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Zusammenfassung

In der vorliegenden Arbeit untersuchen wir die Kodairadimension von Siegelschen
Modulvarietäten, die sich als Quotient des Siegelschen oberen Halbraumes Hg

nach diskreten Untergruppen der symplektischen Gruppe Sp(2g,Z) darstellen
lassen. Insbesondere geben wir eine explizite Beschreibung der nicht–kanonischen
Singularitäten, die im Inneren dieser Varietäten liegen. Im Fall g = 3 liefert dies
zusammen mit einer genauen Untersuchung der Geometrie ihrer Kompaktifizie-
rungen das Hauptresultat dieser Arbeit, nämlich, dass es — abgesehen von einem
technischen Detail — nur endlich viele Untergruppen von Sp(6,Z) gibt, für die
die hierdurch gegebenen Siegelschen Modulvarietäten nicht von allgemeinem Typ
sind. Dies verallgemeinert ein ähnliches Resultat von Borisov für den Fall g = 2,
also für Untergruppen von Sp(4,Z).

Der Schlüssel zum Beweis dieses Theorems ist ein Resultat von Serre, welches
besagt, dass für g ≥ 2 jede Untergruppe von endlichem Index eine Hauptkon-
gruenzuntergruppe Γg(n) als Normalteiler enthält. Dies gestattet uns, jede Sie-
gelsche Modulvarietät als Quotient von Ag(n), dem Modulraum der prinzipal–
polarisierten abelschen Varietäten mit einer Level n–Struktur, nach einer Un-
tergruppe der endlichen Gruppe Sp(2g,Z/nZ) darzustellen. Dank der zahlrei-
chen Resultate, die über diese Räume Ag(n) bekannt sind, können wir uns somit
auf die Untersuchung der endlichen Quotientenabbildungen beschränken, welche
durch die Untergruppen von Sp(2g,Z/nZ) gegeben sind. Hierbei werden sowohl
geometrische als auch algebraische Methoden benötigt, um die notwendigen Be-
dingungen zu bestimmen, die garantieren, dass die zugehörigen Siegelschen Mo-
dulvarietäten von allgemeinem Typ sind.

Schlagworte: Siegelsche Modulvarietät, Modulraum, abelsche Varietät, Ko-
dairadimension
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Abstract

In this thesis we study the Kodaira dimension of Siegel modular varieties which
are obtained by taking quotients of the Siegel upper half space Hg by discrete
subgroups of the symplectic group Sp(2g,Z). In particular, we give an explicit
description of the non–canonical singularities in the interior of these varieties.
For g = 3 this and a careful analysis of the geometry of their compactifications
yield the main result of this thesis, namely that there are up to a technical
issue only finitely many subgroups of Sp(6,Z) for which the corresponding Siegel
modular variety is not of general type. This generalizes a similar finiteness result
by Borisov for g = 2, i.e. for subgroups of Sp(4,Z).

The key to our proof is a result due to Serre, which shows that for g ≥ 2 ev-
ery subgroup of finite index contains a principal congruence subgroup Γg(n) as
a normal subgroup. This allows us to exhibit every Siegel modular variety as a
quotient of Ag(n), the moduli space of principally polarized abelian varieties with
a level n–structure, by a subgroup of the finite group Sp(2g,Z/nZ). Thanks to
various results on the well–studied spaces Ag(n), we can then confine ourselves
to the study of the finite quotient maps given by the subgroups of Sp(2g,Z/nZ).
Here both geometric and algebraic techniques are required to determine the con-
ditions to be imposed on these subgroups to ensure that the corresponding Siegel
modular varieties are of general type.

Keywords: Siegel modular variety, moduli space, abelian variety, Kodaira di-
mension

v



vi



Preface

Siegel modular varieties are obtained by taking quotients of the Siegel upper
half space Hg by discrete subgroups of the symplectic group Sp(2g,R). They
admit an interpretation as moduli spaces for abelian varieties with certain extra
data, such as polarizations and level structures. These quasi–projective normal
varieties have an analytic realization as locally symmetric varieties which allows
them to be compactified in various ways, in particular by the method of toroidal
compactification (cf. [AMRT]). One of the first questions to ask towards a clas-
sification of these varieties is the one for their Kodaira dimension, which is an
important birational invariant.

The focus of this thesis lies on the Kodaira dimension of Siegel modular varieties
defined by subgroups of Sp(2g,Z), i.e. the ones with integer coefficients. There
are quite a number of results on the moduli space Ag of principally polarized
abelian varieties which is defined by the full symplectic group Sp(2g,Z). It is
rational for g = 2 and g = 3 (cf. [Igu1], [Kat]) and unirational for g = 4 and
g = 5 (cf. [Cle], [Don], [MM]). On the other hand Tai showed in [Tai] that Ag is
of general type for g ≥ 9 which was improved later by Freitag (cf. [Fre] for g ≥ 8)
and Mumford to g ≥ 7 (cf. [Mum2]). The only open case is A6, whose Kodaira
dimension is still unknown.

Not nearly as much is known for subgroups of Sp(2g,Z). While there are some
results for certain families of subgroups such as the one defining the moduli spaces
Ag(n) parameterizing abelian varieties with level–n structure, there are almost
no results for arbitrary subgroups. However, for g = 2, Borisov has shown that
there are only finitely many subgroups of Sp(4,Z) of finite index such that the
corresponding moduli spaces are not of general type (cf. [Bor]). His proof was
inspired by the work of Thompson who proved a similar statement for arithmetic
subgroups of PSL(2,R) (cf. [Tho]).

It is conjectured that Borisov’s result can be generalized to arbitrary genus g. To
do this, a good understanding of the geometry of the Siegel modular varieties and
their compactifications is required. Furthermore, one also has to study closely the
subgroups of Sp(2g,Z) to be able to analyze the singularities occurring both in
the varieties themselves and in their compactifications. Thus both geometric and
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algebraic techniques are needed to acquire a complete picture of these varieties
for arbitrary subgroups of Sp(2g,Z).

In this thesis we will mostly focus on the case g = 3, where we will apply these
techniques to obtain a generalization of Borisov’s result to subgroups of Sp(6,Z)
up to a technical issue. However, quite a few of our intermediate results, which
are of interest in their own right, are given for arbitrary g, e.g. the description of
the non–canonical singularities lying in the interior, or can easily be generalized
to higher genus.

As already mentioned in the abstract, the key idea of the proof of the main result
involves a result of Serre (cf. [BLS]), which shows that for g ≥ 2 every sub-
group of finite index in Sp(2g,Z) is in fact a congruence subgroup, i.e. it contains
a principal congruence subgroup Γg(n) for some level n. Thus Siegel modular
varieties can be studied by considering quotients of the moduli space Ag(n) of
principally polarized abelian varieties with a level n–structure by suitable sub-
groups of Sp(2g,Z/nZ). Since the spaces Ag(n) are known to be of general type
for sufficiently big n (cf. Theorem 2.9 for a precise bound), it suffices to study
the action of Sp(2g,Z/nZ) on them to determine the necessary conditions to be
imposed on its subgroups such that the quotients are of general type, too.

In the first chapter we will provide the necessary background and tools for study-
ing Siegel modular varieties and their Kodaira dimension. In particular, we will
present the method of toroidal compactification which can be used to compact-
ify these quasi–projective varieties. Moreover, we will introduce modular forms
which play a key role when one wants to study pluricanonical forms on these
compactifications to determine their Kodaira dimension.

The reader familiar with these topics might want to skip this chapter and im-
mediately jump to Chapter 2, where we will state the main result of this thesis
and give a rough outline of its proof which will be carried out in the following
chapters.

Chapter 3 provides a characterization of the boundary components of the
so–called Voronoi compactification AVor

g (n) of Ag(n) in terms of isotropic sub-
modules of (Z/nZ)2g.

The following three chapters each contain a different part of the proof as described
in the outline in Chapter 2. While Chapter 4 studies the ramification divisors of
the quotient maps on AVor

g (n) defined by the subgroups of Sp(2g,Z/nZ), chapters
5 and 6 mostly apply algebraic techniques to get a description of the elements
in Sp(6,Z/nZ) which cause non–canonical singularities in the modular varieties
and in the boundary of their compactifications respectively.

In the last chapter, Chapter 7, we put all the results of the previous chapters
together to form the proof of the main result.
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Throughout this thesis we will use the following notations and conventions:

• We work over the field of the complex numbers C. In particular, all varieties
are defined over C.

• The k×k unit matrix is denoted by 1k. If the dimensions are clear, we also
sometimes write just 1.

• When it is not ambiguous, we will often omit the pullback map when con-
sidering the pullback of a divisor. Thus, if D is a divisor on a variety X,
π is a map from X̃ to X, and E is a divisor on X̃, we abuse notation and
write D + E for the sum π∗D + E on X̃.

• When considering the ideal sheaf JX of a subscheme X, we write J k
X for its

k–th multiplicative power rather than its k–th tensor power. Thus F ⊗J k
X

is the sheaf of sections of F which vanish on X of order at least k.

• For any vector bundle E , the bundle P(E) denotes the projectivized bundle
of lines in E , i.e. the geometric projective bundle.

• If p and q are two polynomials of the same degree in the variable n which
differ only by a polynomial of strictly smaller degree, we say that p grows
as fast as q as n tends to infinity and write p(n) ∼ q(n).

• Furthermore, when comparing the growth of two polynomials, we write
p(n) . q(n) or also p(n) � q(n), if there is a polynomial r with p(n) ≤ r(n)
for all sufficiently big n satisfying r(n) ∼ q(n).
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for his invaluable advice and his remarkable patience. He always found the time
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I also want to thank Prof. Lev Borisov who patiently explained to me his work
and the ideas behind it, Prof. Valery Gritsenko for the insights he gave me into
the theory of modular forms, and Prof. Gregory Sankaran for helping me to
understand singularities. Furthermore, I would like to thank Prof. Herbert Lange
who gave me access to the thesis of his student D. Schmidt and who volunteered
to be a referee for this thesis.

I am indebted to Prof. Kang Zuo who provided a much needed result which was
crucial for my proof, when no one else seemed to be able to help. Prof. Hans–
Christian Graf von Bothmer, Prof. Wolfgang Ebeling, Prof. Samuel Grushevsky,
Dr. Marcos Soriano and many others spend hours discussing problems with me
or just listened which always inspired me to renew my efforts to solve these
problems. Thanks to all of you!
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Chapter 1

Preliminaries

In this introductory chapter we will provide the foundations for studying Siegel
modular varieties and their Kodaira dimension. We will give the basic definitions
and notations as well as the important tools needed in the following chapters. In
doing so, some of the topics will be presented in more generality than actually
needed for our purposes to give the reader an overview of the theory of moduli
spaces.

We will start in Section 1.1 by introducing a generalization of elliptic curves in
higher dimension, the so–called abelian varieties.
In Section 1.2 we will present moduli spaces of abelian varieties which are an
example of Siegel modular varieties. Furthermore, we will give the general defini-
tion of these Siegel modular varieties which are the main objects studied in this
thesis.
The Kodaira dimension is an important birational invariant which will be dis-
cussed in Section 1.3, in particular with respect to Siegel modular varieties.
These modular varieties are quasi–projective, but in general not projective. In
Section 1.4 we will present the method of toroidal compactification which can be
used to compactify them using toric varieties.
The compactified modular varieties are in general not smooth, but have singular-
ities. However, the singularities that occur are all so–called quotient singularities.
In Section 1.5 we will provide tools for studying these quotient singularities and
will give conditions which guarantee the extensibility of pluricanonical forms over
them.
We conclude this chapter in Section 1.6 by introducing modular forms which
will be used in the following chapters to determine the Kodaira dimension of the
Siegel modular varieties.

The reader familiar with these topics might want to skip this chapter and go
directly to Chapter 2 where we present the main result of this thesis and give
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2 CHAPTER 1. PRELIMINARIES

an outline of the proof which will then be carried out in the following chapters.
We will there also repeat the notations as introduced in this chapter whenever
needed.

1.1 Abelian varieties

As a generalization of elliptic curves we will introduce in this section abelian va-
rieties and collect some elementary results on them. A more detailed description
can be found in [LB].

Let Λ be a rank 2g lattice in Cg. This defines a complex g-dimensional torus
A := Cg/Λ.

Definition 1.1 A g–dimensional complex torus A is called an abelian variety if
it is a projective variety, i.e. if it can be embedded into some projective space Pn.

Whereas every 1–dimensional torus is in fact an algebraic curve and thus projec-
tive, this is no longer true for g ≥ 2. To give a criterion for the projectivity of
the torus we need the notion of Riemann forms.

Definition 1.2 A Riemann form on Cg with respect to Λ is a positive semi–
definite hermitian form H : Cg × Cg → C with the property that its imaginary
part Im(H) is integer–valued on Λ.

We can now state the following characterization of abelian varieties:

Theorem 1.3 A complex torus A := Cg/Λ is an abelian variety if and only if
there exist a Riemann form H on Cg with respect to Λ. The form H is then called
polarization of A.

Proof. [Mum1, p. 35] �

Let H be a Riemann form on Cg. Then H ′ =: Im(H) : Λ ⊗ Λ → Z is an
alternating bilinear form on Λ which admits an R–linear extension to Cg. We
have then by [Igu3, p. 65] the identity

H(z, w) = H ′(iz, w) + iH ′(z, w) .

This implies that each of the two forms H and H ′ uniquely determines the other.
The form H is positive definite if and only if H ′ is non–degenerate (cf. [Igu3,
Chapter II, 3, Lemma 2]). Because of this we will sometimes also say that H ′

is a polarization of an abelian variety provided H ′ is non–degenerate. Using the
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elementary divisor theorem (cf. [Fro]) we can represent H ′ in this case with
respect to a suitable Z–basis of Λ by a skew–symmetric matrix of the form

F :=

(
0 E
−E 0

)
, (1)

where E is a diagonal matrix with the positive integers e1, . . . , eg satisfying
e1 | e2 | . . . | eg. The integers e1, . . . , eg are uniquely determined by the polar-
ization H resp. H ′. In this context we call the Z–basis of Λ a symplectic basis
and the tuple (e1, . . . , eg) (or equivalently the diagonal matrix E) the type of the
polarization H. If all ei are equal to 1, we say that H is a principal polarization.

Definition 1.4 A polarized abelian variety of type (e1, . . . , eg) is a pair (A,H),
where A is an abelian variety and H is a polarization of A of type (e1, . . . , eg).

Assume we are given a complex torus A := Cg/Λ together with a symplectic
basis of Λ and a fixed type of polarization E. Let Ω ∈ Mat(2g × g,C) be the
matrix whose rows consists of the elements of the symplectic basis of Λ expressed
as row vectors with respect to the standard basis of Cg. The matrix Ω is called
a period matrix of A. Note that the type of the polarization E determines the
matrix F in (1) uniquely. Together with the period matrix Ω (or equivalently the
symplectic basis of Λ) this defines the forms H ′ and H. We can now ask whether
this form H is a positive definite Riemann form, i.e. whether the pair (A,H)
defines a polarized abelian variety of given type E. This question is answered by
the following theorem using the so–called Riemann bilinear relations.

Theorem 1.5 Let A := Cg/Λ be a complex g–dimensional torus, Ω a period
matrix of A and E the type of a polarization. The form H defined by these data
is hermitian and positive definite if and only if the Riemann bilinear relations

ΩTF−1Ω = 0 and iΩTF−1Ω̄ > 0 (2)

are satisfied. In this case the pair (A,H) is an E–polarized abelian variety.

Proof. [LB, Chapter 4, Theorem 2.1] and Theorem 1.3 �

We will conclude this section by introducing an extra structure on polarized
abelian varieties. Let (Cg/Λ, H) be a polarized abelian variety of type E. We
define a lattice Λ(H) in Cg by

Λ(H) := {z ∈ Cg; Im(H)(z, w) ∈ Z for all w ∈ Λ}

and write K(H) for the finite group Λ(H)/H). On K(H) we define an alternating
bilinear form eH by

eH : K(H)×K(H)→ C∗

(z̄, w̄) 7→ e−2πi Im(H)(z,w) ,
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where z̄ and w̄ denote the images of z, w ∈ Λ(H) in K(H) (cf. [LB, Chapter 6,
Proposition 3.1]).

Furthermore, we define the group K(E) :=
(
Ze1 × Zeg

)2
and an alternating

bilinear form eE on K(E) as follows. Let F0 be the matrix

F0 :=

(
0 E−1

−E−1 0

)
.

We define

eE : K(E)×K(E)→ C∗

(x, y) 7→ e−2πixF0yT

,

where we interpret x, y ∈ K(E) with respect to the standard generators of K(E)
as row vectors in Z2g. We are now ready to introduce the notion of a level
structure.

Definition 1.6 (i) A canonical level structure on an E–polarized abelian vari-
ety (A,H) is a symplectic isomorphism α : K(H)→ K(E), i.e. α∗eE = eH

holds.

(ii) A level–n structure on a principally polarized abelian variety (A,H) is a
canonical level structure on A with respect to the polarization given by nH.

1.2 Siegel modular varieties

In this section we will briefly recall the construction of the modular curve X◦(1)
parameterizing elliptic curves and generalize it to abelian varieties of arbitrary
dimension. In this way we will obtain moduli spaces of abelian varieties which
are examples of Siegel modular varieties. We will conclude this section by giving
the definition of these modular varieties which are the main objects studied in
this thesis.

Let τ be a point of the complex upper half plane H1 := {τ ∈ C; Im(τ) > 0}.
It defines a lattice Λτ in C given by Λτ := Zτ + Z and thus an elliptic curve
Eτ := C/Λτ . Since, up to isomorphism, every elliptic curve can be constructed
in this manner, we obtain a surjective map

H1 → {elliptic curves} / ∼

where E1 ∼ E2 holds for two elliptic curves E1 and E2 if they are isomorphic.
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On H1 we have the action of the group SL(2,Z) given by linear fractional trans-
formations (

a b
c d

)
: τ 7→ aτ + b

cτ + d
.

The elliptic curves Eτ and Eτ ′ are isomorphic if and only if the points τ, τ ′ ∈ H1

are identified under the action of SL(2,Z). This means that the mapping

H1/ SL(2,Z)→ {elliptic curves} / ∼

is bijective. In this sense the modular curve X◦(1) := H1/ SL(2,Z) parameterizes
elliptic curves.

We will now generalize this construction to obtain a moduli space parameterizing
abelian varieties. We start by giving a generalization of the Siegel upper half
plane.

Definition 1.7 Let Hg denote the Siegel upper half space of degree g

Hg := {τ ∈ Sym(g,C); Im(τ) > 0} .

This space carries the structure of an open submanifold of the vector space
Sym(g,C) of dimension g(g + 1)/2. It is related to polarized abelian varieties
as follow. We fix a type of polarization E and associate to every τ ∈ Hg the
lattice Λτ spanned by the rows of the normalized period matrix Ωτ given by

Ωτ :=

(
τ
E

)
. (3)

We thus obtain a complex torus Aτ := Cg/Λτ . Furthermore, we define a Riemann
form Hτ on Cg via

Hτ (z, w) := z Im(τ)−1w̄T

which is positive definite since Im(τ) > 0. With respect to the symplectic basis
of Λτ given by the rows of Ωτ the non–degenerate bilinear form H ′

τ := Im(Hτ ) is
represented by the matrix

F =

(
0 E
−E 0

)
.

This means that the torus Aτ carries the structure of an E–polarized abelian
variety.

