideration as in 5.17. But in the final step
we are stuck since now ; = 19}’- mod 27, so ¥; = 19}’- and 9; = 19}’- — 27 are possible
by 5.14. Since both punctures face the origin by hypothesis,

].

T T
792' ool V; Y
€= 5hiel=5.5

In case 9; = 19;? which corresponds to i, = j) we must have ¥° =1J; —9; < 7. In case
9+ 2r = 79? corresponding to i), 4+ Iy = j we conclude that ¥° = 27 +9; — 9; > .
O

Lemma 5.23 Given any coiled isosceles arc associated to a bisceles arc with punc-
tures of indices 1119, j1j2, 11 < J1, 12 = J2, one of which exactly facing the origin,
then the half twist on any of its parallel transports to A = 1 along a circle segment
of radius t = 1 is identified with one of the abstract braid elements

ity 1 < < g1 < lyyig 4 1o = g,
under the assumption that 9° < 7.

Proof: The claim is secured by similar considerations as in the proof of 5.22. We
know that 9; = 19;? or ¥; = 19;? + 27 and we imposed ¥° < 7.
If the puncture of index 2,7, faces the origin, then from 5.10 and 5.11:

T T 3T

v; € [_§a 5])1% 6]57 ?[

If the puncture of index 7775 does not face the origin, then we get:

3r 0w

™
ERE) )

T
9; €] - Iz
E] 22

[7ﬁj€[

In either case we can check that we are left with the possibility J; = 9? — 2. Hence
J4 =i, + I3 holds in the index pair of the corresponding abstract braid. a

6 from local w-arcs to coiled twists

Having understood the parallel transport of local v-arcs sufficiently well, we can now
consider the parallel transport of local w-arcs. They are only considered close to the
degeneration at A = 0 with i, = j5.

Let us first look at parallel transport along circular segments of very small radius.

Lemma 6.1 Under parallel transport along circle segments of radius € << nq local
w-arcs are mapped to local w-arcs.

Proof: This is immediate, for the parallel transport can be realised by the flow

of the vector field in 2.13, which is rigid rotation for the support of the local w-arcs.
O
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Next local w-arcs are transported along a radial segment. We get then tangled
w-arcs in the fibre eg. The simpler arcs, to which we want to compare them, are
called isosceles w-arcs and they relate to isosceles arcs as local w-arcs relate to local
v-arcs.

The isosceles w-arc of index pair 7119, j1i2 can be best understood from the
isosceles arcs of index pairs 7119, ii"ig and iiI-iQ’jliQ’ which are called its constituents.
It is isotopic to the first constituent acted on by a positive half twist on the second.
It can be chosen to be composed of four line segments, two of which are supported
on the traces of the punctures 7123 and j;iy, while the middle pair forms a sharp
wedge over the trace of the puncture s, cf. the example below.

An isosceles w-arc is called correspondingto a given tangled w-arc, if both connect
the same pair of punctures.

The same methods as in the case of tangled v-arcs can now be employed to relate
tangled and isosceles w-arcs.

Lemma 6.2 Up to conjugation by full twists on bisceles arcs of shorter length a
tangled w-arc is isotopic to the corresponding isosceles w-arc.

We now make an observation which will help us to be concerned mostly with
isosceles w-arcs which are supported outside the peripheral circles except for an
arbitrarily small neighbourhood of the puncture ZiI-ZQ They shall be referred to as
unobstructed isosceles w-arcs.

Lemma 6.3 Any local w-arc for the index pair 1112, j1i2 can be transported to radius
t = 1 along a circle segment of radius t = € and a radial segment such that the
corresponding isosceles w-arc is unobstructed, except in case of jy —i; = (I1 +1)/2.

Proof: In the cases under consideration either j; — iy < /1/2 or j; — 21" > 1/2.
We choose 9 = (iy — 1)9; — (j; — 1)9; F § respectively, so we get

(i = 1) = (b = D)y = D) > = for by = i1, i ju.

NN

Therefore at A = ey the punctures with index pairs 7715, ii"ig,jliz are all situated on
the halfs of their peripheral circles facing the origin. Accordingly the isosceles w-arc
corresponding to the transported local w-arc is unobstructed. a

In the remaining case we can only arrange that the punctures of the i-side and
of the j-side face the origin.

Lemma 6.4 Ifj1 —iy = (I1+1)/2, then the local w-arc can be transported to radius
t =1 along a circle segment of radius t = ¢ and a radial segment such that

i) only the wedge of the corresponding isosceles w-arc is obstructed,

ii) every critical point of its peripheral circle belongs to the inner cone of either
of the constituents or is of index zf’w
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Proof: We choose 9 = (i3 — 1)9; — (51 — 1)91 + 5 and get
|(i2— l)ﬁz—(kl— 1)’!91—’19)| Z for kl :il,jl,

(i = 1)y — (i = 1)y —9)| <

YRS

So the punctures of the ¢-side and of the j-side of the corresponding isosceles w-arc
face the origin as before, but the wedge is obstructed. Since both inner angles are
less than m, all critical points on the corresponding peripheral circle belong to an

inner cone, except the puncture of index zfzz a

Example 6.5: An isosceles w-arc with obstructed wedge is obtained in case of
l] :3,12:4, i2:22

The final parallel transport of an isosceles w-arc along a circular segment at
radius £ = 1 can be understood using its constituents.