We will now show that conversely up to isomorphism every E–polarized abelian
variety can be obtained in this way. Note that two complex tori Cg/Λ and Cg/Λ′

are isomorphic if and only if there is a matrix in GL(g,C) mapping the lattice
Λ onto Λ′. This means that given a basis of the lattice Λ we can transform it
by a suitable matrix in GL(g,C) in such a way that the last g basis vectors are
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just (e1, 0, . . . , 0), . . . , (0, . . . , 0, eg), the rows of E. We thus obtain a normalized
period matrix as given in (3). The Riemann relations (2) translate in this case
to

τ = τT and Im(τ) > 0 ,

which means that τ is an element of the Siegel upper half space Hg. Analogous
to the case of elliptic curves we thus obtain a surjective map

Hg → {E–polarized abelian varieties of dimension g} / ∼ ,

where ∼ identifies isomorphic abelian varieties.

In order to construct a bijective correspondence, we need to introduce an op-
eration on Hg which identifies exactly those points in Hg which correspond to
isomorphic abelian varieties. For that we introduce the symplectic group.

Definition 1.8 Let R be a commutative ring with 1. The symplectic group
Sp(2g,R) is defined as

Sp(2g,R) :=
{
M ∈ GL(2g,R); MJMT = J

}
,

where J :=

(
0 1g
−1g 0

)
is the standard symplectic form.

There is the following characterization for symplectic matrices:

Lemma 1.9 A matrix M =

(
A B
C D

)
with A,B,C,D ∈ Mat(g,R) is symplectic,

i.e. an element of Sp(2g,R), if and only if the relations

ATD − CTB = 1, ATC = CTA, BTD = DTB

are satisfied.

Proof. [LB, Chapter 8, Lemma 2.1] �

The group Sp(2g,R) operates on the Siegel upper half space Hg as follows:

Proposition 1.10 The group Sp(2g,R) operates on Hg biholomorphically and
transitively via

τ 7→M · τ = (Aτ +B)(Cτ +D)−1

for all M =

(
A B
C D

)
∈ Sp(2g,R).

Proof. [LB, Chapter 8, Proposition 2.2 and Proposition 2.3] �
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The fact that the action of Sp(2g,R) is transitive means that all points in Hg are
identified. But we are interested in identifying exactly those points in Hg which
give isomorphic E–polarized abelian varieties. We thus consider the subgroup ΓE
of Sp(2g,R) given by

ΓE :=
{
M ∈ Sp(2g,Q); MTΛE ⊂ ΛE

}
,

where ΛE is the lattice which is defined by

(
1g 0
0 E

)
Z2g. This group provides

the desired identification as the following proposition shows:

Proposition 1.11 Let τ, τ ′ ∈ Hg. The E–polarized abelian varieties (Aτ , Hτ )
and (Aτ ′ , Hτ ′) are isomorphic if and only if there exists a matrix M ∈ ΓE such
that τ ′ = M · τ .

Proof. [LB, Chapter 8, Proposition 1.3] �

Before we construct the moduli space of E–polarized abelian varieties by consid-
ering the quotient of Hg by the group ΓE, we will collect some properties of ΓE.
For that we first define the following notions.

Definition 1.12 (i) A group G operates properly discontinuously on a topo-
logical space X if for every pair of compact subsets K1, K2 of X the set

{g ∈ G; g ·K1 ∩K2 6= ∅}

is finite.

(ii) A subgroup Γ < Sp(2g,R) is called discrete if for every compact set
K ⊂ Sp(2g,R) the intersection with Γ is finite.

There is the following correspondence between these two notions:

Lemma 1.13 A subgroup Γ < Sp(2g,R) operates properly discontinuously on
Hg if and only if it is discrete.

Proof. [Fre, Kapitel I, Satz 1.10] �

The importance of these two notions is apparent from the following theorem:

Theorem 1.14 Let X be a complex analytic space and G be a group operating
properly discontinuously on X. Then the quotient X/G is also a complex analytic
space. Furthermore, X/G is normal, if X is normal.

Proof. [Car2] �
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According to [LB, p. 219] ΓE is a discrete subgroup of Sp(2g,R) and thus operates
properly discontinuously by Lemma 1.13 on Hg. We define the moduli space

AE := Hg/ΓE ,

which carries by the above theorem the structure of a normal complex analytic
space of dimension g(g + 1)/2. This gives us the bijective map

AE = Hg/ΓE → {E–polarized abelian varieties of dimension g} / ∼ .

We obtain the following result:

Theorem 1.15 AE is a coarse moduli space of g–dimensional abelian varieties
with a polarization of type E.

Proof. [LB, Chapter 8, Theorem 2.6] �

In the case where E is a principal polarization, the group ΓE is just the subgroup
of Sp(2g,R) consisting of all symplectic matrices with integer coefficients, i.e. the
group

Sp(2g,Z) =
{
M ∈ GL(2g,Z); MJMT = J

}
with J given as in Definition 1.8. We will write Ag for the moduli space given by
the quotient of Hg by this group.

To obtain a moduli space for principally polarized abelian varieties with a level–n
structure as defined in Definition 1.6 (ii), we need to consider a certain subgroup
of Sp(2g,Z), namely

Γg(n) := {M ∈ Sp(2g,Z); M ≡ 1 (mod n)} ,

the so–called principal congruence subgroup of level n. For each n it is a normal
subgroup of finite index in Sp(2g,Z) (cf. [LB, p. 222]). Note that for n = 1 the
group Γg(1) is just the full symplectic group Sp(2g,Z).

As subgroups of the discrete group Sp(2g,Z), the principal congruence subgroups
Γg(n) are also discrete and thus operate properly discontinuously on Hg. We
obtain:

Theorem 1.16 The normal, complex, analytic space Ag(n) := Hg/Γg(n) is
a moduli space of principally polarized g–dimensional abelian varieties with a
level–n structure. The inclusion Γg(n) ⊂ Sp(2g,Z) induces a holomorphic map
Ag(n) ↪→ Ag of finite degree.

Proof. [LB, Chapter 8, Theorem 3.1] �

We have the following result on the spaces we introduced in this section.
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Theorem 1.17 The spaces AE, Ag and Ag(n) are quasi–projective, g(g+ 1)/2–
dimensional algebraic varieties.

Proof. [LB, Chapter 8, Remark 10.4] �

We conclude this section by generalizing the construction as follows. Instead of
the groups Γg(n), we can take any subgroup Γ of Sp(2g,Z) of finite index and
consider the quotient

AΓ := Hg/Γ .

Since Γ is as a subgroup of Sp(2g,Z) discrete, AΓ is by Theorem 1.14 a complex
analytic space. The fact that Γ has finite index implies that AΓ is g(g + 1)/2–
dimensional.

The special role of Γg(n) among the subgroups of finite index in Sp(2g,Z) becomes
clear by the following theorem due to Serre, Bass, Lazard and Milnor.

Theorem 1.18 If g ≥ 2, then every subgroup Γ of Sp(2g,Z) of finite index is
a congruence subgroup, i.e. contains a principal congruence subgroup Γg(n) as a
normal subgroup of finite index.

Proof. [BLS, Théorème 3] and [BMS, Theorem 12.4] �

As a consequence we can realize every quotient AΓ as a quotient of Ag(n) by
the finite group Γ/Γg(n) for some level n. Thus AΓ is by Theorem 1.17 also a
quasi–projective, g(g + 1)/2–dimensional algebraic variety.

Definition 1.19 The varieties AΓ obtained by taking quotients of Hg by sub-
groups Γ of Sp(2g,Z) of finite index are called Siegel modular varieties of genus g
defined over Z.

These Siegel modular varieties have been the subject of many studies, especially
in the cases where they parameterize certain geometric objects such as abelian
varieties with extra structures. But also when there is no such geometric interpre-
tation, these varieties possess a rich geometry and many interesting properties.
As the main objects of this thesis, they deserve a separate chapter, in which we
will give a short survey on the known results and a more detailed description of
their geometry (cf. Chapter 2).
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1.3 Kodaira dimension

The Kodaira dimension is one of the first birational invariants to ask for, if one
wants to classify algebraic varieties. In this section we will give a definition of this
invariant and collect some elementary results which will be useful in the following
chapters.

We define the notion of the Kodaira dimension for smooth projective varieties
first.

Definition 1.20 Let X be a smooth projective variety and let KX denote its
canonical divisor. The Kodaira dimension κ(X) of X is defined as

κ(X) :=


−∞ if H0(X,OX(mKX)) = 0 for all m > 0 ,

0 if dimH0(X,OX(mKX)) is bounded, but 6= 0 for one m > 0 ,

k if dimH0(X,OX(mKX)) grows as mk for k > 0 .

According to [Har2, p. 421] the Kodaira dimension of a variety X is a birational
invariant which is bounded by the dimension of X.

By the results from the previous section the Siegel modular varieties AΓ we want
to consider are quasi–projective varieties which are in general not projective. This
means that a priori the Kodaira dimension is not defined for them. To extend
this notion also to arbitrary algebraic varieties X we have to consider a suitable
member of the birational equivalence class of X, a so–called model of X.

Definition 1.21 Let X be an algebraic variety over C. The Kodaira dimension
κ(X) of X is defined as the Kodaira dimension of a smooth projective model X̃
of X.

Note that the existence of such a model is guaranteed due to results of Hironaka
[Hir1] and that κ(X) is independent of the model chosen since it is a birational
invariant.

In the following chapters we will try to impose conditions on Γ which ensure that
the Kodaira dimension of the corresponding moduli space AΓ is maximal. We
thus define

Definition 1.22 An algebraic variety X is called a variety of general type if its
Kodaira dimension coincides with its complex dimension, i.e. if κ(X) = dimX.

We will often encounter finite morphisms between our moduli spaces. The fol-
lowing useful result tells us something about their Kodaira dimensions.
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Proposition 1.23 Let µ : X → Y be a finite morphism of algebraic varieties. If
Y is of general type, then so is X.

Proof. It suffices to note that we can extend µ to a surjective morphism of
smooth projective models. We can then pull back pluricanonical forms (cf. [Bor,
Proposition 7.8]). �

1.4 Toroidal Compactification

In this section we will present a general method for compactifying the Siegel
modular varieties from Section 1.2. An important role is played by so–called
toric varieties which we will introduce in the first subsection. The reader familiar
with the theory of toric varieties may skip this part and can go directly to the
second subsection, where we present the method of toroidal compactification.

1.4.1 Toric Varieties

In this subsection we want to give a brief introduction to the area of toric varieties.
These are special algebraic varieties that contain an algebraic torus as an open
and dense subset. Here we follow the book of Oda [Oda] and will refer to it for
the proofs.

Let N be a free Z–module of rank r over Z and M := HomZ(N,Z) its dual
Z–module. We denote the canonical pairing by 〈·, ·〉 : M × N → Z. We now
define an r–dimensional algebraic torus T ∼= (C∗)r by

T := TN := HomZ(M,C∗) ∼= N ⊗Z C∗ . (4)

Thereby we obtain the following interpretations:

For n ∈ N we define the one-parameter subgroup γn as the homomorphism
γn : C∗ → T that is given by the equation

γn(λ)(m) := λ〈m,n〉 λ ∈ C∗, m ∈M . (5)

This gives us the identification N ∼= Hom(C∗, T ), the group of one-parameter
subgroups of T .

For m ∈M denote by e(m) the homomorphism e(m) : T → C∗ defined by

e(m)(t) := t(m) t ∈ T . (6)
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e(m) is also called character and we obtain the description of M ∼= Hom(T,C∗)
as the group of characters of T .

Let now NR = N ⊗Z R and MR = M ⊗Z R. The canonical pairing can then be
extended to 〈·, ·〉 : MR ×NR → R.

Definition 1.24 (i) A subset σ of NR is called a strongly convex rational
polyhedral cone if σ ∩ (−σ) = {0} and if there exist elements n1, . . . , ns of
N such that

σ = R≥0 n1 + · · ·+R≥0 ns .

(ii) σ is called nonsingular (or basic) if there exist a Z–base {n1, . . . , nr} of N
and an s ≤ r such that σ = R≥0 n1 + · · ·+R≥0 ns.

(iii) The dimension of σ, denoted by dimσ, is the dimension of the smallest
R–subspace of NR that contains σ.

(iv) The cone σ∨ in MR dual to σ is defined as

σ∨ := {x ∈MR ; 〈x, y〉 ≥ 0 ∀y ∈ σ} .

We now want to assign an affine algebraic variety that will later on form an open
subset of our toric variety to every strongly convex rational polyhedral cone. For
this purpose we will first construct a semigroup in M from such a cone with the
help of the preceding definition.

Proposition 1.25 Let σ be a strongly convex rational polyhedral cone in NR.

(i) M ∩ σ∨ is a finitely generated additive semigroup with 0.

(ii) M ∩ σ∨ generates M as a group, i.e. M = M ∩ σ∨ + (−(M ∩ σ∨)).

(iii) M ∩σ∨ is saturated, i.e. cm ∈M ∩σ∨ for an m ∈M and a positive integer
c implies m ∈M ∩ σ∨.

Proof. [Oda, Proposition 1.1] �

Using this we can define for a strongly convex rational polyhedral cone σ in NR
the finitely generated semigroup algebra C [M ∩ σ∨] as

C [M ∩ σ∨] :=
⊕

m∈M∩σ∨
C e(m) , (7)

with multiplication defined by e(m)e(m′) = e(m+m′). This enables us to assign
an affine variety to σ as follows:
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Definition 1.26 Let σ ⊂ NR be a strongly convex rational polyhedral cone. The
affine torus embedding Tσ is defined as

Tσ := {ϕ : C [M ∩ σ∨]→ C ; ϕ is an algebra homomorphism} .

According to [Oda, p. 5] Tσ may be interpreted as the set of C–valued points
of the affine scheme Spec C [M ∩ σ∨]. By this Tσ obtains the structure of an
r–dimensional variety. As presented in [Oda, Proposition 1.2] it can be repre-
sented analytically by the affine embedding

Tσ →Cb

ϕ 7→ (ϕ(e(m1)), . . . , ϕ(e(mb))) , (8)

where M ∩σ∨ = Z≥0m1 + · · ·+Z≥0mb. We now want to compare different cones
and therefore introduce the following partial order:

Definition 1.27 Let σ be a strongly convex rational polyhedral cone. A subset τ
of σ is called a face of σ, written τ ≺ σ, if there exists m0 ∈ σ∨ such that

τ = σ ∩ {m0}⊥ := {y ∈ σ ; 〈m0, y〉 = 0} .

In particular {0} is a face of σ.

According to [Oda, Proposition 1.3] for every face τ the above m0 ∈ σ∨ can be
chosen in such a way that m0 ∈ M ∩ σ∨ which shows that every face τ is again
a strongly convex, rational, polyhedral cone.

This relation of two cones induces the following relationship of the corresponding
affine torus embeddings:

Proposition 1.28 For a strongly convex rational polyhedral cone σ and a face τ
of σ the inclusion M ∩ σ∨ ⊂ M ∩ τ∨ induces an embedding Tτ ↪→ Tσ via which
Tτ may be interpreted as an open and dense subset of Tσ. In particular we obtain
the embedding T{0} ∼= T ↪→ Tσ for τ = {0} such that every r–dimensional affine
torus embedding contains an r–dimensional algebraic torus T as an open and
dense subset.

Proof. [Oda, Proposition 1.3] �

These embeddings allow us to “glue” open affine torus embeddings along common
faces. We would like to choose a collection of cones in such a way that their affine
torus embeddings can be used to obtain a toric variety. Doing so, in particular we
have to make sure that the common faces of any two cones are contained within
our collection such that we can glue the corresponding affine torus embeddings
using the preceding proposition.



14 CHAPTER 1. PRELIMINARIES

Definition 1.29 (i) A fan for N is a non–empty family Σ of strongly convex
rational polyhedral cones which satisfies the following two conditions:

(a) σ ∈ Σ, τ ≺ σ =⇒ τ ∈ Σ

(b) σ1, σ2 ∈ Σ =⇒ σ1 ∩ σ2 ≺ σ1, σ2

Sometimes we will also call the pair (N,Σ) a fan.

(ii) The union |Σ| := ⋃
σ∈Σ σ is called the support of the fan Σ.

(iii) A fan Σ for N is called nonsingular if all σ ∈ Σ are nonsingular.

We can now construct the toric variety defined by a fan.

Definition 1.30 Let Σ be a fan in NR. The toric variety (torus embedding) TΣ

defined by Σ is the identification space

TΣ :=
∐
σ∈Σ

Tσ

/
∼ ,

where ϕ1 ∼ ϕ2 for ϕ1 ∈ Tσ1 and ϕ2 ∈ Tσ2 with σ1, σ2 ∈ Σ holds, if there exists a
cone τ ∈ Σ with τ ⊂ σ1 ∩ σ2 such that ϕ1 = ϕ2 ∈ Tτ ⊂ Tσ1 , Tσ2.

TΣ is a normal irreducible analytic Hausdorff space of dimension r which contains
the torus T = T{0} as an open and dense subset. If we impose further conditions
on the fan Σ we even obtain a stronger result:

Theorem 1.31 The toric variety TΣ defined by the fan Σ is smooth, i.e. a com-
plex manifold, if and only if Σ is nonsingular.

Proof. [Oda, Theorem 1.10] �

1.4.2 Toroidal Compactification

The method of toroidal compactification is due to Mumford and Hirzebruch
(cf. [AMRT]). It uses toric varieties as introduced in the previous subsection
to compactify locally symmetric varieties. Since we are only interested in obtain-
ing compactifications for Siegel modular varieties, we will restrict ourselves to
the results relevant to this task, although the method is much more general. An-
other useful source of information on this method in particular for Siegel modular
threefolds is [HKW].

We will start by defining the boundary components of the Siegel upper half space
Hg of degree g which we will compactify in a second step. To do this, we represent
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Hg as a bounded homogeneous domain in Cg(g+1)/2 which we can compactify
by taking the topological closure. For that we use the Cayley transformation
φ : Hg → Sym(g,C) defined by

φ(τ) := (τ − i1g)(τ + i1g)
−1 .

φ maps Hg biholomorphically to the g(g + 1)/2–dimensional bounded domain

Dg :=
{
Z ∈ Sym(g,C) ; 1g − ZZ > 0

}
.

The operation of Sp(2g,R) on Hg induces via the isomorphism φ an operation
on Dg which extends to the topological closure Dg. We can now decompose Dg

into boundary components.

Definition 1.32 A boundary component F of Dg is an equivalence class of
points in Dg. Two points Z1, Z2 ∈ Dg are equivalent if they can be connected by
finitely many holomorphic curves, i.e. if there exist holomorphic maps
ϕi : D1 → Dg, i = 1, . . . , n from the open unit disc D1 ⊂ C to Dg such that
Z1 ∈ ϕ1(D1), Z2 ∈ ϕn(D1) and ϕi(D1) ∩ ϕi+1(D1) 6= ∅ for i = 1, . . . , n − 1. A
boundary component is called proper if it is contained in Dg \Dg.

It is easy to check that the operation of Sp(2g,R) leaves the set of boundary
components of Dg invariant - in fact, each matrix M ∈ Sp(2g,R) induces a
permutation of these components.

We will now establish a relation between boundary components of Dg and certain
subspaces of R2g and thus define:

Definition 1.33 A subspace U ⊂ R2g is called J–isotropic, if

〈u, v〉 := u J vT = 0

for all u, v ∈ U , where J is the standard symplectic form from Definition 1.8.

The relation is now given as follows. For Z ∈ Dg let U(Z) be the J–isotropic
subspace of R2g defined by U(Z) := ker(ψZ), where ψZ : R2g → Cg is given by

ν 7→ ν ·
(
i(1g + Z)
1g − Z

)
.

This relation is invariant with respect to the boundary components of Dg. We
can thus associate to a boundary component F of Dg a J–isotropic subspace
U(F ) := U(Z), Z ∈ F . A component F is called a corank i–boundary component
if the dimension of U(F ) is equal to i.
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Conversely, we can associate to every J–isotropic subspace a boundary compo-
nent. In particular, for the following standard J–isotropic subspaces of R2g

U (k) := (0, . . . , 0, ∗, . . . , ∗︸ ︷︷ ︸
g−k times

) ⊂ R2g for k = 0, . . . , g (9)

we have that the corresponding boundary component is given by

F (k) :=
{
Z ∈ Dg ; U(Z) = U (k)

}
. (10)

It is easy to check that

F (k) :=

{(
Z 0
0 1g−k

)
; Z ∈ Dk

}
. (11)

Using these standard components, we obtain the following description of Dg:

Lemma 1.34 Dg can be written as a union of boundary components as follows:

Dg :=
⋃

M∈Sp(2g,R)
0≤k≤g

M · F (k)

In particular, every boundary component of Dg is equivalent under the operation
of Sp(2g,R) to a standard component F (k) for some k ∈ {0, . . . , g}.

Proof. The proof given in [HKW, Proposition 3.12] can easily be generalized to
arbitrary g. �

We now introduce the following relation on the set of boundary components of
Dg:

Definition 1.35 A boundary component F is said to be adjacent to a boundary
component F ′ if F 6= F ′ and F ⊂ F ′. In this case, we denote this relation by
F ≺ F ′.

In particular, every proper boundary component is adjacent to F (g) = Dg. This
adjacency relation on the boundary components induces a relation on the asso-
ciated J–isotropic subspaces.

Proposition 1.36 Let F, F ′ be two boundary components of Dg. We then have

F ≺ F ′ ⇐⇒ U(F ′) ( U(F )

Proof. Again the proof is completely analogous to the one given in [HKW,
Proposition 3.16] for the g = 2–case. �
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After we finished our description of the boundary components and their adjacency
relations, we will turn our attention to the compactification in the direction of
these components. However, we will not need to compactify all the components,
but only the ones with a certain special property. We thus restrict ourselves to
the following special case:

Definition 1.37 A boundary component F of Dg is called rational, if its stabi-
lizing subgroup

P(F ) := {M ∈ Sp(2g,R) ; M(F ) = F}
is defined over Q (cf. [HKW, Definition 3.17]).

Rational boundary components behave in many respects like ordinary boundary
components of Dg. This is due to the fact that the operation of Sp(2g,R) on the
boundary components induces an operation of Sp(2g,Q) on the rational boundary
components. For instance, we obtain a 1–to–1 correspondence between rational
boundary components and J–isotropic subspaces of Q2g and also the result of
Proposition 1.36 has an analogue (cf. [HKW, Proposition 3.20]).

Let F be a rational boundary component of Dg. By [AMRT, III.3.2] its sta-
bilizer P(F ) is then a maximal parabolic subgroup of Sp(2g,R) defined over
Q. In particular, the stabilizer P(Dg) of Dg coincides with the full symplectic
group Sp(2g,R). The rational parabolic subgroups are in 1–to–1 correspondence
with flags of J–isotropic subspaces of Q2g if we associate each flag to its stabiliz-
ing subgroup. Note that the maximal rational parabolic subgroups of Sp(2g,R)
correspond to flags of length 1, i.e. the isotropic subspaces of Q2g (cf. [HKW,
Remark 3.45]).

So far we have described the boundary components with respect to the full sym-
plectic group Sp(2g,R). Since we want to construct a compactification of a Siegel
modular variety given by an arbitrary subgroup Γ of Sp(2g,Z), we need a de-
scription of the boundary components with respect to this group Γ. We will
then give a partial compactification for each boundary component and “glue”
them together in a second step. How this gluing takes place is determined by
the equivalence classes of the boundary components and their adjacency rela-
tions with respect to Γ. To describe them we make use of the correspondences
between boundary components and J–isotropic subspaces, and between flags of
J–isotropic subspaces and maximal parabolic subgroups.

Definition 1.38 Let Γ be a subgroup of Sp(2g,Z) of finite index. The Tits
building of Γ is the set of Γ–equivalence classes of rational parabolic subgroups of
Sp(2g,R) equipped with the partial order given by inclusion.

Let F be a rational boundary component of Dg. Then P (F ) := P(F ) ∩ Γ is
the stabilizing subgroup of F with respect to Γ. There exists a P (F )–invariant
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interior neighborhood N(F ) of F in Dg such that the quotient map

p(F ) : Dg/P (F )→ Dg/Γ (12)

is an isomorphism when restricted to N(F ) (cf. [AMRT, III.1]). By an interior
neighborhood of F we mean here the intersection of a neighborhood of F in the
complex topology in Dg with Dg. In this sense we will consider a variety which
contains Dg/P (F ) as an open dense subvariety as a partial compactification of
Dg/Γ in the direction of F . We can therefore restrict to considering the elements
in P (F ) ⊂ Γ when we want to study the structure of Dg/Γ in a neighborhood of
F . To do this, we first decompose the stabilizer of F .

Definition 1.39 Let F be a rational boundary component of Dg and let P ′(F )
be the center of the unipotent radical Ru(P(F )) of its stabilizing subgroup P(F ).
Let P ′′(F ) denote the quotient P(F )/P ′(F ). For a subgroup Γ of Sp(2g,Z) of
finite index let P (F ) := P(F ) ∩ Γ, P ′(F ) := P ′(F ) ∩ Γ and P ′′ := P (F )/P ′(F ).
The group P (F ) operates by conjugation on P ′(F ). We can thus associate to
each g ∈ P ′′(F ) the automorphism

Ad(g) : P ′(F )→ P ′(F ), h 7→ ghg−1 . (13)

The group of all these automorphisms is denoted by P̄ (F ).

We can now define the partial quotient map

e(F ) : Dg → Dg/P
′(F ) (14)

associated to P ′(F ). We denote the image of Dg under this map by X(F ). As
the center of a unipotent Lie group P ′(F ) is isomorphic to a real vector space.
P ′(F ) as a discrete subgroup defines a sublattice in this vector space (cf. [AMRT,
III.5]). One can therefore hope to find a good description of the partial quotient
X(F ) = Dg/P

′(F ). As a second step to obtain a description of Dg/P (F ), we
also have to take the operation of P ′′(F ) = P (F )/P ′(F ) on X(F ) induced by the
operation of P (F ) on Dg into account.

Theorem 1.40 Let F be a rational boundary component of Dg. Then there exists
a trivial torus bundle X (F ) with fiber T := P ′(F )⊗Z C/P ′(F ) ∼= (C∗)r and base
F × V (F ), where r denotes the rank of the lattice P ′(F ) and V (F ) stands for
the complex vector space Ru(P(F ))/P ′(F ). The image X(F ) under the partial
quotient map e(F ) is isomorphic to an open subset of X (F ). The operation of
P ′′(F ) on X(F ) can be extended to an operation on X (F ).

Proof. [AMRT, III.4] �
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We will now choose a fan Σ in the real vector space P ′(F ) ∼= P (F )⊗ZR and thus
construct a trivial fiber bundle XΣ(F ), whose fibers are just the toric variety TΣ

defined by Σ and which contains the toric bundle X (F ). To do this, we have to
impose certain conditions on the fan Σ, in particular, it has to have sufficiently
big support. We define the following spaces:

Definition 1.41 (i) For a standard component F (k), k = 0, . . . , g we define
the open homogeneous cone C(F (k)) in P(F (k)) by

C(F (k)) :=

{
M

(
1g S(k)

0g 1g

)
M−1 ; M ∈ P(F (k))

}
,

where S(k) is the matrix given by S(k) :=

(
0k 0
0 1g−k

)
(cf. [AMRT, Theo-

rem III.4.1]).

(ii) For a rational boundary component F of Dg with F = M · F (k) for an
M ∈ Sp(2g,Q) and some k ∈ {0, . . . , g} we define the open homogeneous
cone C(F ) in P(F ) by C(F ) := M · C(F (k)) ·M−1.

(iii) The rational closure C(F )rc of C(F ) is the union of C(F ) with all rational
cones that are adjacent to F , i.e.

C(F )rc := C(F ) ∪
⋃

F≺F ′
C(F ′) ,

where the union is taken over all rational boundary components F ′ with
F ≺ F ′.

We can now formulate the conditions on the fan Σ in P ′(F ). The space C(F )rc

that we just defined will be the support of Σ which will guarantee that the fan
Σ is big enough for our purposes.

Definition 1.42 Let F be a rational boundary component of Dg. We call a fan
Σ in P ′(F ) admissible if it satisfies the following three conditions:

(i) |Σ| = C(F )rc ,

(ii) σ ∈ Σ, M ∈ P̄ (F ) =⇒ M · σ ∈ Σ ,

(iii) Σ/P̄ (F ) is a finite set.

For an admissible fan Σ in P ′(F ) denote by TΣ the toric variety defined by Σ.
We can now construct the fiber bundle XΣ(F ).

Theorem 1.43 Let F be a rational boundary component of Dg and Σ an ad-
missible fan in P ′(F ). Furthermore let XΣ(F ) := X (F ) ×T TΣ be the associated
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fiber bundle with fiber TΣ, where X (F ) and T are defined as in Theorem 1.40.
Let XΣ(F ) be the interior of the closures of X(F ) in XΣ(F ). Then the opera-
tion of P ′′(F ) on X(F ) can be extended to a properly discontinuous operation on
XΣ(F ) in a unique way. The quotient space YΣ(F ) := XΣ(F )/P ′′(F ) is an ana-
lytic variety that contains Dg/P (F ) as open and dense subvariety. The boundary
YΣ(F ) \ (Dg/P (F )) is a purely 1–codimensional subvariety.

Proof. This follows from [AMRT, Proposition III.6.2] �

In the sense of this theorem one can speak of YΣ(F ) as a partial compactifica-
tion of Dg/P (F ). With the help of the map p(F ) from (12) we can “attach”
∂YΣ(F ) := YΣ(F ) \ (Dg/P (F )) as a boundary piece at F to the space Dg/Γ. In
that sense we call YΣ(F ) a partial compactification of Dg/Γ in the direction of F
defined by Σ.

We can construct such a partial compactification YΣ(F )(F ) for each rational
boundary component F of Dg by choosing an admissible fan Σ(F ) for every
F . We thereby obtain a collection

Σ̃ := {Σ(F ) ; F a rational boundary component} (15)

of fans. We now formulate the conditions on Σ̃, that will allow us to “glue”
together the partial compactifications YΣ(F )(F ) to obtain a compactification of
Dg/Γ.

Definition 1.44 A collection Σ̃ := {Σ(F ) ; F a rational boundary component}
of fans Σ(F ) in P ′(F ) is called admissible, if it satisfies the following three con-
ditions:

(i) Σ(F ) is an admissible fan for every rational boundary component F .

(ii) If F, F ′ are two rational boundary components with F = M · F ′ for an
M ∈ Γ, then Σ(F ) = M · Σ(F ′) ·M−1.

(iii) For any pair F ≺ F ′ of adjacent rational boundary components the relation
Σ(F ′) = Σ(F ) ∩ P ′(F ′) holds.

Note that according to (iii) the collection Σ̃ is already determined by the fans
Σ(F ) corresponding to minimal rational boundary components F . We here call
a rational boundary component F minimal if there exists no rational boundary
component F ′ with F ′ ≺ F .

The condition (ii) from Definition 1.44 guarantees that two Γ–equivalent rational
boundary components lead to isomorphic partial compactifications:
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Proposition 1.45 Let F and F ′ be two rational boundary components such that
F = M · F ′ for an M ∈ Γ. Furthermore let Σ(F ) and Σ(F ′) be two admissible
fans in P ′(F ) and P ′(F ′) respectively which satisfy the condition Σ(F ) = M ·
Σ(F ′) ·M−1. Then M induces the following isomorphisms:

(i) There exists a natural isomorphism M̃ : XΣ(F ′)(F
′)→ XΣ(F )(F ), such that

the diagram

Dg/P
′(F ′) Dg/P

′(F )

XΣ(F ′)(F
′) XΣ(F )(F )

........................................................................................ ............M

............................................................................................. ............
M̃

........

........

........

........

........

........

........

........

...................

............

........................ ........
........
........
........
........
........
........
........
...................
............

........................

commutes.

(ii) There exists a natural isomorphism M : YΣ(F ′)(F
′) → YΣ(F )(F ), such that

the diagram

Dg/P (F ′) Dg/P (F )

YΣ(F ′)(F
′) YΣ(F )(F )

............................................................................................. ............M

.................................................................................................. ............M

........

........

........

........

........

........

........

........

...................

............

........................ ........
........
........
........
........
........
........
........
...................
............

........................

commutes.

Proof. The argument given in [HKW, Proposition 3.69] for the g = 2–case can
easily be generalized. �

Let F ≺ F ′ be a pair of adjacent rational boundary components of Dg. According
to [AMRT, Theorem III.4.3] we then have that P ′(F ′) ⊂ P ′(F ) and therefore also
P ′(F ′) ⊂ P ′(F ). Hence there exists a natural quotient map

π0(F
′, F ) : X(F ′)→ X(F ) . (16)

We can use condition (iii) from Definition 1.44 to extend this map to an étale
map from XΣ(F ′)(F

′) to XΣ(F )(F ) (by an étale map we mean here a smooth map
with discrete fibers):

Proposition 1.46 Let F ≺ F ′ be a pair of adjacent rational boundary compo-
nents. Furthermore let Σ(F ) and Σ(F ′) be two admissible fans in P ′(F ) and
P ′(F ′) respectively which satisfy the condition Σ(F ′) = Σ(F ) ∩ P ′(F ′). Then
there exists an étale map

π(F ′, F ) : XΣ(F ′)(F
′)→ XΣ(F )(F ) ,

that extends the map π0(F, F
′) in a natural way.

Proof. [AMRT, Lemma III.5.1] �
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Lemma 1.47 Let Σ̃ := {Σ(F )} be an admissible collection of fans. Then for
every pair F ≺ F ′ of adjacent rational boundary components and every M ∈ Γ
the following diagram commutes:

XM ·Σ(F ′)·M−1(M · F ′) XM ·Σ(F )·M−1(M · F )

XΣ(F ′)(F
′) XΣ(F )(F )..................................................................................................................................................................................................................................................................................................................................... ............

π(F ′,F )

.............................................................................................................................................................................................. ............
π(M ·F ′,M ·F )

......................................................................................................
...
.........
...

M̃

......................................................................................................
...
.........
...

M̃

Proof. This is an immediate consequence of the two preceding propositions
(cf. [HKW, Lemma 3.72]) �

We can now define the toroidal compactification of Dg/Γ as an identification
space. For an admissible collection Σ̃ := {Σ(F )} of fans let X(Σ̃) be the disjoint
union

X(Σ̃) :=
∐

F rat. boundary comp.

XΣ(F )(F ) . (17)

We now define an equivalence relation on X(Σ̃):

Definition 1.48 Let Σ̃ := {Σ(F )} be an admissible collection of fans and let
X(Σ̃) be as in (17). The equivalence relation ∼ on X(Σ̃) is defined by the fol-
lowing two types of equivalences. For that, let x ∈ XΣ(F )(F ) and x′ ∈ XΣ(F ′)(F

′)
for two rational boundary components F and F ′. Then

(i) x ∼ x′, if there exists an M ∈ Γ with F = M · F ′ such that x = M̃ · x′,
where M̃ is defined as in Proposition 1.45.

(ii) x ∼ x′, if F ≺ F ′ and π(F ′, F )(x′) = x , where π(F ′, F ) is the étale
mapping from Proposition 1.46.

With the help of this equivalence relation we can now define the toroidal com-
pactification of Dg/Γ.

Definition 1.49 Let Σ̃ := {Σ(F )} be an admissible collection of fans. The
toroidal compactification (Dg/Γ)∗ of Dg/Γ determined by Σ̃ is the quotient space

(Dg/Γ)∗ := X(Σ̃)/ ∼ ,

where X(Σ̃) is given as in (17) and ∼ is the equivalence relation from Defini-
tion 1.48.
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Let F be a rational boundary component. Analogous to the g = 2–case
(cf. [HKW, Remark 3.77 (i)]) the composition XΣ(F )(F ) ↪→ X(Σ̃) � X(Σ̃)/ ∼
yields an open map

p∗(F ) : YΣ(F )(F )→ (Dg/Γ)∗ , (18)

which naturally extends the projection p(F ) from (12). The image of p∗(F ) is
dense in (Dg/Γ)∗ for every rational boundary component F . Moreover, for every
pair F ≺ F ′ of adjacent rational boundary components the image of p∗(F ′) is
contained in the image of p∗(F ) as a dense open subset. The set of images of
p∗(F ) for all minimal rational boundary components F therefore form an open
cover of (Dg/Γ)∗.

To obtain a stratification of (Dg/Γ)∗, we define:

Definition 1.50 For a rational boundary component F of Dg we define the open
boundary component ∂F (Dg/Γ)∗ by

∂F (Dg/Γ)∗ := p∗(F )
(
YΣ(F )(F )

)
\
⋃

F≺F ′
p∗(F ′)

(
YΣ(F ′)(F

′)
)
.

If F is a corank i–boundary component of Dg, we call ∂F (Dg/Γ)∗ an open
corank i–boundary component of ∂F (Dg/Γ)∗.

In particular ∂Dg (Dg/Γ)∗ = Dg/Γ. We have a stratification

(Dg/Γ)∗ =
∐
F

∂F (Dg/Γ)∗ . (19)

As a conclusion we summarize the results of the previous section in the following
theorem:

Theorem 1.51 (Toroidal compactification) Let Γ be a subgroup of Sp(2g,Z)
of finite index and Σ̃ = {Σ(F )} an admissible collection of fans. Then there ex-
ists a compact space (Dg/Γ)∗ which contains Dg/Γ as an open and dense subset
with purely 1–codimensional boundary (Dg/Γ)∗ \ (Dg/Γ).
The projections p(F ) : Dg/P (F ) → Dg/Γ can be extended to open maps
p∗(F ) : YΣ(F )(F ) → (Dg/Γ)∗ which are isomorphisms when restricted to a suffi-
ciently small neighborhood of YΣ(F )(F ). Furthermore, (Dg/Γ)∗ can be represented
as the union of all the images of the maps p∗(F ) for every boundary component
F .

Note that in general (Dg/Γ)∗ is not projective. However, we can impose condi-
tions on the admissible fans that will guarantee this property. To do this, consider
the spaces

Ω :=
∐
F

C(F ) , ΩZ :=
∐
F

C(F ) ∩ P ′(F ) , (20)
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where the union is taken over all rational boundary components F of Dg. Using
the operation of Γ on the cones C(F ) we can define the quotient spaces

Ξ := Ω/Γ , ΞZ := ΩZ/Γ . (21)

We can now define the notion of a projective, admissible collection of fans.