Lemma 6.6 Parallel transport along a circle segment of radius t = 1 of an unob-
structed isosceles w-arc yields an arc isotopic to the parallel transport of its first
constituent acted upon by a positive half twist on the parallel transport of its second
constituent.

Proof: The relation between an isosceles w-arc and its constituents is preserved
under parallel transport. a

Lemma 6.7 Up to full twists on bisceles arcs of shorter length an isosceles w-arc
obstructed on its wedge only is isotopic to the coiled isosceles arc associated to its first
constituent acted upon by a positive half twist on the coiled isosceles arc associated
to its second constituent.

Proof: The same full twists on inner parallels which map the constituents to the
isotopy classes of their associated coiled isosceles arcs also maps the isosceles w-arc
to the isotopy class of the arc obtained from the associated coiled isosceles arcs. O

Let us finally summarize the results of this section:
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Lemma 6.8 Local w-arcs in a fibre close to the origin and twists among the follow-
ing elements with 1 < iy < j; <y, i), =iy — lg,

-1
2 . .
Ty g Tiay T ot — < /2
zlzé,zjzé z?‘z;,]mé leéﬂrlé’ N L= 1/ ?
-1
2 . .
Ty o Ty o T 4, -1 >0 /2+1
niite, T ity 1T 2 h/240,
-1 2 . .
T, o4 TA ., T ot - =0L/2+1/2.
zlz;,zf'zz zf’z;,]lzz 111572?-12’ Jn 1 ]/ + /

correspond in such a way that

i) each local w-arc can be transported along a circle arc of radius € and a radial
segment tot = 1, such that the twist on the corresponding isosceles w-arc trans-
ports to A = 1 along the circle of radius t = 1 to yield one of the given twists
up to conjugation by full twists on obstructing parallels to its constituents.

ii) each given twist can be obtained from a local w-arc as in i).

Proof: If jy — 4y < 11/2 then (j; — i7)dy, (47 —41)91 < 7, hence by 5.22 and 6.6
we can get an element of the first row, since by the braid relation it does not matter
if we transform the first constituent by a positive full twist on the second or if we
transform the second by a negative full twist on the first.

Similarly if 71 — zi" > [1/2 then (zi" —11)% < 7 but (j1 — ii")'t?l > T, S0 we get a
twist of the second row, again with 5.22 and 6.6.

In the final case we argue along the same line with 5.23 and 6.7, so also in case
J1—11 =11/24 1/2 we get twists among the given ones.

Asin the similar cases proved before, we get all twist this way as we can transport
around the circle at £ = 1 as many times as necessary. |

7 the length of bisceles arcs

In this section we want to compare the length of bisceles arcs to a real number we
assign to index pairs.

Definition 7.1: The modulus of a pair 4149, j1j2 of indices is given by
sin(ﬂ'%)

In this way a modulus is assigned to all objects with an index pair.

Since modulus is in some way complementary to length, we introduce it also for
bisceles arcs.

Definition 7.2: The modulus of a bisceles arc is the shorter of the two distances
from the apex to both source points.

Lemma 7.3 The modulus ty of a critical parameter toes, for the pair i1t9,j1j2
coincides with the modulus for that index pair.
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Proof: Given the traces at angle 9y the pair corresponding to 7179, j1j2 meet at
an apex which forms an isosceles triangle with both source points on the circle of
radius 72. So with § = +7 272, ¢ = £2747-2 the length of the sides equals the
modulus as can be seen from the following sketch.

Up) N2

a

Lemma 7.4 The modulus of a bisceles arc bounds the modulus of the corresponding
index pair from below. Fquality holds only in the case that the bisceles arc is an

1sosceles arc.

Proof: The apex of the bisceles arc which depends on the parameter angle 9
determines a triangle over the base given by the two source points. The base and
the angle over it are independent of 9, whereas the length of the shorter side is the
bisceles arc modulus. The modulus of the pair is the length of a side if both sides
are equal which happens for a specific 9.

The claim is now obvious from the following sketch, my > mg = min(mq, my):

The algebraic argument reads as follows: By the cosine formula
m?} + m3 — 2mymy cos(apex) = 2m} — 2mj} cos(apez).
We can get a lower bound for the l.h.s. assuming w.l.o.g. m; < mg:

m? + m2 — 2mymy cos(apexr) = (my — 777,2)2 + mymgy(2 — 2 cos(apex))

m3(2 — 2 cos(aper))

v

Then the conclusion my > m; is immediate. a

Now we compare the modulus of arcs we encountered in preceding sections.
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Lemma 7.5 The modulus of a bisceles arc supported on the essential traces of a
tangled v-arc is strictly larger than the modulus of the corresponding isosceles arc.

Proof: This claim follows from lemma 7.4 above and the remark on page 14. O

Lemma 7.6 An obstructing parallel to a bisceles arc is of strictly larger modulus.