Definition 1.52 An admissible collection Σ̃ = {Σ(F )} of fans is called projec-
tive, if there exists a piecewise linear function ϕ : Ξ→ R with the following three
properties:

(i) ϕ(x) > 0 for all x ∈ Ξ \ {0},

(ii) ϕ is linear on the image of each cone σ ∈ Σ(F ) in Ξ, and Σ(F ) is the
largest fan in P ′(F ) with support C(F )rc which has this property,

(iii) ϕ is integral on ΞZ.

These additional conditions on an admissible collection of fans ensure that the
corresponding toroidal compactification is projective as the following theorem
shows:

Theorem 1.53 Let Σ̃ = {Σ(F )} be a projective admissible collection of fans.
Then the toroidal compactification (Dg/Γ)∗ defined by Σ̃ is a projective variety.

Proof. [AMRT, Theorem IV.2.1] �

1.5 Quotient singularities

The Siegel modular varieties AΓ = Hg/Γ introduced in Section 1.2 as well as
their toroidal compactifications have in general singularities. These can occur
at two different stages: during the construction when taking the quotient by
Γ and during the compactification. However, we will see in this section that
the singularities in both cases can be described locally as the quotient of Cn by
some finite group, provided that the fans used in the compactification process
are nonsingular. We will study these so–called quotient singularities and provide
criteria which guarantee the extensibility of pluricanonical forms over them. For
the general background on quotient singularities we refer the reader to the works
of Cartan ([Car1]) and Prill ([Pri]).

We start by providing the general definition of a quotient singularity.
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Definition 1.54 A singularity which is isomorphic to a singularity of a quotient
X/G of a complex manifold X by a properly discontinuous action of a finite group
G is called a quotient singularity (or a V -germ).

The following theorem allows us to reduce the study of quotient singularities to
a special case.

Theorem 1.55 Given a quotient singularity, there exist n ∈ N and a finite
subgroup G of GL(n,C) such that the singularity is equivalent to the singularity
of Cn/G at the origin.

Proof. [Car1, p. 97] and [Pri, p. 380] �

To determine the type of a quotient singularity we have to study the elements of
the finite group G. An important role is played by the following type of matrices.

Definition 1.56 A matrix g ∈ GL(n,C) is called a quasi–reflection if the matrix
g − 1 has rank 1.

The importance of these quasi–reflections is made clear by the following lemma.

Lemma 1.57 Let G be a subgroup of GL(n,C) containing only quasi–reflections.
Then the quotient Cn/G is nonsingular.

Proof. [Pri, p. 382] �

Let G be a finite subgroup of GL(n,C). Then the subgroup N of G generated
by the quasi–reflections is normal in G. The factor group G/N is isomorphic
to a subgroup K of GL(n,C) without quasi–reflections. Furthermore K can be
chosen in such a way that the singularities at the origins of Cn/K and Cn/K are
isomorphic. This gives the basic idea for the proof of the following proposition.

Proposition 1.58 Given any finite subgroup G of GL(n,C), there exists a sub-
group K of GL(n,C) without quasi–reflections such that the singularities at the
origins of Cn/K and Cn/G are isomorphic.

Proof. [Pri, Proposition 6] �

Thus every quotient singularity can be represented by a subgroup G of GL(n,C)
without quasi–reflections. The singular locus of the quotient Cn/G can then be
determined as follows.
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Lemma 1.59 Let G be a subgroup of GL(n,C) without quasi–reflections. Then
the singular locus of Cn/G is given by

Sing(Cn/G) = {x ∈ Cn; gx = x for one g ∈ G} /G .

Proof. [MS, Lemma 2.1] �

We are not only interested in the type of a quotient singularity, but also in the
question whether pluricanonical forms can be extended over this singularity.

Before we can answer this question, we first have to define what we mean when
we speak of the canonical bundle or a pluricanonical form on a normal, not nec-
essarily nonsingular, variety. An easy way to do this is provided by the following
definition.

Definition 1.60 A canonical divisor KX of a normal variety X is a Weil divisor
on X that coincides with the canonical divisor on X \ Sing(X). The variety X
is called Q–Gorenstein if there is an integer m such that mKX is Cartier.

Another traditional way due to Zariski to define this is to say that the canonical
bundle ωX on a normal variety is given by j∗(Ω

n
X◦), where X◦ := X \ Sing(X)

is the smooth locus of X and j : X◦ → X its inclusion. The canonical divisor
KX is then the Weil divisor corresponding to ωX . Alternatively, there is also
a definition which explicitly gives the group of sections Γ(U, ωX) for each open
subset U which can be found in [Rei, (1.5) and (1.7)].

From now on we will assume that X is a quasi–projective variety which is
Q–Gorenstein. Hence there exists an integer such that the sheaf OX(mKX) is
invertible. Let s be a local generator of OX(mKX) at a singular point P ∈ X
and let f : Y → X be a resolution. According to [Rei, (1.9)] s is a regular
m–canonical form on X which can be considered as a rational differential form
on Y , since the function fields k(X) and k(Y ) coincide. At those points where
f is an isomorphism s is again regular, but at the exceptional divisors s will in
general have poles and thus fails to be regular. We define:

Definition 1.61 Let X be a quasi–projective, normal variety. The variety X
has canonical singularities if it satisfies the following two conditions:

(i) X is Q–Gorenstein, i.e. there is an integer m such that mKX is Cartier.

(ii) For every resolution f : Y → X of X with exceptional prime divisors {Ei}
we have that

mKY = f ∗(mKX) +
∑

aiEi

for some rational numbers ai, called discrepancies, satisfying ai ≥ 0.
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If in (ii) we even have that all discrepancies ai satisfy ai > 0, the variety X is
said to have terminal singularities; if ai > −1 for all discrepancies, X is said to
have log–terminal singularities.

Condition (ii) guarantees that in the above setup where we have a regular
m–canonical form s on X, the form s does not collect poles along the excep-
tional divisors of a resolution f : Y → X and thus defines a regular form on Y
(cf. [Rei, (1.9)]). We summarize these observations in the following theorem:

Theorem 1.62 Let X be a quasi–projective, normal variety with canonical sin-
gularities. Then every pluricanonical form on X can be extended to any resolution
of X.

To extend pluricanonical forms to resolutions of the Siegel modular varieties in-
troduced in Section 1.2, we need to determine the discrepancies of the exceptional
divisors. This will be done in detail in the following chapters. However, we can
use the following general result to get a first estimate:

Proposition 1.63 Let X be a smooth projective algebraic variety over C and G
be a finite group acting on X. Then the quotient variety X/G has log–terminal
singularities.

Proof. [Bor, Proposition 7.9] �

Although the subgroups Γ of Sp(2g,Z) of finite index are infinite, their action
can locally be given by finite subgroups.

Proposition 1.64 Let Γ be a discrete subgroup of Sp(2g,Z). Then for every
point τ ∈ Hg the stabilizer StabΓ(τ) of τ in Γ is finite.

Proof. The finiteness follows from the fact that the action of Γ on Hg is properly
discontinuous by Lemma 1.13. �

The above proposition allows us to apply Proposition 1.63 to conclude that Siegel
modular varieties have log–terminal singularities, i.e. discrepancies greater than
−1. To check whether the varieties even have canonical or terminal singularities,
we have to know more about the elements of these finite stabilizers and their
actions. We will study them in detail in the following chapters, but for now, we
will just give the general theory needed for determining whether a given quotient
singularity is canonical or not.

For that, recall that by Proposition 1.58 it suffices to consider the action of a
finite subgroup Γ of GL(n,C) without quasi–reflections on Cn. If x ∈ Cn is fixed
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by id 6= γ ∈ Γ with ord(γ) = m, we can find for any primitive m–th root of unity
ζ integers a1, . . . , an with 0 ≤ ai < m such that the eigenvalues of the linearized
action of γ on the tangent space of x are given by

ζa1 , . . . , ζan . (22)

In terms of these eigenvalues, the question whether a quotient singularity is ca-
nonical or not can be answered as follows.

Theorem 1.65 (Reid, Shepherd–Barron, and Tai) Let Γ be a finite sub-
group of GL(n,C) without quasi–reflections. Then the quotient X/Γ has canonical
(resp. terminal) singularities if and only if for all id 6= γ ∈ Γ, all primitive m–th
roots of unity ζ, where m denotes the order of γ, and for each x ∈ Fix(γ) the
condition

1

m

(
a1 + · · ·+ an

)
≥ 1 (resp. > 1)

is satisfied, where 0 ≤ ai < m are determined by the eigenvalues of the action of
γ on the tangent space of x as in (22).

Proof. This follows from [MS, Theorem 2.3 (ii)] and [Rei, Theorem 4.11]. �

1.6 Modular forms

In this section we will introduce modular forms. These are certain functions on
the Siegel upper half space Hg which can be expanded into Fourier series due
to the properties they possess. They play an important role in determining the
Kodaira dimension of the Siegel modular varieties we introduced in the previous
sections. Our main sources in this section are the books of Freitag [Fre] and Igusa
[Igu3].

To keep the notation simple we first introduce the following operator. Let

M =

(
A B
C D

)
∈ Sp(2g,R), r ∈ Z and f be a C–valued function on Hg. We then

define the function f |M on Hg via

f |M(τ) := f |
r
M(τ) := f(Mτ) det(Cτ +D)−r .

It is easy to check that for any two matrices M,N ∈ Sp(2g,R) the identity
(f |M) |N = f |MN is satisfied.

We can now define the main object of this section. Note that Hg is an open
subset of the space of symmetric complex g × g matrices which we can identify
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with Cg(g+1)/2. As a consequence the notion of a holomorphic function on Hg is
well–defined.

Definition 1.66 Let g ≥ 2 and Γ be a subgroup of Sp(2g,Z) of finite index. A
holomorphic function f : Hg → C is called a (degree g) modular form of weight
r ∈ Z with respect to Γ, if for all M ∈ Γ the identity f |rM = f is satisfied.

The modular forms of weight r with respect to a fixed group Γ form a C–vector
space which we denote by [Γ, r]. We have even more; let f ∈ [Γ, r], g ∈ [Γ, s]. It
is then easy to verify that f · g ∈ [Γ, r + s] holds. This means that the space of
modular forms with respect to Γ has the structure of a graded C–algebra.

The set of all those symmetric matrices S ∈ Sym(g,R) for which the translation
τ 7→ τ + S is contained in Γ defines a lattice L in the vector space Sym(g,R).
We define its dual lattice in Sym(g,R) by

L∗ := {T ∈ Sym(g,R); tr(ST ) ∈ Z for all S ∈ L} .

Let f ∈ [Γ, r] be a modular form. Then f is periodic in the following sense:

f(τ + S) = f(τ) for all S ∈ L .

According to [Igu3, p. 198] we can thus expand f into a Fourier series as follows:

f(τ) =
∑
S∈L∗

a(S)e2πi tr(Sτ) (23)

This representation can be simplified further as the Koecher principle shows.

Lemma 1.67 (Koecher principle) Let f ∈ [Γ, r] be a modular form. Then f
has a Fourier expansion of the form

f(τ) =
∑

S∈L∗,S≥0

a(S)e2πi tr(Sτ) .

Proof. According to [Fre, p. 129] we have that in the Fourier expansion given
in (23) the implication

a(S) 6= 0⇒ S ≥ 0

holds (cf. also [Fre, Chapter III, Hilfssatz 4.11]). This means that f has the
Fourier expansion as claimed. �

We will now investigate the behavior of a modular form f at the boundary of
Hg. To do this, we first introduce the Siegel Φ–operator. Let f : Hg → C be a
function for which the limit

lim
t→+∞

f

(
τ 0
0 it

)
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exists for all τ ∈ Hg−1. We thus obtain a function f |Φ on Hg−1 defined by

f |Φ(τ) := lim
t→+∞

f

(
τ 0
0 it

)
.

If f is a modular form, we can express f |Φ again as a Fourier series as the
following proposition shows.

Proposition 1.68 Let f ∈ [Γ, r] be a modular form with Fourier expansion

f(τ) =
∑

S∈L∗,S≥0

a(S)e2πi tr(Sτ) .

Then the function f |Φ is well–defined and we have for its Fourier expansion

f |Φ(τ) =
∑
S̃

a

(
S̃ 0
0 0

)
e2πi trSτ ,

where we sum over all S̃ ∈ Sym(g − 1,R) for which

(
S̃ 0
0 0

)
∈ L∗.

Proof. [Fre, p. 129] �

The map that associates to every modular form f the function f |Φ is called
Siegel’s Φ–operator. It is a linear operator on [Γ, r] which maps to a space of
modular forms of degree g−1 with respect to a suitable subgroup of Sp(2g−2,R).
We will use this operator to define a special subspace of [Γ, r], the space of cusp
forms. We need the following notion:

Definition 1.69 A real matrix N is called projectively rational if there is a real
number t 6= 0 such that tN is a rational matrix.

We can now define the notion of a cusp form.

Definition 1.70 A modular form f ∈ [Γ, r] is called a cusp form if for all pro-
jectively rational matrices N in Sp(2g,R) the function f |N is contained in the
kernel of Siegel’s Φ–operator, that is if the identity (f |N) |Φ ≡ 0 holds.

The cusp forms of weight r with respect to a fixed group Γ form a subspace of
the C–vector space [Γ, r] which we denote by [Γ, r]0.



Chapter 2

Siegel modular varieties

In this chapter we will motivate and state the main result of this thesis. Moreover,
we will give a rough outline and the key ideas of its proof which will then be
carried out in the following chapters.

2.1 Introduction

We have seen in the previous chapter that any subgroup Γ of Sp(2g,Z) of finite
index defines an algebraic variety AΓ := Hg/Γ which is quasi–projective and of
dimension g(g + 1)/2. As stated in the preface there is the following conjecture
regarding the Kodaira dimension of these Siegel modular varieties:

Conjecture 2.1 There are only finitely many subgroups Γ of Sp(2g,Z) for any
g ≥ 2 such that the corresponding Siegel modular variety AΓ is not of general
type.

Note that since Sp(2g,Z) is finitely generated it has only finitely many subgroups
of a given index (cf. [Hal, Section 2]). This implies that the conjecture is equiva-
lent to giving a bound on the index of Γ in Sp(2g,Z) such that for all subgroups
Γ whose indices exceed this bound the corresponding Siegel modular varieties AΓ

are of general type.

For Γ = Sp(2g,Z), the full symplectic group, we have seen in the preface that
the corresponding moduli space Ag is rational or unirational for small g and of
general type for g ≥ 7.

Theorem 2.2 The moduli space of principally polarized abelian varieties Ag is
of general type for g ≥ 7.

Proof. [Mum2] �
31
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This result has an immediate consequence for the conjecture as the following
corollary shows.

Corollary 2.3 For any subgroup Γ of Sp(2g,Z) for g ≥ 7 of finite index the
corresponding moduli space AΓ is of general type.

Proof. Since Γ is a subgroup of Sp(2g,Z) we obtain a morphism from AΓ to Ag.
Note that the fact that Γ has finite index implies that this morphism is finite.
We can now use Proposition 1.23 together with Theorem 2.2 to conclude that AΓ

is of general type since Ag is. �

This implies that the conjecture can be shown by considering each 2 ≤ g ≤ 6
separately. On the other hand, there is the finiteness theorem of Borisov in the
g = 2–case which motivated this thesis.

Theorem 2.4 There are only finitely many subgroups Γ of Sp(4,Z) of finite
index such that AΓ is not of general type.

Proof. [Bor, Proposition 6.4] �

So the only open cases are g = 3, g = 4, g = 5 and g = 6. In this thesis we
will focus on the g = 3–case, for which we will give a main result that proves the
conjecture in this case up to some technical result. However, quite a few of our
results are stated for arbitrary g ≥ 3, e.g. the description of the singularities in
the interior, and others can easily be generalized.

2.2 Pluricanonical sections

In order to show that for a given Γ < Sp(2g,Z) the corresponding moduli space
AΓ is of general type, we need to construct sufficiently many pluricanonical sec-
tions. A key role is played by Siegel modular forms with respect to Γ which we
introduced in the previous chapter in Section 1.6. The importance becomes clear
when we look at the canonical divisor of AΓ.

Recall that any element τ of the Siegel upper half space Hg (cf. Definition 1.7)
can be considered as a symmetric matrix τ = (τij). We can thus define

dτ := dτ11 ∧ dτ12 ∧ · · · ∧ dτgg

as the usual g(g + 1)/2–form on Hg. If f is a modular form of weight g + 1 with
respect to Γ, a short calculation shows that fdτ defines a differential form on Hg
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which is invariant under Γ. Hence, if Γ acts freely and the natural quotient map
Hg → AΓ is thus unramified, we obtain a canonical form on AΓ, i.e. a section in

KAΓ
= (g + 1)L ,

where L is the line bundle of modular forms given by the automorphy factor
det(Cτ +D). If Γ does not act freely the above statement is still true if one stays
away from the branch locus of Hg → AΓ.

If one considers a toroidal compactification of AΓ as introduced in Section 1.4,
the relation with modular forms can be extended as follows. For now, we will
assume that Γ acts freely and that we have a smooth compactificationA∗Γ with the
following property: for every point in the boundary there exists a representative
x ∈ XΣ(F )(F ) for some boundary component F such that XΣ(F )(F ) is smooth
at x and that the action of P ′′(F ) on x is free (here we used the notation of
Section 1.4). Then the canonical divisor on A∗Γ is given by

KA∗
Γ

= (g + 1)L−D ,

where D is the boundary divisor of A∗Γ and L is the extension of the line bundle
of modular forms on AΓ to the compactification A∗Γ. As before, if Γ or the com-
pactification A∗Γ does not satisfy these properties, the description of the canonical
divisor still holds on a suitable open part of A∗Γ.

In that sense, to get a section of the canonical bundle, we need a modular form of
weight (g+ 1) with respect to Γ which vanishes at the boundary. These modular
forms are just the cusp forms of weight g+1 introduced in Definition 1.70 as the
following result of Freitag shows.

Theorem 2.5 Let Γ be a subgroup of Sp(2g,Z) of finite index. If ÃΓ is a smooth
projective model of the Siegel modular variety AΓ, then every cusp form f of
weight g + 1 with respect to Γ defines a differential form fdτ which extends to
ÃΓ. In particular, there is a natural isomorphism

H0
(
ÃΓ, ωÃΓ

)
∼= [Γ, g + 1]0 ,

where [Γ, g + 1]0 denotes the space of cusp forms of weight g + 1 with respect to
Γ as introduced in Definition 1.70.

Proof. This is implied by [Fre, Satz III.2.6] and the remark following it. �

Remark 2.6 Note carefully, that while it is still true that a weight m(g + 1)
form defines an m–fold differential form on the open part of AΓ where the quotient
map Hg → AΓ is unbranched, such a form does in general not extend to a smooth
projective model of AΓ. For that it would need to have a higher order of vanishing
at the boundary and at the points where Γ does not act freely.
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In general for arbitrary Γ it is very difficult to formulate these vanishing conditions
explicitly and even more difficult to check them for a given cusp form. However,
the situation becomes much better when one knows more about the geometry
of the Siegel modular variety AΓ and its compactification. There is a family
of Siegel modular varieties, namely the moduli spaces Ag(n) of abelian varieties
with a level n–structure, which has been studied extensively and whose geometry
is understood rather well. Although they represent only a very small fraction
of Siegel modular varieties, we will see in Section 2.5 how they can be used to
formulate vanishing conditions for an arbitrary Siegel modular variety AΓ. Before
we do this, we will first collect the results relevant to our situation in the following
section.