Proof: lLet us consider first the case that the obstructing parallel has a side in
common with the obstructed bisceles arc:
We have thus a triangle ABC' formed by the source points A, C' of the traces of ob-
structed bisceles arc and its apex B. Similarly we have a triangle AF D formed by the
source points A, D of the obstructing parallel and its apex K. We have gag = g4B
and B € AE. Moreover gpg|lgsc and D is separated from A by ggc. Denote by F
the intersection of gpr and gac. Then gpg is divided into rays bounded by F resp.
I and the finite segment E'I’.

Now D may not be on the ray bounded by F, since then B is in the interior
of AC'D, hence in the central core contrary to the assumption on obstructedness.
Neither may D) belong to EF since otherwise AD cuts BC which is impossible since
BC is on the obstructed side of the bisceles arc and may hence not be cut by the

chord AD of the central core. So Fis on DF.
E

/c A
D

Obviously now we have |[AB| < |[AE| and |BC| < |EF| < |DE|. In case |[AB| <
|BC| we get |DE| > |EF| > |AE| > |AB| by proportionality. In case |BC| < |AB]|
we similarly have |[AF| > |AB| > |BC| and |DE

> |BC/|. So in any case we get
min(|DE|, |AE|) > min(|AB|,|BC|).
which is the claim.
Suppose now that the obstructing parallel has no side in common with the ob-

structed bisceles arc, then there is an intermediate obstructing parallel which has a
side in common with each. So the full result is obtained in two steps as above. O

Lemma 7.7 The full twist on a bisceles arc which is not an isosceles arc transported
alongt =1 to X =1 is in the group generated by all twists T° of modulus larger than
the modulus of the bisceles arc.
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Proof: The obstructing parallels are bisceles arcs of strictly larger modulus.
Hence we may as well assume the bisceles arc to be unobstructed. Its parallel
transport is then isotopic to an arc defining some 7 of larger modulus, which is
strictly larger in case the bisceles arc is no isosceles arc. a

8 the discriminant family

In this section we will work with the discriminant family of the families of function
we consider. In order to compute the versal braid monodromy in the next section,
we have to find the locally assigned groups. Moreover we need to compare the par-
allel transport in the discriminant family to parallel transport in the model family.

Lemma 8.1 The discriminant and the model discriminant family over the punc-
tured parameter bases have a common unramified cover.

Proof: The equation for the discriminant family has a formal factorisation

1 +1 l%ﬁ 141 ; 41
H (z—ah & —ey? &) = H((z—ozll &)2—ezx™) = 0.

1 1 1
511 7522:1 11:1

as opposed to the equation for the model discriminant family:

H (2= A& —méa) = H (=MD =n2) = 0.

1 .l !
alez=1 e

These equations coincide for né"’ = 5122"'1 and A1 = /111, Hence the family parame-

terized by [
la+1

[T(-*e) -5t = o

oy
is isomorphic to the pull backs of the discriminant family and the model discriminant
family by the covering map 8 — a = " resp. B — A = gt if 512"”"1 = né"’.

In this way we can understand polar coordinates of the bases of the two discrim-

inant families as different coordinates of the universal cover of the bases punctured
at the origin.

So with polar coordinates r and 6 in the base of the discriminant family we can
immediately compare parallel transport in the two families:

Lemma 8.2 Parallel transport in the discriminant family and in the model discrim-
inant family coincides if r) T =t and 0(1; + 1) = 91,

i) along radial paths teg, t € [to, 1] and reg,r € [ro, 1],

ii) along circular paths of radius 1 of winding angles ¥ and 6 respectively.
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We can now define standard paths in the bases of both families by asking them
to be supported on radial segments and circular segments as in the lemma.

And for each standard path in one base we get another one in the other with the
same parallel transport.

Example 8.3: A system of standard paths for the discriminant family associated
toly = 4,1l = 2 is thus related to standard paths in the base of the model
discriminant family:

To get the versal braid monodromy of the discriminant family, we therefore need
to transfer the locally assigned groups from local Milnor fibres of the discriminant
family to local Milnor fibres of the model discriminant family and transport them
along all possible standard paths.

We assign a group to a local Milnor fibre in the model discriminant using the
fact that the fibre is isomorphic to a local Milnor fibre in the discriminant family by
way of the two finite covering maps.

Lemma 8.4 The group assigned to a Milnor fibre at a regular parameter tieg,,
sufficiently close to a singular parameter toeg, # 0 with t1 — to > 0, is generated by
full twists on local v-arcs.

Proof: The singular fibre corresponds to a function with non-degenerate critical
points only, cf. the proofs in [15, L. 5.10,5.11]. So by definition the locally assigned
group is generated by mapping classes fixing all punctures and supported on small
discs each of which is a Milnor fibre for just one multiple puncture.

By close inspection we can see that the local v-arcs are supported on such discs

and the full twists on local v-arcs generate the group of all mapping classes of each
disc which preserve the punctures. |
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Lemma 8.5 The group assigned to a Milnor fibre at a reqular parameter tiey,,
sufficiently close to a singular parameter A = 0, is generated by full twists on local
w-arcs and %-twists on local v-arcs with index pair 1119, zi"m

Proof: The singular fibre corresponds to a function which has ly critical points
of type A;, with distinct critical values. So by definition the group locally assigned
to each disc, which is a local Milnor fibre of a multiple puncture, is generated by the
mapping classes of the braid monodromy of the singular function germ it corresponds
to.