2.3 The moduli spaces Ag(n)

In this section we will collect some results on the moduli spaces Ag(n) of princi-
pally polarized g–dimensional abelian varieties with a level n–structure. Further-
more, we will present a toroidal compactification of Ag(n), the so–called Voronoi
compactification AVor

g (n).

Recall the definition of Γ(n) = Γg(n) as given in Section 1.2 and the interpretation
of the corresponding Siegel modular variety Ag(n) as stated in Theorem 1.16.

For the principal congruence subgroups there is an estimate for the dimension of
the space of modular forms of weight k with respect to Γ(n). For g = 3 there
is even an exact formula for the dimension of the space of cusp forms which has
been computed by Tsushima in [Tsu]. However, for our purposes it suffices to
have the following estimate:

Proposition 2.7 For n ≥ 3 the dimension of the space of modular forms of
weight k(g + 1) with respect to Γg(n) grows as

2(g−1)(g−2)/2 [Sp(2g,Z) : Γg(n)]
g∏
j=1

(j − 1)!

(2j)!
(−1)j+1B2j

[
k(g + 1)

]g(g+1)/2

as k →∞, where the B2j are the Bernoulli numbers which can be defined by the
identity

x

ex − 1
=

∞∑
ν

Bν
xν

ν!
.

Proof. [Tai, Proposition 2.1] �

In particular, we obtain the following estimate for g = 3:
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Corollary 2.8 For n ≥ 3 the dimension of the space of modular forms of degree 3
and weight 4k with respect to Γ(n) is given by

dim [Γ(n), 4k] =
1

6!
· 1

181440
[Sp(6,Z) : Γ(n)] (4k)6 +O(k5)

These modular forms, or more precisely the cusp forms with respect to Γ(n), have
been used in many cases to show that the moduli spaces Ag(n) are of general
type for all but finitely many values of g and n. We summarize these results in
the following theorem:

Theorem 2.9 The moduli space Ag(n) is of general type for the following values
of g and n ≥ n0:

g 2 3 4 5 6 ≥ 7

n0 4 3 2 2 2 1

Proof. This theorem collects various results which can be found in [Tai], [Fre],
[Mum2] and [Hul]. A similar collection with sketches of the proofs can be found
in [HS, Theorem II.2.1]. �

All other cases are either known to be rational or unirational with the exception
of A6: The spaces A2(2) and A2(3) are birational to the Segre cubic resp. the
Burkhardt quartic in P4 and hence rational (cf. the papers of van der Geer [vdG1]
resp. Todd [Tod] and Baker [Bak]). Rationality of A3(2) was shown by van
Geemen [vG] and Dolgachev and Ortland [DO]. For n = 1, we have thatAg(1) co-
incides with Ag, the moduli space of principally polarized g–dimensional abelian
varieties. Here Igusa [Igu1] showed that A2 is rational, whereas the rationality
for A3 follows from the rationality of M3, the moduli space of curves of genus
3, which was shown by Katsylo [Kat]. The spaces A4 and A5 are unirational by
the works of Clemens [Cle] for g = 4 and Donagi [Don], Mori and Mukai [MM]
and Verra [Ver] for g = 5. The only open question is the one for the Kodaira
dimension of A6.

It is well–known that for n ≥ 3 the action of Γ(n) on Hg is free and consequently
the moduli space Ag(n) is smooth. However, the minimal projective compacti-
fication of Ag(n), the so–called Satake compactification ASat

g (n) (cf. [Sat],[Bai]),
has bad singularities at infinity. It is defined as the projective variety associated
with the graded ring of modular forms with respect to Γ(n) as introduced in
Section 1.6. Set–theoretically ASat

g (n) is the union of Ag(n) with some boundary
components each of which is isomorphic to some moduli space Ad(n) of lower
dimension (cf. [Nam, §5]):

ASat
g (n) = Ag(n)q

∐
ig−1

Aig−1

g−1 (n)

q . . .q
∐

i0

Ai00 (n)

 (1)
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Using the method of toroidal compactification we can construct other compact-
ifications which have milder singularities. For n ≥ 3 there even exists a cone
decomposition such that the corresponding toroidal compactification is smooth.
However, we are at the same time interested in having a compactification which
admits a simple geometric interpretation such that we can easily describe the
action of Sp(2g,Z/nZ) on the boundary and can formulate simple vanishing
conditions. Therefore we will work with the so–called 2nd Voronoi decomposi-
tion which possesses such a geometric interpretation. It will turn out that the
corresponding compactification AVor

g (n) is in fact smooth for g ≤ 4, but acquires
singularities at the boundary for g ≥ 5.

Recall the definitions and notations of Section 1.4. To obtain a toroidal compac-
tification of Ag(n) we thus have to specify an admissible collection Σ̃ of fans in
the sense of Definition 1.44. To simplify matters we want this collection to be in-
dependent of the level n of Ag(n). It therefore suffices to give such a collection for
the biggest group Γ(n), i.e. Γ(1) = Sp(2g,Z). With respect to this group all the
boundary components F are equivalent to one of the standard components F (k)

given in (10) in Section 1.4, so we can restrict to specifying fans for these stan-
dard components. Moreover, according to the remark following Definition 1.44 it
even suffices to specify just one fan Σ for the minimal standard component F (0).
We thus have to define a decomposition of the open homogeneous cone C(F (0))
in P(F (0)) associated to F (0), or more precisely of its rational closure C(F (0))rc

as defined in Definition 1.41 (iii). This latter space is isomorphic to the cone
Sym≥0(g,R) of semi–positive definite real symmetric g × g matrices.

There exist several decompositions of this cone in the literature. There are the 1st

Voronoi or perfect cone decomposition, the central cone decomposition and the
2nd Voronoi decomposition. They are all described in [Nam, §8 and §9]. They
lead to the perfect cone compactification APerf

g (n), the Igusa compactification
AIgu
g (n) and the 2nd Voronoi compactification AIgu

g (n) respectively. In general, all
these compactifications have different properties and have thus certain advantages
and disadvantages depending on ones view point. As mentioned before, we are
interested in having a nice geometric interpretation and will therefore use the
2nd Voronoi compactification, or just Voronoi compactification for short.

The 2nd Voronoi decomposition is described in [Nam, §9] in terms of Delaunay
and Voronoi cells for general g. However, for g ≤ 3 all the three standard decom-
positions as given above coincide, so we can give a more explicit construction in
this case.

For g = 3, we have the following 6–dimensional standard cone in Sym≥0(3,R):

σ3 := R≥0 α1 +R≥0 α2 +R≥0 α3 +R≥0 β1 +R≥0 β2 +R≥0 β3 ,
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where

α1 :=

1 0 0
0 0 0
0 0 0

 , α2 :=

0 0 0
0 1 0
0 0 0

 , α3 :=

0 0 0
0 0 0
0 0 1

 ,

β1 :=

0 0 0
0 1 −1
0 −1 1

 , β2 :=

 1 0 −1
0 0 0
−1 0 1

 , β3 :=

 1 −1 0
−1 1 0
0 0 0

 .

We define an admissible fan Σ consisting of all the cones which are images of σ3 or
its faces by the action of GL(3,Z). This fan gives the 2nd Voronoi decomposition
for g = 3. As we remarked at the beginning of the construction this fan for the
minimal rational boundary component F (0) defines a whole admissible collection
Σ̃ = {Σ(F )} of fans for all boundary components F . We thus have the partial
compactifications YΣ(F )(F ) in direction of each boundary component F and hence
the Voronoi compactification AVor

3 (n) of A3(n) for each level n by Theorem 1.51.

As already mentioned, the 2nd Voronoi decomposition of Sym≥0(g,R) is more
complicated for g ≥ 4 (cf. [Nam, §9]). In particular, unlike in the g = 3–case
where the whole decomposition is generated by σ3 and its faces, there is no unique
maximal cone in this decomposition up to the action of GL(g,Z) (cf. [Nam,
p. 94]). However, it was shown by Alexeev ([Ale1]) that the decomposition is
projective for all g. As a consequence we obtain by Theorem 1.53 that the Voronoi
compactifications AVor

g (n) are projective varieties.

For g = 3 the Voronoi compactification AVor
3 (n) coincides with the Igusa compac-

tification for which Igusa showed that it is smooth provided n ≥ 3 (cf. [Igu2, The-
orem 2]). In the g = 4–case, the 2nd Voronoi decomposition is a basic refinement
of the central cone decomposition (cf. [ER1],[ER2]) which implies that AVor

4 (n)
can be obtained as a desingularization of the Igusa compactification AIgu

4 (n).
However, for g ≥ 5, the Voronoi compactification AVor

g (n) acquires singularities
on the boundary.

Theorem 2.10 The Voronoi compactification AVor
g (n) of the moduli space Ag(n)

is smooth for n ≥ 3 and g ≤ 4.

As for any toroidal compactification of Ag(n) there is a projection

π : AVor
g (n)→ ASat

g (n)
(1)
= Ag(n)q

∐
ig−1

Aig−1

g−1 (n)

q . . .q
∐

i0

Ai00 (n)

 (2)

to the Satake compactificationASat
g (n) which is sometimes also called the minimal

compactification because of this property. Following the notation of [vdG3] we
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denote the preimage of the moduli spaces Aijj (n) with j ≤ g − k under this
projection by βk, i.e.

βk := π−1

 ∐
j≤g−k

∐
ij

Aijj (n)

 . (3)

The preimage βk ⊂ AVor
g (n) can be interpreted as the locus of semi–abelian

varieties with torus rank ≥ k. In particular, we have that β0 = AVor
g (n) and β1 =

AVor
g (n) \ Ag(n). Furthermore, we define the space of rank ≤ k–degenerations

(
AVor
g (n)

)(k)
= AVor

g (n) \ βk+1 . (4)

We shall remark here that the space of rank 1–degenerations
(
AVor
g (n)

)(1)
is

canonical in the sense that it does not depend on the toroidal compactification
chosen (cf. [Mum2]).

The boundary of AVor
3 (n) is a divisor which can be expressed as follows:

D =
∑
j

Dj ,

where the Dj are just the closures of the preimages of the top–dimensional com-
ponents Ai22 (n) ⊂ ASat

3 (n) under the map π.

Since for n ≥ 3 the action of the group Γ(n) is free and the spaces AVor
3 (n)

are smooth, the canonical divisor of AVor
3 (n) is, according to our results from

Section 2.2, given by

KAVor
3 (n) = 4L−D , (5)

where L is the extension of the line bundle of modular forms to AVor
3 (n).

There is the following result of Hulek regarding the nef cone of AVor
3 (n):

Theorem 2.11 A divisor aL − bD on AVor
3 (n) is nef if and only if b ≥ 0 and

a− 12 b
n
≥ 0.

Proof. [Hul, Theorem 0.2] �

As an immediate consequence we obtain that the canonical divisor KAVor
3 (n) is

nef for n = 3 and ample for n ≥ 4 (cf. [Hul, Corollary 0.4]). Hence AVor
3 (n) is a

minimal model for n = 3 and a canonical model for n ≥ 4.
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2.4 Compactification of AΓ

In this section we will see how the moduli spaces Ag(n) and its compactifications
constructed in the previous section can be used to obtain compactifications for
arbitrary Siegel modular varieties AΓ. Furthermore, we will explain how the
vanishing conditions from Remark 2.6 on AΓ can be reformulated on AVor

g (n)
instead.

For that, we first have to recall Theorem 1.18 from Chapter 1. There we have seen
that for g ≥ 2 every subgroup Γ of Sp(2g,Z) of finite index contains a principal
congruence subgroup Γ(n) = Γg(n) as a normal subgroup of finite index. We can
thus realize every Siegel modular variety AΓ as a quotient of Ag(n) = Hg/Γ(n)
by the action of the finite group Γ/Γ(n) as follows:

AΓ = Hg/Γ

Ag(n) = Hg/Γ(n)
........................................................................
...
.........
...
� Γ/Γ(n)

As a special case we obtain for Γ = Sp(2g,Z) the following diagram

Ag = Hg/ Sp(2g,Z)

Ag(n) = Hg/Γ(n)
........................................................................
...
.........
...
� Sp(2g,Z/nZ)

,

where we used that the factor group Sp(2g,Z)/Γ(n) is isomorphic to the symplec-
tic group G := Sp(2g,Z/nZ) defined over the finite ring Z/nZ (cf. Definition 1.8
and Theorem 1.16). We can thus consider the factor group Γ/Γ(n) as a subgroup
H of G and consider the map from Ag(n) to AΓ as a partial quotient map as the
following diagram shows:

Ag

Ag(n)

AΓ

..............................................................................................................
...
.........
...

G �

....................................................................................... .........
...

� H

Note that although we also have a morphism from AΓ to Ag, it can in general
not be represented by the action of a finite group. For that we would need that
H is normal in G, which is only the case if Γ is normal in Sp(2g,Z).

We will now consider the Voronoi compactification AVor
g (n) of Ag(n) constructed

in the previous section. According to [Igu2, p. 243] the action of the group G =
Sp(2g,Z/nZ) on Ag(n) can be extended to this compactification. It is easy to
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check that the quotient ofAVor
g (n) by this action defines a projective variety which

coincides with the Voronoi compactification AVor
g of Ag = Ag(1). Furthermore,

the partial quotient of AVor
g (n) by the subgroup H = Γ/Γ(n) corresponding to Γ,

defines a projective variety that can be considered as a compactification of AΓ,
which we denote by AVor

Γ . As a consequence, we can extend the description given
in the above diagram to the compactifications as follows:

AVor
g

AVor
g (n)

AVor
Γ

..............................................................................................................
...
.........
...

G �

................................................................................ .........
...

� H

(6)

By abuse of notation we define the locus βk ⊂ AVor
Γ as the image of the corre-

sponding locus βk ⊂ AVor
g (n) as defined in (3) and write

(
AVor

Γ

)(k)
= AVor

Γ \ βk+1 (7)

for the image of the space of rank ≤ k degenerations.

Our aim is to construct H–invariant forms on AVor
g (n) which satisfy certain van-

ishing conditions which ensure that they give pluricanonical forms on a suitable
resolution of AVor

Γ . Although these conditions clearly depend on H and thus on
Γ, it is much easier to formulate and check them on AVor

g (n) since there we have
a much better understanding of the geometry.

We conclude this section by giving an estimate for the dimension of the space
of modular forms with respect to Γ which is an immediate consequence of the
corresponding result for the principal congruence subgroups Γ(n).

Proposition 2.12 Let Γ be a subgroup of Sp(2g,Z) containing a principal con-
gruence subgroup Γ(n) with n ≥ 3. Then the dimension of the space of modular
forms of weight k(g + 1) with respect to Γ is given as follows:

dim [Γ, k(g + 1)] ∼


2

[Γ : Γ(n)]
dim [Γ(n), k(g + 1)] if − 1 ∈ Γ ,

1

[Γ : Γ(n)]
dim [Γ(n), k(g + 1)] if − 1 6∈ Γ ,

as k →∞, where [Γ(n), k(g + 1)] is given as in Proposition 2.7.

Proof. We can calculate this dimension, as in [Tai, Proposition 2.1], by using
the method of Hirzebruch in [Hir2]. Since Γ(n) is a normal subgroup of Γ, we
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can consider the factor group H = Γ/Γ(n) and have that the space [Γ, k(g + 1)]
is just given by the H–invariant forms in [Γ(n), k(g + 1)], i.e.

[Γ, k(g + 1)] = [Γ(n), k(g + 1)]H .

We then can conclude that

[Γ, k(g + 1)] =
1

|H|
∑
γ∈H

tr(γ∗|[Γ(n),k(g+1)]) ,

where tr denotes the trace operator. Using the Atiyah–Bott fixed point theorem
(cf. [Tai, Appendix to §2]) we have that

tr(γ∗|[Γ(n),k(g+1)]) = O(kdim Fix(γ))

which tells us that we only need to consider γ = ±1, as otherwise dim Fix(γ) is
strictly less than g(g + 1)/2 which means that we do not get a contribution to
the leading term in this case. Since −1 acts trivially, we get the result as claimed
with a factor of 1 or 2 depending whether −1 is in H or not. �

In particular, using Corollary 2.8 we obtain the following estimate for g = 3:

Corollary 2.13 Let Γ be a subgroup of Sp(6,Z) containing a principal congru-
ence subgroup Γ(n) with n ≥ 3. Then there is the following estimate for the
dimension of the space of modular forms of weight 4k with respect to Γ:

dim [Γ, 4k] =


1

6!
· 1

90720
[Sp(6,Z) : Γ] (4k)6 +O(k5) if − 1 ∈ Γ ,

1

6!
· 1

181440
[Sp(6,Z) : Γ] (4k)6 +O(k5) if − 1 6∈ Γ .

2.5 Outline

In this section we will state the main result of this thesis and give a rough outline
of its proof which will be carried out in the following chapters.

As stated in Section 2.1 it is conjectured that there are only finitely many sub-
groups Γ of Sp(2g,Z) of finite index such that the corresponding moduli space
AΓ is not of general type. As mentioned before we will focus in this thesis on
the case where g = 3 which is mostly due to the fact that the geometry of the
boundary becomes more complicated with higher g and that for g ≥ 5 the spaces
AVor
g (n) are no longer nonsingular as we have seen in Section 2.3.

In the g = 3–case we will prove the conjecture up to some technical point. Namely,
we will show that for all but finitely many subgroups Γ of Sp(6,Z) the space of
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pluricanonical sections on a resolution of the corresponding Siegel modular variety
AVor

Γ grows maximally away from the locus β3 as defined in Section 2.4. We say
here that the space of pluricanonical sections on a smooth projective variety X
grows maximally if dimH0(X,OX(mKX)) grows as mdimX as m tends to infinity.

To make this statement precise, we first have to introduce some notations. For
each group Γ we take the Voronoi compactification AVor

Γ of AΓ as defined in
Section 2.4 and consider a desingularization ÃVor

Γ . The locus β3 which lies in
codimension 3 in AVor

Γ might contain singularities which will then be resolved by
this desingularization. Thus the preimage of β3 in ÃVor

Γ which we denote by β̃3

is in general 1–codimensional. As in (7) we denote the subvariety of ÃVor
Γ which

is given as the complement of this locus by
(
ÃVor

Γ

)(2)
, i.e.

(
ÃVor

Γ

)(2)
= ÃVor

Γ \ β̃3 . (8)

We can now give the following precise formulation of the main result:

Theorem 2.14 There are only finitely many subgroups Γ of Sp(6,Z) of finite

index such that the space of pluricanonical sections on
(
ÃVor

Γ

)(2)
does not grow

maximally.

To obtain the conjecture from this result in the g = 3–case one has to show that
there are at most finitely many subgroups for which the pluricanonical sections

on
(
ÃVor

Γ

)(2)
can not be extended over β̃3, i.e. over the singularities in AVor

Γ lying
in the boundary in codimension ≥ 3. The author hopes to do so in a forthcoming
paper.

We will conclude this chapter by giving a rough outline of the proof of the main
result. As we have seen in Section 2.4 every subgroup Γ of Sp(6,Z) of finite index
contains a principal subgroup Γ(n) of some level n. To obtain sufficiently many

pluricanonical sections on
(
ÃVor

Γ

)(2)
, we will start with pluricanonical forms on

AVor
3 (n) rather than on the Voronoi compactification of AΓ itself. We will only

consider forms onAVor
3 (n) which are invariant under the action of the factor group

Γ/Γ(n) and impose certain vanishing conditions on them. These conditions will
guarantee two things: First, that these forms can be extended over the branch
locus of the map fromAVor

3 (n)→ AVor
Γ and therefore define pluricanonical sections

on AVor
Γ . Second, that they vanish of sufficiently high order at the singularities

of AVor
Γ outside β3 and can thus be extended to

(
ÃVor

Γ

)(2)
.