Each of the critical points of type A;, is unfolded linearly, so the local Milnor
fibre can be naturally identified with the Milnor fibre encountered in [15, L. 4.7].
And in combination with [15, L. 4.6] we conclude that local generators are given
by the %—twists on v-arcs with index pairs #7129, ii"ig and full twists on arcs winding
positively from a puncture of index i1iy to a puncture of index jyiy, jp > i = i1 +1,
around all v-arcs.

By lemma A.3 we can see that instead we can use the twists of the claim to
generate the same group. O

To summarize the preceding discussion we should note:
Remark 8.6: The versal braid monodromy of the family of functions
:vlll'H —a(lh + Do + :vl?”l —ea(le + 1)zy

is generated by the parallel transport of the appropriate twists as given by
lemma 8.4 and lemma 8.5 along all standard paths in the model discriminant
family.

9 conclusion

In the progress of the subsequent argument we have to replace generating sets for
subgroups of Br,, at several points. The key lemma to justify such transitions is

Lemma 9.1 Given two finitely filtered sets of elements of a group
S=5,28,-1... D54, T, D>Th_1... DT
Then S and T generate the same subgroup if
i) Ty = S,

ii) givent € Ty — Ti—y there is s € Sk, such that t is equal to s up to conjugation
by elements in (Sk_1),

iii) given s € Sy — Sg_1 there ist € Ty, such that s is equal to t up to conjugation
by elements in (Si_1).

The last hypothesis may be replaced by
iii’) given s € Sy — Sg_1 there ist € Ty such that s is equal to t up to conjugation

by elements in (Tx_1,Sk—1).
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Proof: We show (T}) = (Sk). So i) starts the induction. Then (T}) C (Sk) since
by induction (Th—1) C (Sk—1) C (Sk) and by ii) t € T, — T,—1 implies ¢t € (S).

On the other hand by induction (Si_i) C (Tx-1), therefore s € Sy — Sy
implies s € (T4, Sg—1) C (1}) if iii) holds resp. if iii’) holds. In either case we get
<Sk> C <Tk>. O

Its first application is in the proof of the following claim:

Proposition 9.2 The versal braid monodromy the family of functions
$111+1 — Oé(ll + 1)%1 + 1'122+1 — 82([2 + 1)1‘2

is generated by twists (¥ =iy 4+ 1, i =iy — ly):
2
Tivig,jnja>

L 1<idy <if <h,1<iy <1y,

Y s iR |
2122,Z1 (3]

1<t < <0, 1< jg =iy <y,

-1 -+ . .
Tm;,z'1+z'2Tz‘ji;,jlizTili;,iTiz’ < <5 <, 1 <4 <y,

Proof: The versal braid monodromy of a one parameter family can by definition

be computed from their locally assigned groups of mapping classes and the parallel

transport of these groups along a distinguished system of paths in the associated

discriminant family, cf. [15, L. 5.7]

The locally assigned groups in the discriminant family were given in lemma 8.4
and lemma 8.5 to be twists on local v-arcs and local w-arcs.

So by the closing remark of the last section parallel transport of local v-arcs and
local w-arcs along all possible standard paths in the base of the model discriminant
family generate the versal braid monodromy.

Note that the length of the circular part is not necessarily restricted to [0, 27].

We denote by T the set of braid generators obtained by parallel transport and
identification using the Hefez Lazzeri path system in the fibre at A = 1.

T is divided into subsets according to the index pair of the punctures connected
by the corresponding arc.

The given set S of braid group elements is also divided into subsets according to
the modulus the index pairs of each element, which is unambiguous since we note
immediately that the modulus of all index pairs occurring in the second and third
row is zero.

Since the moduli of elements in T" and S form a finite descending sequence
my > ... > m, = 0, we can impose finite filtrations

Ty :={r € T\m(r) > my}, Sk:={7€ S|m(r)>my}.

To prove our claim, we are thus left to check the hypotheses of lemma 9.1:
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Since I3 > 1, the maximal modulus m; is positive. Hence S; only contains twists
on parallel transports of local v-arcs. The local v-arcs of highest modulus get not
tangled when transported along a radial arc, since entangling bisceles arcs have to
be of larger modulus 7.5. The isosceles thus obtained are unobstructed, since ob-
structing parallels would be of larger modulus, 7.6. By 5.17 each element of T; is
in S;. Conversely by 5.19, each element in Sy is an element in 1" of equal modulus,
hence in T3.

Given an element in 7" of modulus my > 0, which is the parallel transport of
an local v-arc, then there is an element in S obtained from the same local v-arc
transported along the same path, but conjugated by twists which are the parallel
transports of bisceles arcs of strictly larger modulus, 7.5, 7.6. So the second hypoth-
esis of lemma 9.1 holds for elements in 1} — I,_; of positive modulus.

Conversely each full twist in S of positive modulus is obtained by parallel trans-
port from an local v-arc of equal modulus up to twists by entangled and obstructing
bisceles arcs, 5.19. So due to 7.5, 7.6 again the third hypothesis holds for the twists
obtained from local v-arcs of positive modulus.

We are left with elements of modulus m, = 0 and consider local w-arcs first.
Though we have to transport along a standard path to get full twist elements in
T, —T,_1, we have to rely on a result which makes use of a different kind of paths.
We recall that in section 6 we transported a local w-arc along a circular arc of small
radius, then along a radial segment and finally along a circular segment of radius
t=1.

Each standard path can be coupled with a path of the second kind in such a way,
that the closed path obtained as their join has winding number zero with respect to
the origin. Hence parallel transport from A = 1 along this closed path amounts to
conjugation by a composition of full twists of positive modulus in T),_;.

We deduce that the elements of I" obtained by parallel transport along stan-
dard paths yield the elements given in lemma 6.8 up to conjugation by full twists in
T,—1 and S,_;. By lemma A.7 they are even conjugate to the full twists in S, — 5, _1.

This relation can obviously be reversed in the sense, that for each full twist in
S, of modulus zero we have an element in I’ equal up to conjugation by elements in
Sn—l and Tn—l-

Finally we have to address the %—twists inTandS. A %—twist in " is obtained
by the parallel transport of a local v-arc with index pair ilig,if’ig. We conclude
that up to full twists elements in S,,_; and T,,_; the %—twists in T’ are among the
elements given in lemma 5.20. By lemma A.6 they are among the elements in S
even up to full twists in S,,_; and T),_;.

Conversely the pairs of twists considered in lemma 5.21 correspond bijectively
to the %—twists of S and are both equal up to conjugation by full twists of positive
modulus by lemma A.6. We deduce that also each %—twist of S is an element of T
up to conjugation by full twists in S,,_; and T),_;. a
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We modify the generating set for the families of type f,:
Lemma 9.3 The versal braid monodromy of the family
£C{|1+1 — Ot(ll + 1)%1 + .TZQTH — 82([2 + 1).772

is generated by twists

iy 1<i < g1 <h, 1< gy — iy <y,
O ity 1S < <1<y <,
0 iy 1 <if <j1 <1<y < .
Proof: By definition 72, | =03 c 1<y < <hy 1<y < Uy

2122,Z1 2'2 2'12'2,7:?-7:2
Moreover the two generating sets of lemma A.3 generate the same subgroups via the

homomorphisms
Vi 2 Oiy 1 7 Tigig i -
Hence generators

3 2
a. . 4. ., 0; ;. ;-
2112,21+22’ 21%2,71%2

1<y <it <1 <.

may be replaced by

3 . -2 «2 2 . -+ .
Uz'liQ,ijfz'rz’1/’7'2(‘777,¢+‘7i1,j1‘7i,i+)a 1< <af <51 <1y

. _ . -1
Since the latter elements coincide with 7., , 7%, . 7., 4+  we are done. O
T1%9,07 12 1) 85,7102 tlPg:%q 12

Definition 9.4: The cable twist in Br;;, is defined to be the element

11 12—1

Op 1= H H Tiria it

i1 12
(They were already considered in the disguise of turning the peripheral circles.)

Lemma 9.5 The versal braid monodromy of a family of functions f,(z1,z2) is gen-
erated by the elements

0-?12'2,‘7'1‘7'27 12 = J2, 71'- = J1,
0-1'212'27]'1_7'27 i? = j27 Zil- < j17
t182 12 with 1 < 14 < 71 §l1,1§i2—j2<12.
Proof: We have to show that the elements in 9.5 and those in 9.3 generate
the same subgroup of Bry,;,. Since both generator sets have the elements with equal
second index component in common, it suffices to prove that the remaining elements

of each set generate the same braid subgroup.

36



Notice that both sets are filtered by level, j; — i1, which is underlined:

Sl = {02122’]1]2‘1<Z1<]1<l1 ]1—11—1 1<22—]2<l2}

Sy = 51U{02122]1]2‘1S11<_]1Sll,]1—21:2,1S12—j2<12}
Sll = {02122,‘71‘72‘1<21 <.71 <l1;1<22_]2<12}

T o= {RLapl < <i<hji—ii=11<j—i <1y}

T, = TlU{m”m‘lﬁil<j1Sllajl—i1=271<j2—i2312}
n, = {T21227]1J2‘1<21 <n <ll’1<]2_22<12}

For the proof we need therefore to check the hypotheses of 9.1 only: The first,

Sy = 11, is immediate, since elements of level one coincide almost by definition
. ., N
Civiayitia = Taifyitin 12112 =12

For the inductive hypothesis lemma A.8 yields, that elements T 10 ki ky @0d 02112 kika
with 1 < 41 < k1 < 11,1 < ke < Iy are equal up to conjugation by elements in
Sky—iy—1 U Tk —i, -1, i.e. by elements of smaller level.

To extend this result to the remaining elements we consider the action of overall
conjugation by é4. Since this conjugation is level preserving, we get, that
i

-1 -1 -1
2 _ gy 2 —i 2 g 2
Oivig,krjs = o Oi1ly kg 5(15 ’Ti1i§7k1j2 =0 T010,k1 ks 5(15

are equal up to conjugation by elements of smaller level since 02-21[2 ki ky TZ-210 kyk, ATE.
k) k)

2 .