Once, we have formulated the required vanishing conditions for each subgroup
Γ, we will calculate the obstructions imposed by them on the spaces of pluri-
canonical forms on AVor

3 (n). We will then be able to conclude that there are
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only finitely many Γ for which there do not exist sufficiently many pluricanonical
forms satisfying these conditions - which proves the main result.

Both for formulating the vanishing conditions and for concluding that they are
satisfied for all but finitely many groups Γ, we need to study the spaces AVor

3 (n)
and AVor

Γ , their geometry and their singularities. This can be done by considering
the action of the finite group Sp(2g,Z/nZ) on AVor

3 (n), or more precisely the
action of its subgroup Γ/Γ(n). To do this we need to have a good understanding
of the action on the boundary of AVor

3 (n), in particular at the intersection of
several boundary divisors. For that, we will provide a characterization of the
geometry of the boundary in terms of so–called primitive vectors in (Z/nZ)6 in
Chapter 3.

In Chapter 4 we will study the ramification divisor of the map AVor
3 (n) → AVor

3

which is just the union of the boundary divisors of AVor
3 (n). The singularities

at the interior, i.e. in AΓ itself, and at the boundary of AVor
Γ are described in

Chapters 5 and 6 respectively. In these three chapters we will also relate the
number of elements in Γ/Γ(n) which fix certain components of AVor

3 (n) pointwise
– and thus cause ramification or singularities – to the index of Γ in Sp(2g,Z). This
will be used in Chapter 7, where we put all the results together and calculate the
obstructions, to conclude that subgroups Γ of sufficiently large index do not pose
too many obstructions. This will give us a bound on the index of Γ in Sp(2g,Z)
which is equivalent to excluding finitely many subgroups and thus gives us the
main result.
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Chapter 3

Geometry of the boundary

In this chapter we want to study the intersection of divisors contained in the
boundary of the Voronoi compactification of A3(n), the moduli space of princi-
pally–polarized abelian threefolds with level n structure. Most of it can be done
using toric geometry and can be found in [Tsu]. However, we want to have a
rather explicit description of the combinatorial data involved. For that we will
introduce a finite module over Z/nZ and characterize both the geometry of the
Satake and the Voronoi compactification in these terms. Most of our work can
be done for arbitrary dimension. In fact we will give a description of the Satake
compactification of Ag(n) for arbitrary g and it will only be in the last section
when we talk about the Voronoi compactification that we restrict to the case
g = 3.

3.1 The group Sp(2g,Z/nZ) and the set of prim-

itive vectors

In this section we will recall some basic facts about the group Sp(2g,Z/nZ)
which acts on both the Satake and the Voronoi compactification of Ag(n). More-
over, we will introduce the set of primitive vectors and give an interpretation of
Sp(2g,Z/nZ) in terms of these vectors. Primitive vectors will play a key role in
giving a nice description of the geometry of the compactification of Ag(n).

Recall from Definition 1.8 that Sp(2g,Z/nZ) is defined as the group that contains
all matrices M ∈ GL(2g,Z/nZ) which satisfy the symplectic relations given by

MTJM = J , where J =

(
0 1

−1 0

)
.
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It is the image of the map on Sp(2g,Z) given by reduction modulo n and thus
can also be described as the quotient of Sp(2g,Z) by its normal subgroup Γ(n),
the principal congruence subgroup of level n defined in Section 1.2.

Remark 3.1 If n = k · l with gcd(k, l) = 1, we can write Sp(2g,Z/nZ) as a
cartesian product, namely

Sp(2g,Z/nZ) = Sp(2g,Z/kZ)× Sp(2g,Z/lZ) .

This allows us to work mostly with the case where n = pt is a power of a prime
p.

Let Vk(n) be the Z–module (Z/nZ)k. The columns of matrices in Sp(2g,Z/nZ)
can then be considered as vectors in V2g(n). Moreover, as we will see shortly the
columns satisfy a special condition.

Definition 3.2 We call a vector v = (v1, . . . , vk) ∈ Vk(n) primitive if the coor-
dinates satisfy gcd(v1, . . . , vk, n) = 1 or equivalently if v has order exactly n.

Here again we can make a small observation which allows us to assume that
n = pt in most cases.

Remark 3.3 If n = r · s with gcd(r, s) = 1, we have that the Z–module Vk(n) is
isomorphic to Vk(r) × Vk(s) and a vector (u,w) ∈ Vk(r) × Vk(s) is primitive iff
u ∈ Vk(r) and w ∈ Vk(s) are both primitive.

In the following sections we will sometimes need some combinatorics. The next
result tells us how many primitive vectors there are.

Lemma 3.4 The number of primitive vectors in Vk(n) = (Z/nZ)k is given by

µ(k, n) := ] {v ∈ Vk(n) ; v is primitive} = nk
∏
p|n

(1− p−k) .

Proof. The statement is easy to check for n = pt a prime power. For composite
n the claim then follows from Remark 3.3. �

Among the column vectors there holds a relation which can be understood by
looking at the skew form on V2g(n) given by

〈
(v1, . . . , v2g), (w1, . . . , w2g)

〉
:= (v1, . . . , v2g) · J ·


w1

...
w2g


= v1wg+1 + · · ·+ vgw2g − vg+1w1 − · · · − v2gwg .
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We can now rephrase the symplectic relations with the new terminology we just
introduced.

Proposition 3.5 A matrix M ∈ Mat(2g,Z/nZ) is symplectic iff its columns
v1, . . . , v2g ∈ V2g(n) are primitive vectors which satisfy the following conditions
for all 1 ≤ i ≤ j ≤ 2g:

〈vi, vj〉 =

1 if j = i+ g

0 otherwise

Proof. It suffices to notice that the conditions on the column vectors are equiv-
alent to the symplectic relations satisfied by the matrix. The claim that the
column vectors are primitive follows from the well–known fact that symplectic
matrices have determinant 1. �

We can use the skew form to introduce another notion which will play an impor-
tant role in the following section.

Definition 3.6 We call a submodule W of V2g(n) isotropic if for all v, w ∈ W
the relation 〈v, w〉 = 0 holds.

Remark 3.7 There is also the notion of an isotropic subspace U ⊂ R2g as given
in Definition 1.33. If U is defined over Q, its restriction to Z2g can be considered
as an isotropic submodule U of Z2g. Note carefully that if we reduce U modulo
n, we obtain an isotropic submodule of V2g(n) = (Z/nZ)2g. However, in general
not every isotropic submodule of V2g(n) can be obtained in this way - this is due
to the fact that we have zero divisors in Z/nZ unless n = p is a prime.

The group Sp(2g,Z/nZ) acts on V2g(n) by left multiplication. It is easy to
check that this action preserves the property of being primitive and thus can be
restricted to the set of primitive vectors.

Lemma 3.8 The action of Sp(2g,Z/nZ) on the set of primitive vectors in V2g(n)
is transitive.

Proof. It suffices to show that every primitive vector in V2g(n) can appear in
the first column of a matrix in Sp(2g,Z/nZ). So let v1 ∈ V2g(n) be an arbitrary
primitive vector. Since v1 is primitive, we can find a primitive vector vg+1 such
that < v1, vg+1 >= 1. The set of vectors in V2g(n) orthogonal to the module
generated by v1 and vg+1 is isomorphic to (Z/nZ)2g−2. Now the claim follows by
induction on g. �
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Remark 3.9 In fact we have shown a much stronger result. The proof shows
that given any g primitive vectors v1, . . . , vg ∈ V2g(n) which generate an isotropic
submodule of V2g(n) of dimension g, we can find a symplectic matrix which has
exactly the vectors v1, . . . , vg as its first g columns.

Following the proof we can easily compute the order of Sp(2g,Z/nZ) which is
known to be

γg(n) := [Sp(2g,Z) : Γ(n)] = ng(2g+1)
∏
p|n

∏
1≤l≤g

(1− p−2l) .

3.2 The geometry of the Satake compactifica-

tion of Ag(n)

In this section we study the Satake compactification of Ag(n) and give a descrip-
tion in terms of the objects introduced in the previous section. We will make
frequent use of results given in [Nam](cf. also [HKW, Chapter 3]).

From now on we assume that n ≥ 3. Recall the stratification of the Satake
compactification ASat

g (n) given in Section 2.3:

ASat
g (n) = Ag(n)q

∐
ig−1

Aig−1

g−1 (n)

q . . .q
∐

i0

Ai00 (n)


As remarked there this means that ASat

g (n) is set-theoretically the union of Ag(n)
with some boundary components each of which is isomorphic to some moduli
space Ad(n) of lower dimension.

The group G := Sp(2g,Z/nZ) acts both on the components of ASat
g (n) and on

V2g(n) by left multiplication. The action of G on
{
Aidd (n)

}
is transitive for each

d = 0, . . . , g − 1 (cf. [Nam, Remark 4.16]). We have seen in the previous section
that the action on the primitive vectors of V2g(n) is also transitive. In fact, we will
establish a 1–to–1 G–equivariant correspondence between the top–dimensional
components Aig−1

g−1 (n) and primitive ±vectors ±vig−1 ∈ V2g(n), where from now
on for a vector v ∈ V2g(n) we identify +v and −v and just write ±v. Instead of
proving this directly we will show a more general result first of which this will be
an easy consequence. We want to describe the components of higher codimension
and for that we need the notion of isotropic submodules W ⊂ V2g(n) which we
introduced in the previous section and the concept of non–degenerate alternating
multilinear forms f : V2g(n)×· · ·×V2g(n)→ Z/nZ, where non-degeneracy means
that 1 ∈ f(V2g(n), . . . , V2g(n)).
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Proposition 3.10 Let 0 ≤ d ≤ g − 1.

(i) The components Aidd (n) are in 1–to–1 G-equivariant correspondence with
pairs (W id

d ,±f
id
d ), where

• W id
d
∼= (Z/nZ)g−d is an isotropic submodule of V2g(n)

• f idd is a non–degenerate alternating (g − d)–linear form on W id
d .

(ii) The number of components Aidd (n) is given by

]
{
id ; Aidd (n)

}
=

1

2
µ(1, n)

g−1∏
k=d

µ(2(k + 1), n)

µ(g − k, n)
=

1

2
µ(1, n)

g−1∏
k=d

2µk+1(n)

µ(g − k, n)
,

where µ(k, n) is given as in Lemma 3.4 and µk(n) := 1
2
µ(2k, n) is the

number of maximal dimensional components in Ak(n).

Proof.

(i) According to [Nam, Chapter 4] the components Aidd (n) are in 1–to–1 G-
equivariant correspondence with isotropic subspaces W̃ id

d in Q2g, or more
precisely with equivalence classes [W̃ id

d ] of such spaces under the action
of Γ(n). Since the action of G on the components Aidd (n) is transitive,
so is the action on the equivalence classes [W̃ id

d ] and it suffices to define
the correspondence for one equivalence class which we will call standard.
Namely, consider the equivalence class which contains the isotropic subspace
W̃ 0
d ⊂ Q2g given by

W̃ 0
d := (0, . . . , 0︸ ︷︷ ︸

d times

, ∗, . . . , ∗︸ ︷︷ ︸
g−d times

, 0, . . . , 0) ⊂ Q2g . (1)

We associate W̃ 0
d with the standard pair (W 0

d ,±f 0
d ) given by

W 0
d := (0, . . . , 0︸ ︷︷ ︸

d times

, ∗, . . . , ∗︸ ︷︷ ︸
g−d times

, 0, . . . , 0) ⊂ V2g(n) ,

f 0
d (ed+1, . . . , eg) := 1 (mod n) ,

(2)

where ei ∈ V2g(n) is the i-th vector of the canonical basis of V2g(n). The
group G acts on the set of pairs (W id

d ,±f
id
d ). By using Remark 3.9 we can

not only conclude that all W id
d are equivalent under the action of G, but also

that on a given W id
d all alternating forms f idd are equivalent under the action

of the stabilizer of W id
d in G. This implies that G acts transitively on the set

of pairs (W id
d ,±f

id
d ). To establish our 1–to–1 G-equivariant correspondence

it suffices now to check that the stabilizers of the standard elements [W̃ 0
d ]

and (W 0
d ,±f 0

d ) coincide. It can be shown that the stabilizer of [W̃ 0
d ] in G

can be described as the quotient of the stabilizer of W̃ 0
d in Sp(2g,Z) by the
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stabilizer of W̃ 0
d in Γ(n) or in other words it is the image of the stabilizer

of W̃ 0
d in Sp(2g,Z) under the map to G given by reduction modulo n. A

straightforward calculation shows that (cf. [Nam, Proposition 4.8])

StabSp(2g,Z)(W̃
0
d ) =




A 0 B ∗
∗ UT ∗ ∗
C 0 D ∗
0 0 0 U−1

 ⊂ Sp(2g,Z) ;

(
A B
C D

)
∈ Sp(2d,Z) , U ∈ GL(g − d,Z)

}
.

We now need to calculate the image of this stabilizer under the map given
by reduction modulo n. Recall that the image of Sp(2d,Z) under this map
is Sp(2d,Z/nZ) and that the image of GL(g − d,Z) is given by {U ∈
GL(g − d,Z/nZ) ; detU = ±1}. This and some further calculations show
that

StabG([W̃ 0
d ]) =




A 0 B ∗
∗ UT ∗ ∗
C 0 D ∗
0 0 0 U−1

 ⊂ G ;

(
A B
C D

)
∈ Sp(2d,Z/nZ) ,

U ∈ GL(g − d,Z/nZ) , detU = ±1

}
.

Without the condition that detU = ±1 this group is exactly the stabilizer of
the isotropic submoduleW 0

d ⊂ V2g(n) inG. The fact that we are considering
pairs and thus need to stabilize the alternating form f 0

d up to a sign as
well gives us then the condition detU = ±1, so that the stabilizers of the
standard elements coincide as claimed.

(ii) We proceed by induction on g− d. For d = g− 1 the components Aig−1

g−1 (n)

correspond to isotropic submodules W
ig−1

g−1
∼= Z/nZ equipped with a non–

degenerate linear form (up to ±1). These in turn correspond to primitive
±vectors in V2g(n). The number of these is given by µ(2g, n) as seen in
Lemma 3.4. Hence the formula is true for d = g − 1.
We now consider components Aidd (n) corresponding to pairs (W id

d ,±f
id
d ).

We will first determine how many isotropic submodules W id
d
∼= (Z/nZ)g−d

we have in V2g(n). For that consider any isotropic submodule Wd+1 isomor-

phic to (Z/nZ)g−d−1. By the induction hypothesis there are

g−1∏
k=d+1

µ(2(k + 1), n)

µ(g − k, n)
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such submodules. Taking a primitive vector w0 in V2g(n) which is orthogo-
nal to Wd+1 with respect to the skew form 〈·, ·〉 and adding it to Wd+1 we get
an isotropic submodule W id

d
∼= (Z/nZ)g−d and every such submodule can

be obtained in this way. The submodule of vectors w0 orthogonal to a given
Wd+1 is isomorphic to (Z/nZ)2(d+1). This module contains µ(2(d + 1), n)
primitive vectors w0 but µ(1, n) of them give the same submodule when
added to Wd+1. So we have just seen that each Wd+1 is contained in
µ(2(d+1), n)/µ(1, n) different isotropic submodules W id

d . Conversely, every
isotropic submodule W id

d contains µ(g − d, n)/µ(1, n) different submodules
Wd+1

∼= (Z/nZ)g−d−1, so we obtain that there are

µ(2(d+ 1), n)

µ(1, n)
· µ(1, n)

µ(g − d, n)
·

g−1∏
k=d+1

2µk+1(n)

µ(g − k, n)
=

g−1∏
k=d

2µk+1(n)

µ(g − k, n)

isotropic submodules W id
d
∼= (Z/nZ)g−d in V2g(n). Since there are 1

2
µ(1, n)

up to a sign different non–degenerate alternating forms on each of them,
the claim follows.

�

In the case of top–dimensional components we can rephrase the proposition and
obtain the following corollary.

Corollary 3.11 The components Aig−1

g−1 (n) are in 1–to–1 G-equivariant corre-
spondence with primitive ±vectors ±vig−1 ∈ V2g(n).

Proof. It suffices to notice that primitive ±vectors are in 1–to–1 correspondence
with isotropic submodules W

ig−1

g−1
∼= Z/nZ equipped with a non–degenerate linear

form (up to ±1) and then use Proposition 3.10. �

Between the various boundary components of ASat
g (n) we have several adjacency

relations. These are described in [Nam] in terms of chains of isotropic subspaces
of Q2g modulo the action of Γ(n) (cf. also [HKW, Chapter 3]). We will now
express these relations using isotropic subspaces of V2g(n).

Proposition 3.12 Let 0 ≤ r < s ≤ g − 1.

(i) The component Airr (n) is contained in Aiss (n) iff W is
s ⊂ W ir

r .

(ii) The number of components Airr (n) that are contained in a given component
Aiss (n) is given by

]
{
ir ; Airr (n) ⊂ Aiss (n)

}
=

1

2
µ(1, n)

s−1∏
k=r

2µk+1(n)

µ(s− k, n)
.
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(iii) The number of components Aiss (n) that contain a given component Airr (n)
is given by

]
{
is ; Air1 (n) ⊂ Aiss (n)

}
=

1

2
µ(1, n)

(g−s)−1∏
k=0

µ((g − r)− k, n)

µ((g − s)− k, n)
.

Proof.

(i) We know already from the description in [Nam] that Airr (n) is contained in
Aiss (n) iff the subspace W̃ is

s in Q2g modulo the action of Γ(n) corresponding
to Aiss (n) is contained in the one corresponding to Airr (n), say W̃ ir

r . So take
any such inclusion W̃ is

s ⊂ W̃ ir
r . By [Nam, Theorem 4.14 iii) and Remark

4.16] we can assume w.l.o.g. that W̃ ir
r and W̃ is

s are standard, i.e. W̃ ir
r = W̃ 0

r

and W̃ is
s = W̃ 0

s as given in (1). These correspond to the standard pairs
(W 0

r ,±f 0
r ) and (W 0

s ,±f 0
s ) (cf. (2)) and we have W 0

s ⊂ W 0
r as claimed.

For the converse take any two pairs (W is
s ,±f iss ) and (W ir

r ,±f irr ) such that
W is
s ⊂ W ir

r . We can assume w.l.o.g. that (W ir
r ,±f irr ) = (W 0

r ,±f 0
r ) is the

standard pair and additionally that W is
s = W 0

s is standard, too. Note that
the intersection of the stabilizers of (W 0

r ,±f 0
r ) and of W 0

s contains matrices
of the form 

1 0 0 0
0 UT 0 0

0 0 1 0
0 0 0 U

 ,

where

U =

(
U1 0
0 U2

)
∈ GL(g − r,Z/nZ) , detU = ±1 , U2 ∈ GL(g − s,Z/nZ) .