1192,71 J2 Tiviz, 1z

conjugation orbit of a UZ Ly by TESP- 10 kik, DY Og. a

The hypotheses are hence met, for each generator o; is in the

Lemma 9.6 The versal braid monodromy Gy of the family g,(x1,x2) restricted to
the unit disc is generated by the elements

o3 . . 1Si2:j2—1<l2,1§i1§l17

112,012

0 iyiviy 1 <2 <ja—1< Iy, 1<y <y

2102,0172"

Proof: The only critical parameter in the disc || < 1is @ = 0. The correspond-
ing critical function is wll'i'l (lh+ 1z + wl”l which has [y critical point of type
A(ly) with distinct critical values.

The bifurcation divisors of the families of functions parameterized by «,

_llf + wl2+1 -|—€204(12 + 1)%27 fll = 17

embed into the bifurcation divisor of g,, and the corresponding embeddings of punc-
tured discs induce embeddings of mapping class groups which correspond under the
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standard identifications with the braid groups Br;,;, and Br;, by the Hefez Lazzeri
choice of a strongly distinguished system of paths to the embeddings

Giy t Oy 7 Titigiingey 1 <01 <0

The versal braid monodromies of the families above can be identified with the braid
monodromy of [15, L. 4.6] generated by 07,07 . ,|i — j| > 2 and yield then the
versal braid monodromy of the family g, as claimed. a

Remark 9.7: The subcable twists on indices 7115 to 7172 are defined as

J2—1
Oivin,irjo 1= H Ty kg ink -
ko =1y
J2—tiz+1 . R Ja=t2+2 + ¢ ro Sla+1
iinirg, 18 central and &;7; iy, isin G2, and so is 5¢ .

Lemma 9.8 For given iy < jy the same braid subgroup is generated by the elements

2
Uiliz WJ1j2

1 <ig— g2 < o,

and by suitably chosen Gg-conjugates of elements

Tiviz o 1 <dg,y g2 < oy ia, iy # J2,
2 2 -2 4o
Tivin,jiiz Tirio,jide Tivig,griz < gy =J2 < l2’
2 2 -2

-+ _ .
iviz i1z Tirin,gi g Tinia 1o 1< g =72 < .
Proof: We introduce filtrations T'="T; D T} and S = S5 D 51 on the two sets of
elements by

51 = {‘72212'2,]'1]‘2“ <y, ja < g, iz, 15 # jo}
T = mwmhg,]g #Z0 mod (I+ 1)}
Since ()(l;"'l € (3, we may conjugate the elements of S; by all powers 5;n(l2+1),
similarly 5;2?17 ,, is an element of Gi9, hence all elements
m(l+1), 2 —m(lp+1)
5q§ ’ ( 771i27j1j2)5¢ ’ )
5m(12+1)( ly+1 2 gl ) -m(l2+1) _ 5 (l2+1) 2 5™ m(l2+1)
@ gl Yii2,0152 11,5102/ Y - Y 212271115 )

with j} = jo — Iy — 1, are Ga-conjugates of elements in S;. In fact each t € T} is
such a conjugate and each s € S; has a conjugate in 7.

To complete the proof we observe that the braids 67 72"'1

J1t 27 112
elements of Gy again. Hence we may invoke 9.9 to show that the elements in Sy — .5,
have Go-conjugates which are equal up to conjugation by elements in T} to elements

resp. 072 are
711 21]2

2 . .
Tirign09 Oipt gy 1 S12< lg,1 < ja <y,

which in turn are contained in 15 — 17.
Because conjugation by powers 5$(l2+1) yields all elements of 1’3 — 1 and pre-
serves the set T3, all elements in Ty — I up to conjugation by elements in 7] are

G'y-conjugates of elements in Sy, — S, so we are done. m|
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Lemma 9.9 If1 <y <y and j, = 0 then

’lg—i2+1 -1 2 -2 12—2'2+1
o 2. o . a0T% .8
112,710 ( j1772+,j112) i1i2,0162 Virin,jrid Civiz,giiz qif iy’

are equal up to conjugation by twists 0;,;, ik, with ky #0, 19 — Iy < ky < 1.

. o . . 2 Lo -2
Figure 1: 04, j,0 being conjugated to 0312,112012,j1307,2 iy 2
2, SV 2
Proof: We claim that conjugation by ( H1 Or i inky) 1_+[ O3 i ivky) Will do.
2= kg:iQ -

On 0;,4,,,0 conjugation by the second factor equals conjugation by (5;'27'_‘:2]' . ) and
185,142

5;‘1# i commutes with the first factor. Hence we are left to show that
21

S

2 —los i -t 2
( Ui1¢2,j1k2) (Ojli;",jllQ)UM?r?mO((sjli;',jllg) ( Uiliz,jlka)
2:1 k2 1

2 -2
021227_71220-771772,%77;" 112,712

o

. -1
Since the arcs of (5j1i2+ ’jllQ)Ulio((;j”; i) and o, o it can be chosen to bound

a disc which contains the puncture of indices j;11 to jii2 we can conclude with A.4
that

12 12
—1 B —1
— 2 2
(5]'1@",]'112)021227]10(53'1i;",jllg) = I I Uzlzz,ylkz)ailz’z,jlz';( I I yin,jiks)
kg:l ]{72:]
from which we deduce the claim. O

Proof of the main theorem: We have in 9.6 that the braid monodromy group
(5 is generated by

3 gt
Ui,k’ 1 —kl,ZQ —kQ,

2 . .
Ui,k 11 = kl,Z;- < kg.
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To get generators for the total braid monodromy we have — by [15, Prop.5.14] — to
add the elements of 9.5. Of course we replace those of the third row using 9.8, so
we add instead

0?12'27]'11'2 Loy =gy, Zii- =

0-221%'272'1% Loy = g, ZT < J1,

02'215271'1]'2 po 1<y, g0 <y, i27i; ?é 72,
02'212'2,3'1]'20'2'212'27]@1]@0}'_1?27]'1]‘2 SV EES {ih kl}’ 7’;- =k, 1y < j3 < ko

Since elements in the last row can also be given as o> we can

o2
J1J2,k1ke 212271‘91/62 111271‘31]‘32
discard the conjugating twists except for the cases i < j < k.1 "1 = kq,1 22 = ks.

By a check on the indices we see, that in order to get the claim we have express

the additional elements o7, ,if = ky,i] = k2 in terms of other ones.

4 3 2

o3 2 2 -
Let 7 := 1] i3 so o} ik and 0; ;0,0 ; are among the generators. By

-1 =1
Oik = 05 k0;k0;k0; 0L

—1 —1
= U]7ko- k‘a-JkaZ k-O' ka-zk‘ ],k'

-2 2 -3
- U]JCU] kol k017k027301 kUz k U]JCO-],k

2 2 2 -3
= fk(UZ,]Uzku )Uhj(a-z,yo-yka )Uj,k

we conclude, that also o?, is an element of the braid monodromy. a

A presentation of the fundamental group of the discriminant complement can now
be obtained from generators 3; of the braid monodromy according to the method
of Zariski van Kampen.

-1
™= <t17'-'7t#|ti ﬂ](tl»

First we note that the choice of the generators 3; and of generators of the free
group does not matter. To reduce the number of relations for the proof of the main
corollary, we observe the following consequence.

Lemma 9.10 Suppose o0 = ﬁaiﬁ_l € Br,,, then the normal subgroup generated by
t;la(ti), t=1,...,n, is equal to the normal subgroup generated by

-1 -1

Bty ty -« te---t1ta).

I factors 1 factors

Proof: We replace the generators ¢; by generators 3(;), so the normal subgroup
is generated by

(B(t:) " 0 (B(t:) = B(t; )B(oh(t:)) = Bt ol (t)).

This yields trivial relations for ¢ > 2 and for ¢« = 1,2 conjugate relators, given
explicitly using the Artin action of twists on free generators:

1 -1 —1 -1 -1 -1
Bty ty ty --ebe--otyty), Bty ty ty -t -tity),

{—1 factors [ factors [ factors [ factors

Hence the claim follows. O
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Proof of the main corollary: We start with generators t;,7 € I in bijection to
the simple loops of the Hefez Lazzeri system. Relations are determined from the
generators of the main theorem. To apply the preceding lemma we note that a
generator of the first two rows can be factored as ﬂa%ﬂ_l and ﬂa?ﬂ_] respectively
in such a way that

B(t1) =ti, p(tz) =1t;.

and similarly generators of the last row can be conjugated such that
-1
B(tr) =t;, B(ta) =tjtst; .

The sufficient set of relators is then given by:

ol

t; ot titit; in case (i,j) € K
t;lt;tit]— in case (7,j) ¢ I
t; ity titjtet;in case (i,5), (j, k) € B, (i, k) € E_;.

So we are done as soon as we conjugate the relators of length 8 by #;t; to get:

-1 -1

(tit;) " t; tity t

k3

—1 1
j titjtktj t;t;
-1 -1 -1 -1 —1

-1 -1 -1 -1

tititit;

A braid computations

This appendix is designed to serve several purposes. First the progress in the text
is eased if some of the computational obstacles are hidden in this appendix. Second
the arguments are often similar and it is easier to get used to them, if they are used
in one place instead of being scattered throughout.

Since all index sets we use are ordered, we can always denote by i* the immediate
successor of 7 in some index set. The same notation applies also to single components
of multiindices.

Moreover we underline a conjugated element to make the structure more trans-
parent.

Remark A.1: The twist & = (I[;c;cp 07;)0in(Ticcn 02-27]-)_1 is the twist on
the horizontal arc from i to k passing behind all intermediate punctures (as
opposed to the arc of o; ; which passes in front).

Remark A.2: The half twist on the arc from 7 to k£ passing in front up to 5 and
behind from j + 1 onwards can be given as

(TT ool IT o2

J<ki<k J<ki<k
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Lemma A.3 The braid subgroup Br(A,) C Br, is generated by elements

3 .
T i1 1<i1<n

01&202 1<i,it<j<n
Proof: Consider the following two filtered sets of elements of Br,,.