We can hence choose U2 ∈ GL(g − s,Z/nZ) such that f iss is mapped to
f 0
s and by choosing U1 ∈ GL(s − r,Z/nZ) accordingly, we can guarantee

that detU = ±1 so that (W 0
r ,±f 0

r ) is left invariant. This shows that
we can furthermore assume that f iss = f 0

s , so both pairs are standard.
These correspond to the standard isotropic subspaces [W̃ 0

s ] ⊂ [W̃ 0
r ] which

completes the proof.

(ii) Fix the component Aiss (n). It corresponds to a pair (W is
s ,±f iss ) with

W is
s
∼= (Z/nZ)g−s an isotropic submodule of V2g(n). Any component

Airr (n) that is contained in Aiss (n) corresponds to a pair (W ir
r ,±f irr ) with

W ir
r
∼= (Z/nZ)g−r satisfying W is

s ⊂ W ir
r by (i). So we need to know how

many isotropic submodules W ir
r there are which contain the given submod-

ule W is
s . Consider the subset of all vectors in V2g(n) orthogonal to W is

s . It
is a submodule isomorphic to (Z/nZ)2s = V2s(n). Choosing W ir

r containing
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W is
s is equivalent to taking an (s − r)–dimensional isotropic submodule of

V2s(n). By Proposition 3.10 (ii) there are
∏s−1
k=r

2µk+1(n)
µ(s−k,n)

such submodules.

Together with the choice of ±f irr this proves the claim.

(iii) We fix the component Airr (n) and consider all components Aiss (n) such that
Airr (n) is contained in their closure. By (i) this is equivalent to looking at
a fixed isotropic submodule W ir

r
∼= (Z/nZ)g−r of V2g(n) and considering all

isotropic submodules W is
s
∼= (Z/nZ)g−s contained in it. Since any submod-

ule of an isotropic submodule is isotropic, the number of W is
s is just the

number of (g − s)–dimensional submodules in (Z/nZ)g−r. It can be easily
computed by induction and is given by

(g−s)−1∏
k=0

µ((g − r)− k, n)

µ((g − s)− k, n)
.

We can choose ±f iss freely and thus obtain the desired formula.

�

For the top–dimensional components Aig−1

g−1 (n) we can again rephrase this result
in terms of primitive ±vectors.

Corollary 3.13 Let 0 ≤ d < g − 1. The component Aidd (n) is contained in

Aig−1

g−1 (n) iff ±vig−1 ∈ W
id
d .

Proof. Recall that we can identify pairs (W
ig−1

g−1 ,±f
ig−1

g−1 ) with primitive ±vectors

±vig−1 . If Aidd (n) is contained in Aig−1

g−1 (n) then ±vig−1 ∈ W
ig−1

g−1 ⊂ W id
d by Proposi-

tion 3.12. For the converse note that since W id
d is a submodule, it contains W

ig−1

g−1

if it contains ±vig−1 . �

3.3 The geometry of the Voronoi compactifica-

tion of A3(n)

The Satake compactification of Ag(n) as described in the previous section is
highly singular along its boundary. Moreover, the boundary has codimension g.
We will now specialize to the case g = 3 and consider the Voronoi compactification
AVor

3 (n) given by the 2nd Voronoi decomposition as described in Section 2.3. As
in the previous section we assume n ≥ 3 in which case AVor

3 (n) is nonsingular
(cf. Theorem 2.10). Recall further from Section 2.3 that we have a projection
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π : AVor
3 (n) → ASat

3 (n) to the Satake compactification and that the boundary is
a divisor D which has several components

D =
∑
j

Dj ,

where the Dj are just the closures of the preimages of the top–dimensional com-
ponents Ai22 (n) ⊂ ASat

3 (n) under the projection π.

We have seen that the 2nd Voronoi decomposition is a rational polyhedral decom-
position of the set of non–negative integral quadratic forms of degree 3, or more
precisely of its convex hull in the space of real quadratic forms. The divisors
Dj correspond to the 1–dimensional cones in this decomposition and their inter-
section behavior can be understood completely from this toric picture (cf. [Tsu,
Remark 4.5]). Recall that there is a 6–dimensional cone σ3 which is spanned by
six 1–dimensional rays α1, α2, α3, β1, β2, β3 which together with its faces gener-
ates the whole decomposition under the action of GL(3,Z). We will mostly work
over this principal cone and follow the notation of Tsushima introduced in [Tsu,
Section 3].

We start by looking at intersections of two boundary divisors. The group G acts
on them and this action is transitive as the following lemma shows.

Lemma 3.14 All non–trivial intersections Dj1 ∩Dj2 of two boundary divisors in
AVor
g (n) are equivalent under the action of G.

Proof. W.l.o.g. we can assume that the intersection corresponds to a 2–
dimensional face of the standard cone. We will show that every such face is
equivalent to α1∗α2, the cone spanned by α1 and α2, under the action of GL(3,Z).
Using uij ∈ GL(3,Z) (cf. [Tsu, p. 949] for a definition of uij) we can show that
every face of the form αk ∗αl is equivalent to α1 ∗α2. The same is true for α1 ∗β3

by uI and hence for all αk ∗βl with k 6= l. Faces of the form αk ∗βk are equivalent
to α3 ∗ β3 and hence to α2 ∗ α3 by uI . It remains to consider βk ∗ βl which is
equivalent to β2 ∗ β3 which can be transformed to α1 ∗ β1 by uV which completes
the proof. �

We will now give a criterion for determining whether two given divisors intersect
over a given component of ASat

3 (n) in terms of the terminology we introduced in
the previous sections.

Proposition 3.15 Two divisors Dj1 and Dj2 intersect in AVor
3 (n) over the com-

ponent Ai11 (n) iff vj1 , vj2 ∈ W i1
1 and f i11 (vj1 , vj2) = ±1.

Proof. Take two divisors Dj1 , Dj2 intersecting over Ai11 (n). We can assume
w.l.o.g. that they correspond to α2 and α3 in the standard cone. Hence Ai11 (n)
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has to correspond to the equivalence class [W̃ 0
1 ] in Q6 modulo the action of Γ(n)

given by the standard isotropic subspace W̃ 0
1 as in (1). This corresponds to the

standard pair (W 0
1 ,±f 0

1 ) as given in (2). Since α2 and α3 correspond to the
±vectors e2 and e3 of the canonical basis of V6(n) the condition is satisfied.
Conversely take any two ±vectors vj1 , vj2 and any pair (W i1

1 ,±f i11 ) satisfying the
conditions. W.l.o.g. the pair (W i1

1 ,±f i11 ) = (W 0
1 ,±f 0

1 ) can be assumed to be
standard. Since by the hypothesis f 0

1 (vj1 , vj2) = ±1, we can transform vj1 and
vj2 within the stabilizer of (W 0

1 ,±f 0
1 ) in G to e2 and e3 respectively. So they

correspond to α2 ∗ α3 which intersect over A0
1(n) which completes the proof. �

We now turn our attention to the intersection of three divisors. As before G acts
on them, however, in this case this action is no longer transitive as the following
result shows.

Lemma 3.16 There are two orbits of non–trivial intersections Dj1∩Dj2∩Dj3 of
three boundary divisors in AVor

3 (n) under the action of G, namely one containing
the intersection corresponding to α1 ∗ α2 ∗ α3 and one containing β1 ∗ β2 ∗ β3.
Following Tsushima we call intersections of the first kind of local type and the
latter of global type.

Proof. We can again work over the standard cone and have to show that all of
its 3–dimensional faces are either equivalent to α1 ∗ α2 ∗ α3 or β1 ∗ β2 ∗ β3. Since
the argument is similar to the one given in Lemma 3.14 we omit it here. To see
that α1 ∗ α2 ∗ α3 and β1 ∗ β2 ∗ β3 are inequivalent, note that all matrices in the
interior of α1 ∗ α2 ∗ α3 are rank 3 matrices whereas all matrices in the interior of
β1 ∗ β2 ∗ β3 have rank 2, so they cannot be equivalent in GL(3,Z). �

Intersections of local type and of global type can both be characterized in terms
of primitive ±vectors.

Proposition 3.17 (i) Three divisors Dj1,Dj2,Dj3 intersect in AVor
3 (n) over

the component Ai11 (n) (of global type) iff vj1 , vj2 , vj3 ∈ W i1
1 , the set of com-

binations {±vj1 ± vj2 ± vj3} contains 0 and f i11 (vj1 , vj2) = ±1.

(ii) Three divisors Dj1,Dj2,Dj3 intersect in AVor
3 (n) over the component Ai00 (n)

(of local type) iff vj1 , vj2 , vj3 ∈ W i0
0 and f i00 (vj1 , vj2 , vj3) = ±1.

Proof.

(i) We can assume w.l.o.g. that Dj1 , Dj2 , Dj3 correspond to α2, α3, β1 in the
standard cone. This implies that Ai11 (n) has to correspond to the standard
pair (W 0

1 ,±f 0
1 ). The cones α2, α3, β1 correspond to the primitive ±vectors

e2, e3 and (e2 − e3) respectively. For these the given conditions are easy to
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verify.
For the converse we can assume w.l.o.g. that the pair (W i1

1 ,±f i11 ) is standard
and that vj1 = e2 and vj2 = e3. Hence ±vj3 ∈ {e2+e3, e2−e3}. In the latter
case the intersection then corresponds to α2 ∗α3 ∗β1 which is of global type
over A0

1(n). In the first case the intersection is given by α2 ∗ α3 ∗ γ1, where
γ1 is defined as in [Tsu, p. 949]. This is transformed to α1 ∗ α3 ∗ β2 by u−1

II

which is of global type, too.

(ii) The argument is essentially the same as in Proposition 3.15, so we omit it
here.

�

In the case of intersection of four divisors we again have two orbits under the
action of G.

Lemma 3.18 Under the action of G there are two orbits of non–trivial intersec-
tions Dj1 ∩ . . . ∩ Dj4 of four boundary divisors in AVor

3 (n). One containing the
intersection corresponding to α1 ∗α2 ∗α3 ∗β3 and one containing α1 ∗α3 ∗β1 ∗β3.
We call them of type I and of type II respectively.

Proof. The same argument as in Lemma 3.14 shows that every intersection
of four divisors can be transformed to one of these two types. Each of these
4–dimensional cones has four 3–dimensional faces; for α1 ∗ α3 ∗ β1 ∗ β3 these are
all of local type whereas α1 ∗α2 ∗α3 ∗ β3 contains exactly one 3–dimensional face
of global type. This shows that the two types are inequivalent. �

Proposition 3.19 (i) Four divisors Dj1 , . . . , Dj4 intersect in AVor
3 (n) over the

component Ai00 (n) of type I iff vj1 , . . . , vj4 ∈ W i0
0 and there is a permutation

σ of {j1, . . . , j4} such that the set {±vσ(j1) ± vσ(j2) ± vσ(j3)} contains 0 and
f i00 (vσ(j1), vσ(j2), vσ(j4)) = ±1.

(ii) Four divisors Dj1 , . . . , Dj4 intersect in AVor
3 (n) over the component Ai00 (n)

of type II iff vj1 , . . . , vj4 ∈ W i0
0 , the set {±vj1 ± vj2 ± vj3 ± vj4} contains 0

and f i00 (vj1 , vj2 , vj3) = ±1.

Proof.

(i) We can again assume w.l.o.g. that Dj1 , . . . , Dj4 correspond to the rays
α1, α2, α3, β3 over the standard cone, i.e. Ai00 (n) is then given by the stan-
dard pair (W 0

0 ,±f 0
0 ). The cones α1, α2, α3, β3 are represented by the prim-

itive ±vectors e1, e2, e3 and (e1 − e2) respectively. Then f 0
0 (e1, e2, e3) = ±1

and −e1 + e2 + (e1 − e2) = 0.
For the other direction we can assume that (W i0

0 ,±f i00 ) = (W 0
0 ,±f 0

0 ) is
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standard and that vj1 = e1, vj2 = e2 and vj4 = e3. Since {±vj1 ± vj2 ± vj3}
has to contain 0, we can conclude that ±vj3 ∈ {e1 + e2, e1 − e2}. These
two possibilities correspond to the cones γ3 and β3 respectively. By u−1

III

the cone α1 ∗ α2 ∗ α3 ∗ γ3 is equivalent to α1 ∗ α2 ∗ α3 ∗ β2 which is of type
I. The same is true for α1 ∗ α2 ∗ α3 ∗ β3.

(ii) We can consider w.l.o.g. α1 ∗α3 ∗β1 ∗β3 in the standard cone. Then Ai00 (n)
corresponds to (W 0

0 ,±f 0
0 ). The primitive ±vectors representing α1, α3, β1

and β3 are given by e1, e3, (e2− e3) and (e1− e2) respectively. These satisfy
the conditions of the Proposition.
Conversely, since f i00 (vj1 , vj2 , vj3) = ±1 we can assume that (W i0

0 ,±f i00 ) =
(W 0

0 ,±f 0
0 ) is standard and that vj1 = e1, vj2 = e2 and vj3 = e3. Then

since {±vj1 ± vj2 ± vj3 ± vj4} contains 0, the vector ±vj4 has to lie in
{e1 + e2 + e3,−e1 + e2 + e3, e1 − e2 + e3, e1 + e2 − e3}. These four cases
correspond to the cones ε, δ1, δ2 and δ3 resp. as given in [Tsu, p. 949]. By
u−1
IV the first case α1 ∗ α2 ∗ α3 ∗ ε is equivalent to α1 ∗ α3 ∗ β1 ∗ β3 which is

of type II. The other three cases can all be transformed to α1 ∗ α2 ∗ α3 ∗ δ1
by ui1 which is mapped to α1 ∗ α3 ∗ β1 ∗ β3 by u−1

I .

�

For the intersection of five divisors there is again only one orbit under the action
of G.

Lemma 3.20 All non–trivial intersections of Dj1 ∩ . . . ∩ Dj5 of five boundary
divisors in AVor

3 (n) are equivalent under the action of G.

Proof. We can again look at the standard cone. Using uij the only thing we
need to show is that α1 ∗α2 ∗α3 ∗ β2 ∗ β3 and α1 ∗α3 ∗ β1 ∗ β2 ∗ β3 are equivalent.
This is done by uV . �

Proposition 3.21 Five divisors Dj1 , . . . , Dj5 intersect in AVor
3 (n) over the com-

ponent Ai00 (n) iff vj1 , . . . , vj5 ∈ W i0
0 and there is a permutation σ of {j1, . . . , j5}

such that {vσ(j1), . . . , vσ(j4)} satisfy the condition of Proposition 3.19 (ii) and both
{±vσ(j1) ± vσ(j2) ± vσ(j5)} and {±vσ(j3) ± vσ(j4) ± vσ(j5)} contain 0.

Proof. It suffices to consider the case where Ai00 (n) is given by the standard
pair (W 0

0 ,±f 0
0 ). Furthermore we can assume that Dj1 , . . . , Dj5 correspond to

α1, α2, α3, β2, β3. These are given by the primitive ±vectors e1, e2, e3, (e1 − e3)
and (e1 − e2) respectively. Then {e2, e3, e1 − e3, e1 − e2} satisfy the condition of
Proposition 3.19 (ii), since they correspond to the cone α2 ∗ α3 ∗ β2 ∗ β3 which is
of type II. The identities e1 − e2 − (e1 − e2) = 0 and e1 − e3 − (e1 − e3) = 0 show
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that the last two conditions are also satisfied.

For the converse, we can assume as usual that (W i0
0 ,±f i00 ) = (W 0

0 ,±f 0
0 ) is stan-

dard and that vj1 = e1, vj2 = e2 and vj3 = e3. The condition of Proposition 3.19
(ii) then implies that ±vj4 ∈ {e1 + e2 + e3,−e1 + e2 + e3, e1− e2 + e3, e1 + e2− e3}.
If ±vj4 = e1 + e2 + e3 the last two conditions give us that the vector ±vj5
has to lie in {e1 + e2, e1 + e3, e2 + e3}. These three cases all correspond to
α1 ∗ α2 ∗ α3 ∗ ε ∗ γi which can be transformed to α1 ∗ α2 ∗ α3 ∗ ε ∗ γ3 which
is equivalent to α1 ∗ α2 ∗ α3 ∗ β1 ∗ β3 under the action of u−1

IV .
If ±vj4 = −e1 +e2 +e3 then we can conclude that ±vj5 ∈ {e1−e2, e1−e3, e2 +e3}.
So we have either α1 ∗ α2 ∗ α3 ∗ γ1 ∗ βi with i 6= 1 or α1 ∗ α2 ∗ α3 ∗ γ1 ∗ γ3. In the
first case we can get α1 ∗ α2 ∗ α3 ∗ γ1 ∗ β3 and hence α1 ∗ α2 ∗ α3 ∗ β2 ∗ β3 by u−1

II .
The latter case can be transformed to α1 ∗α2 ∗α3 ∗ γ2 ∗ γ3 which is equivalent to
α1 ∗ α2 ∗ α3 ∗ β1 ∗ β2 by u−1

III .
The other two cases for ±vj4 can be done in the same way for symmetry reasons.

�

We now deal with the last case, the intersection of six boundary divisors in A3(n).

Lemma 3.22 All non–trivial intersections of Dj1 ∩ . . . ∩ Dj6 of six boundary
divisors in AVor

3 (n) are equivalent under the action of G.

Proof. Since all 6–dimensional cones are equivalent to the standard cone the
claim follows. �

Proposition 3.23 Six divisors Dj1 , . . . , Dj6 intersect in AVor
3 (n) over the com-

ponent Ai00 (n) iff vj1 , . . . , vj6 ∈ W i0
0 and there is a permutation σ of {j1, . . . , j6}

such that {vσ(j1), . . . , vσ(j4)} satisfy the condition of Proposition 3.19 (ii) and both
{vσ(j1), . . . , vσ(j4), vσ(j5)} and {vσ(j1), . . . , vσ(j4), vσ(j6)} satisfy Proposition 3.21.

Proof. We can just consider α1 ∗ α2 ∗ α3 ∗ β1 ∗ β2 ∗ β3 and (W 0
0 ,±f 0

0 ). Then
vj1 = e1, vj2 = e2, vj3 = e3, vj4 = e2 − e3, vj5 = e1 − e3 and vj6 = e1 − e2. Now
the vectors {e1, e2, e2 − e3, e1 − e3} satisfy the condition of Proposition 3.19 (ii),
because it corresponds to the type II cone α1 ∗ α2 ∗ β1 ∗ β2. Likewise the sets
{e1, e2, e2− e3, e1− e3, e3} and {e1, e2, e2− e3, e1− e3, e1− e2} satisfy Proposition
3.21, since they represent the cones α1 ∗α2 ∗α3 ∗ β1 ∗ β2 and α1 ∗α2 ∗ β1 ∗ β2 ∗ β3

respectively.

For the other direction we can assume that (W i0
0 ,±f i00 ) = (W 0

0 ,±f 0
0 ) is standard

and that vj1 = e1, vj2 = e2 and vj3 = e3. We can then conclude that ±vj4 ∈
{e1 + e2 + e3,−e1 + e2 + e3, e1 − e2 + e3, e1 + e2 − e3} by applying the condition
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of Proposition 3.19 (ii).
If ±vj4 = e1 + e2 + e3 the last two conditions imply that the last two vectors
satisfy ±vj5 ,±vj6 ∈ {e1 + e2, e1 + e3, e2 + e3}. This gives us three cases, namely
α1∗α2∗α3∗ε∗γk∗γl with k 6= l. These are all equivalent and α1∗α2∗α3∗ε∗γ2∗γ3

can be transformed to α1 ∗ α2 ∗ α3 ∗ β1 ∗ β2 ∗ β3 by u−1
IV .