:{U?H-l} Sk ::S1U{O'Z-2]-|1<j—i<k}

o= A{odi} Thi=T1U{o 36700411 <j—i<k}

t,0+1 1,] z

By the first remark we get the relation
-2 22 _
Tii+ i H+ - H 0-7] UW H U
it <5<y it <<y

so Sy = T3 and the other hypotheses of lemma 9.1 hold as well. Therefore the
assertion is proved, since S, is known to generate Br(A,). |

Lemma A.4 Suppose in a punctured disc two otherwise distinct arcs meet in the
punctures p, q thus defining a inner disc. If there is a system of arcs such that

i) each puncture in the inner disc is connected by an arc with either p or g,
ii) apart from p,q all arcs have no points in common,

then the twists on outer arcs coincide up to conjugation by full twists on inner arcs.

Proof: We may identify the mapping class group of neighbourhood of the inner
disc with the abstract braid group, such that the twists on inner arcs correspond to
of j+1<j<mand O'J ,m < j < n and the twist on the outer arcs correspond to
01, and &y ,. The clalm then follows from
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Lemma A.5 For any j, © < j < k the twist &;; can be given as o, suitably
conjugated by braids oy ji, i <1 < j<j <k.

Proof: First note that o;; and &;; are twists on arc which meet the initial
hypothesis of lemma A.4. By the second remark above, the full twists on arcs from
the puncture of index 7’ passing in front up to j — 1 and behind from j onwards is
in the group generated by elements ‘72‘2',1-:7 ol i<i<j<j <k,

T
g7

On the other hand these arcs and the arcs to which the UZ-QJ-,, j < j <k are
associated can be chosen simultaneously to meet the remaining hypotheses of lemma

A.4. So we get our claim. a

Lemma A.6 The elements Tivib jrib and Tivib juiy OT€ equal up to conjugation by
twists T2 . 1<g—iy<ly foralll <iy <jy <, th=r1iy— Iy

142,712

Proof: In fact we have

2 -1 ] [ 2 _
( H Tiliémjl]é) Tzlzévjlzé( Til’ié,jljg) - Tuzé,j]zg'

1h<jo<ia ih<jo <tz

Again the claim can also be proved by checking the hypotheses of lemma A .4.
O

Lemma A.7 Up to conjugation by twists 7'7%1-20-”-2, 1< <1 <h, 1< 59—1s < g,
elements (i}, := iy — l3)

—1

P) . . .
T TR ) —i <I1/2
zlz;,zjzé ziz;,]lzé iyl ital f J 1= 1/ ’
-1

2 . . .
T 4T o T it 7 —a >0 /241
Zlﬁéﬂ-?é ZT"EJIQ Wévzhé f 2 L= 1/ + 1L
-1 2 . . .
T o, o4 TA ., T 4. -y =10 /24+1/2.
zlz;,zf’m zf’z;,ylzg 2125721’-22 f N 1 1/ + /

correspond bijectively to the elements

2 oot I<ir+1=if <ji <h,1<iy <y

T. g o+ Tk . T 4
1125407 22 U7 25,0102 12,07 22
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Proof: The elements of the third row already have the claimed factorisation. In
the other cases we have to conjugate in such a way that central twist and conjugating
twist are conjugated simultaneously to the claimed twists.

For elements of the second row, it is only the conjugating twist which has not the
claimed form.

The proof of A.6 shows, that we can get

2 -1 2 -
( ” Tm;,m) Tilig,im( ” Tm';,jljz)—ﬂ'n;,z'fiz'

ih< ja <iz 14 < ja <iz

Moreover we check at once, that the conjugating factor commutes with 7.+, irin?
172
-1

hence an overall conjugation of 7 T2 T. . .+, With oo TR

Jug iyib it itil gyin 0%, 6 (H2§<J2<22 mgmyz)
2
T+,
z?’zé,

yields T

s .. ! .
21%5,21 12 J1t2 21%9,t 2

In case of elements of the first row, neither twist is in the right shape:

We first take care of the middle factor 7,4,
1°%2»
: 2

21'-1127.7-1‘7-2

;yirs as before just by conjugation
2

But since we have to conjugate overall, also the conjugating factors are conju-
gated, and they are not unaffected:

: 2 2
But we can now conjugate by (Hi;<j2<i2 Ti2+i;’j1j2) and (Hi;<j2<2-2 Tili;,isz)’

which are twists on arcs disjoint to that of 7.+, hence commutating with it. O

ty o012
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Lemma A.8 Given 1 <1y < k1 <Ili,1 < kg <y the elements

2 2
Ti10,k1ky and Tiyly ey by
coincide up to conjugation by elements
2 . . -
Ol iy 1 <J1 <k, 1< ga <y,
2 . .
Thokky 1 <J1< ky.

Proof: 1t suffices to check that arcs to which the given twists are associated can
be chosen simultaneously in such a way that

i) they are confined to the disc with boundary given by the arcs corresponding
tO 7410,k ky AN 041y ki ky s

ii) they are distinct outside the punctures of indices i1l and kiks,

iii) all punctures in the disc are joint by some arc with either the puncture of
index 71ly or that of index kiks.

[¢] [¢] o] o] K o] o] [¢]
So by lemma A.4 we may conclude that the assertion holds. a
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