If ±vj4 = −e1 + e2 + e3, it follows that ±vj5 ,±vj6 ∈ {e1 − e2, e1 − e3, e2 + e3}.
Hence we get the following three 6–dimensional cones: α1 ∗ α2 ∗ α3 ∗ δ1 ∗ β2 ∗ β3

and α1 ∗ α2 ∗ α3 ∗ δ1 ∗ βk ∗ γ1, k = 2, 3. The last two are clearly equivalent and
can be transformed to α1 ∗ α2 ∗ α3 ∗ β1 ∗ β2 ∗ β3 by u−1

II for k = 3. The first is
equivalent to α1 ∗ α2 ∗ α3 ∗ β1 ∗ β2 ∗ β3 by applying u−1

I .
The last two cases for ±vj4 follow out of symmetry. �

We will finish this section by giving some combinatorics about the intersections.

Lemma 3.24 The number of different non–trivial intersections of d divisors in
AVor

3 (n) is given by

(i) µ3(n), if d = 1,

(ii) 1
2
nµ2(n)µ3(n), if d = 2,

(iii) (a) (of global type) 1
3
nµ2(n)µ3(n),

(b) (of local type) 1
6
n3µ1(n)µ2(n)µ3(n), if d = 3,

(iv) (a) (of type I) 1
3
n3µ1(n)µ2(n)µ3(n),

(b) (of type II) 1
6
n3µ1(n)µ2(n)µ3(n), if d = 4,

(v) 1
2
n3µ1(n)µ2(n)µ3(n), if d = 5,

(vi) 1
6
n3µ1(n)µ2(n)µ3(n), if d = 6.

Proof. cf. [Tsu, Lemma 7.1] �



60 CHAPTER 3. GEOMETRY OF THE BOUNDARY

In principal such a description of the geometry of AVor
g (n) in terms of primitive

vectors can be given for arbitrary g. However, for g ≥ 4 the 2nd Voronoi de-
composition does not have a unique maximal cone up to the action of GL(g,Z)
as was the case for g = 3. In fact, there appears another maximal cone besides
the principal one which turns out not to be regular. This gives us a much richer
geometry which is more difficult to describe but can be done at least for the
principal cone.



Chapter 4

Ramification mean

In this chapter we will study elements in Sp(2g,Z/nZ) which fix divisors in the
boundary of AVor

g (n), the Voronoi compactification of the moduli space of abelian
threefolds with level n structure as introduced in Section 2.3. More precisely, we
will show that subgroups of Sp(2g,Z/nZ) which contain many elements that fix
boundary divisors pointwise, have small index in Sp(2g,Z/nZ). We will use this
later in Chapter 7 to conclude that subgroups of sufficiently large index do not
have too many bad elements, i.e. elements that either give us ramification divisors
or non–canonical singularities when we consider the quotient of AVor

g (n) by them.

4.1 Definitions

In this section we want to describe the elements in Sp(2g,Z/nZ) which fix bound-
ary divisors, the so–called transvections. Furthermore we will introduce the no-
tion of the ramification mean for subgroups of Sp(2g,Z) which will allow us to
replace the statement that a subgroup contains many bad elements with a precise
formulation, the main result of this chapter.

Recall the notion of a primitive vector given in Definition 3.2. Each primitive
vector in (Z/nZ)2g defines a subgroup of Sp(2g,Z/nZ) as follows:

Definition 4.1 For any primitive vector v ∈ (Z/nZ)2g we define RamG(v) to
be the subgroup of G := Sp(2g,Z/nZ) consisting of transvections, which are
operators of the form

rv,α : w 7→ w + α 〈w, v〉 v , α ∈ Z/nZ . (1)

Note that RamG(v) ∼= Z/nZ. Rather than working with the full symplectic
group G, we will consider subgroups H of G and thus in general not have all

61
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transvections in H. We thus define for any subgroup H < G

RamH(v) := H ∩ RamG(v) . (2)

Recall from Sections 3.2 and 3.3 that each primitive vector vj corresponds to
a boundary divisors Dj of the Voronoi compactification AVor

3 (n). We will see
later in Chapter 7 that RamH(vj) is exactly the subgroup of H that fixes the
corresponding divisor Dj pointwise. Because of this relation we will sometimes
also write RamH(Dj) instead of RamH(vj).

RamH(v) as a subgroup of the cyclic group RamG(v) is again cyclic and in fact
uniquely determined by its order. We normalize the order and define the ramifi-
cation of v with respect to H as

ramH(v) :=
1

n

∣∣∣RamH(v)
∣∣∣ .

Note that with this definition 0 < ramH(v) ≤ 1, or more precisely, ramH(v) = k/n
for some k ∈ {1, . . . , n}.

While ramH(vj) describes the behavior of H at a single boundary divisor Dj, we
will be more interested in the action of H on all boundary divisors at once and
thus consider a certain mean.

Definition 4.2 For any subgroup H of G we define the ramification mean of H
to be

1

#v

∑
v

ramH(v) ,

where the sum is taken over all primitive vectors v ∈ (Z/nZ)2g.

If we take any subgroup Γ < Sp(2g,Z) of finite index, it will contain a principal
congruence subgroup Γ(n) by Theorem 1.18 provided that g ≥ 2. We can then
consider the factor group H := Γ/Γ(n). Although H is not uniquely determined
by Γ alone but also depends on n, the ramification mean of H is in fact inde-
pendent of n because of our normalization. We thus can define the ramification
mean of Γ < Sp(2g,Z) to be the ramification mean of H.

We can now state the main result of this chapter using the terminology we just
introduced.

Theorem 4.3 For every ε > 0 there are only finitely many subgroups Γ <
Sp(2g,Z) of finite index with ramification mean at least ε.

The rest of this chapter will be dedicated to the proof of this theorem. We will
reduce the complexity of this problem in several steps.



4.2. A FIRST REDUCTION 63

4.2 A first reduction

Recall that by Theorem 1.18 any subgroup Γ of Sp(2g,Z) of finite index is in fact
a congruence subgroup and contains therefore a principal congruence subgroup
Γ(n) of finite index. However, the level n is not uniquely determined by Γ. In
fact, if Γ contains Γ(n) for some level n then Γ also contains any Γ(m) whose
level m is a multiple of n. Nevertheless, we can associate to any such group Γ an
unique level nΓ by taking the smallest integer n with the property that Γ(n) is
contained in Γ, i.e. by defining for any subgroup Γ of Sp(2g,Z)

nΓ := min{n; Γ(n) < Γ} . (3)

Throughout this chapter, whenever we consider a principal congruence subgroup
Γ(n) contained in a given group Γ, we will assume that the level n is minimal,
i.e. n = nΓ unless stated explicitly otherwise. When looking at ramification we
will replace Γ with the factor group H = Γ/Γ(n) which can be considered as a
subgroup of Sp(2g,Z/nZ). Note that if n = p is a prime the situation becomes
much simpler. Not only do the elements of the group H < Sp(2g,Z/nZ) now
have coefficients in the field Z/pZ, but also, as a consequence, the ramification
group RamH(v) for any primitive vector v ∈ (Z/pZ)2g is either trivial or equal
to the full group RamG(v) ∼= Z/pZ. We therefore wish to reduce the problem to
the case where Γ contains a principal congruence subgroup Γ(p) of prime level p.

We will later see in Section 4.4 how the result for arbitrary n follows from the
corresponding result for when n = pt is a prime power. In this section we will
show that in turn the n = pt–case can be reduced to the case where n = p is a
prime. This will be done by showing that any subgroup Γ which contains Γ(pt)
and has ramification mean ε > 0 contains in fact Γ(p), provided p is sufficiently
large in relation to ε−1. For smaller p we will at least be able to give an upper
bound for t. This reduces the problem effectively to the n = p–case except for
finitely many cases.

We will start with the reduction from prime powers n = pt to primes n = p for
sufficiently big p.

Proposition 4.4 Let Γ � Sp(2g,Z) s.t. nΓ = pt for some t and some prime p.
Let ε > 0 denote the ramification mean of Γ. If p > max(3ε−1, 2) then t = 1.

Proof. Let Γ � Sp(2g,Z) be arbitrary with nΓ = pt. i.e. Γ(pt) < Γ, but
Γ(m) ≮ Γ for all m < pt, in particular Γ(pt−1) ≮ Γ. Assume further that Γ has
ramification mean ε > 0 satisfying p > max(3ε−1, 2). As usual we denote by H
the quotient Γ/Γ(pt). Assume that t > 1. Consider the quotient

Γ(pt−1)/Γ(pt) < Γ(1)/Γ(pt) ∼= Sp(2g,Z/ptZ)
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which allows us to think of this quotient as a subgroup of Sp(2g,Z/ptZ). More
precisely, under this identification Γ(pt−1)/Γ(pt) is given as the kernel of the map
from Sp(2g,Z/ptZ) to Sp(2g,Z/pt−1Z) given by reduction modulo pt−1. A short
calculation shows that this kernel is abelian and of order pg(2g+1), hence

Γ(pt−1)/Γ(pt) ∼= ker
(
Sp(2g,Z/ptZ)→ Sp(2g,Z/pt−1Z)

)
∼= (Z/pZ)g(2g+1) . (4)

Now consider a primitive vector v = (v1, . . . , v2g) ∈ (Z/ptZ)2g. For each v we ob-
tain a transvection rv,pt−1 as defined in (1) which can be thought of as an element
in Γ(pt−1)/Γ(pt) ∼= (Z/pZ)g(2g+1). This defines a map from the set of primitive
vectors in (Z/ptZ)2g to (Z/pZ)g(2g+1) which can be written in an appropriate
basis as

(v1, . . . , v2g) 7→ (vj · vk)j=1,...,2g
k=j,...,2g

(mod p) . (5)

Since Γ(pt−1) ≮ Γ the quotient Γ ∩ Γ(pt−1)/Γ(pt) defines a proper subspace of
(Z/pZ)g(2g+1), i.e. it is contained in some subspace isomorphic to (Z/pZ)g(2g+1)−1,
which is given by a linear relation in the g(2g+1) coordinates. Using (5) this can
be considered as a quadratic relation in the vi. Note that we have ramH(v) = 1/pt

for all primitive v = (v1, . . . , v2g) not satisfying this quadratic relation. We will
now estimate the number of primitive vectors satisfying the relation and thus
obtain an upper bound for the ramification mean of Γ.

By completing the square we can diagonalize the quadratic relation for p > 2. In
fact, all we need is to write it as

ṽ2
1 ≡ P (v2, . . . , v2g) (mod p) ,

where P is some quadratic polynomial in v2, . . . , v2g and ṽ1 is obtained from v1

by adding a linear combination in v2, . . . , v2g (w.l.o.g. we can assume that the
coefficient in front of v2

1 in the relation is nonzero). This equation in Z/pZ
has at most 2p2g−1 solutions (v1, . . . , v2g) ∈ (Z/pZ)2g. Since every coordinate
vi (mod p) gives rise to pt−1 different vi ∈ Z/ptZ, we have at most 2p2gt−1

primitive vectors (v1, . . . , v2g) ∈ (Z/ptZ)2g satisfying this quadratic relation. We
obtain for the ramification mean of Γ that

ε · (#v) =
∑
v

ramH(v) ≤ 2p2gt−1 · 1 +
(
(#v)− 2p2gt−1

)
· 1

pt
.

where (#v) denotes the number of primitive vectors. If ε > 3/p this can be
rewritten as

(#v) ≤ 2p2gt−1 pt − 1

3pt−1 − 1
,

which is strictly less than (4/5)p2gt provided p > 2. On the other hand, the
number of primitive vectors in (Z/ptZ)2g as calculated in Lemma 3.4 is given by
p2gt(1− p−2g) which gives the desired contradiction. �
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The previous result allows us for sufficiently large p to consider only the case
where Γ(p) < Γ, i.e. the t = 1 case. We will now establish a bound on t for all
primes p.

Proposition 4.5 Let Γ � Sp(2g,Z) s.t. nΓ = pt for some prime p and some t.
Let ε > 0 denote the ramification mean of Γ.

(i) If p > 2 and ε > 7
3
p

1
4
(1−t), then t = 1.

(ii) If p = 2 and ε > 26
3
· 2 1

4
(1−t)), then t < 4.

Proof. We will show (i) and (ii) simultaneously. The proof follows the ideas of
the proof of Proposition 4.4.

Fix a prime p ≥ 2. Let Γ(pt) < Γ � Sp(2g,Z) be arbitrary with ramification

mean ε > 7
3
p

1
4
(1−t) (ε > 26

3
·2 1

4
(1−t) if p = 2) and nΓ = pt, i.e. Γ(pt) is the principal

congruence subgroup with the smallest level contained in Γ.

We assume that t ≥ 2 (t ≥ 4 if p = 2) and will show that this leads to a
contradiction. Let s := d t

2
e. Then s < t and consequently Γ(ps) ≮ Γ. As

before the quotient Γ(ps)/Γ(pt) can be identified with the kernel of the map from
Sp(2g,Z/ptZ) to Sp(2g,Z/psZ) given by reduction modulo ps. It is easy to check
that Γ(pt) contains the commutator subgroup of Γ(ps) provided s ≥ d t

2
e which

implies that this kernel is abelian. By calculations similar to those in (4) we can
conclude that

Γ(ps)/Γ(pt) ∼= ker
(
Sp(2g,Z/ptZ)→ Sp(2g,Z/psZ)

)
∼= (Z/pt−sZ)g(2g+1) . (6)

We can proceed as in the proof of Proposition 4.4 where we have to pay attention
to the fact that (Z/pt−sZ)g(2g+1) is now in general no longer a vector space but a
free module over Z/pt−sZ. We can define a map from the set of primitive vectors
in (Z/ptZ)2g to (Z/pt−sZ)g(2g+1) by sending v = (v1, . . . , v2g) ∈ (Z/ptZ)2g to the
transvection rv,ps ∈ Γ(ps)/Γ(pt) ∼= (Z/pt−sZ)g(2g+1). As before we can find a
suitable basis such that this map is given by

(v1, . . . , v2g) 7→ (vj · vk)j=1,...,2g
k=j,...,2g

(mod pt−s) . (7)

Since Γ(ps) ≮ Γ the quotient Γ ∩ Γ(ps)/Γ(pt) defines a proper submodule of
(Z/pt−sZ)g(2g+1). So it must be contained in a submodule given by one linear
relation in the g(2g + 1) coordinates. Note that there is at least one coefficient
in this linear relation which is not divisible by p. In fact, if all the coefficients
were divisible by p, all the elements of the group Γ(pt−1)/Γ(pt) < Γ(ps)/Γ(pt) ∼=
(Z/pt−sZ)g(2g+1) would satisfy this relation, which would imply that Γ(pt−1) <
Γ which contradicts the minimality of t. In terms of (7) this relation can be
rewritten as a quadratic relation in the vi. Since all the primitive vectors v ∈
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(Z/ptZ)2g not satisfying this relation have ramH(v) = 1/pt, we can get a bound
for the ramification mean of Γ by estimating the number of solutions of this
relation. Since this number depends on the question whether 2 is a zero divisor
in Z/pt−sZ or not, we have to distinguish the following two cases:

If p > 2 we can complete the square to obtain a relation of the following type

ṽ2
1 ≡ P (v2, . . . , v2g) (mod pt−s) , (8)

where P is some quadratic polynomial in v2, . . . , v2g and ṽ1 is obtained from v1

by adding a suitable linear combination in the other coordinates (we might have
to change the order of the vi to ensure that the coefficient of v2

1 is a unit).

Given a ∈ Z/pt−sZ the number of solutions to the equation x2 ≡ a (mod pt−s)

is at most 2 if a 6= 0 and pb
t−s
2
c if a = 0. In any case there are at most 2pb

t−s
2
c

solutions. So we have at most 2pb
t−s
2
c · p(2g−1)(t−s) solutions for the relation (8)

which gives us at most 2pb
t−s
2
c · p(2g−1)t+s primitive vectors v = (v1, . . . , v2g) ∈

(Z/ptZ)2g satisfying this quadratic relation.

Using that b t−s
2
c + s ≤ 3

4
t + 1

4
we can further estimate the number of solutions

to be no more than 2p(2g− 1
4
)t+ 1

4 . We can now conclude that we have for the
ramification mean

ε · (#v) =
∑
v

ramH(v) ≤ 2p(2g− 1
4
)t+ 1

4 · 1 +
(
(#v)− 2p(2g− 1

4
)t+ 1

4

)
· 1

pt

where (#v) denotes the number of primitive vectors. This is equivalent to

(#v) ≤ 2p(2g− 1
4
)t+ 1

4
pt − 1

εpt − 1

provided εpt − 1 > 0. Since we have ε > 7
3
p

1
4
(1−t) this is indeed the case, further-

more, a short calculation gives us that

(#v) < 2p(2g− 1
4
)t+ 1

4 · 63

128
p

1
4
(t−1) =

63

64
p2gt .

Comparing this with the number of primitive vectors in (Z/ptZ)2g, which is given
by p2gt−p2gt−2g as we calculated in Lemma 3.4, this gives the desired contradiction
for p > 2.

If p = 2 we can again assume w.l.o.g. that the coefficient of v2
1 is 1. However

to complete the square, we need that the coefficients of v1vi , i = 2, . . . , 2g are
divisible by 2. To ensure this, we multiply the relation by 2. Since by assumption
t ≥ 4 and thus t − s ≥ 2, this still is a nontrivial quadratic relation, only the
number of primitive vectors satisfying the relation has possibly increased. We
now complete the square and obtain

2ṽ2
1 ≡ P (v2, . . . , v2g) (mod 2t−s) , (9)
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where P is again some quadratic polynomial and ṽ1 is the sum of v1 with a linear
combination in v2, . . . , v2g.

As above we can show that the number of solutions to the quadratic equation
2x2 ≡ a ( mod 2t−s) is at most 4 ·2b t−s

2
c. Consequently there are at most 4 ·2b t−s

2
c ·

2(2g−1)t+s primitive vectors v = (v1, . . . , v2g) ∈ (Z/2tZ)2g satisfying the quadratic
relation in this case.

We can now proceed analogously to the p > 2–case to estimate the ramification
mean and thus get an upper bound for the number of primitive vectors which
then gives a contradiction as desired. �

We will need a bound on t which is valid for all ε > 0, not only for sufficiently large
ε. Thus we rephrase the statement of this Proposition to obtain an ε-dependent
bound on t for all ε > 0.

Corollary 4.6 Let Γ � Sp(2g,Z) be a subgroup with nΓ = pt for some prime
p ≥ 2 and some integer t and let ε > 0 denote its ramification mean.

(i) If p > 2 then t ≤ 1− 4 logp(
3
7
ε).

(ii) If p = 2 then t ≤ max(1− 4 log2(
3
26
ε), 3).

Proof.

(i) Assume that t > 1 − 4 logp(
3
7
ε). Note that since 0 < ε ≤ 1, we have that

logp(
3
7
ε) < 0, so in particular t > 1. On the other hand our assumption is

equivalent to ε > 7
3
p

1
4
(1−t) which implies t = 1 by the above proposition.

(ii) The argument here is completely analogous to the case (i).

�

Another Corollary recovers the result of Proposition 4.4, although with a some-
what weaker bound.

Corollary 4.7 Let Γ � Sp(2g,Z) s.t. nΓ = pt for some t and some prime p and
let ε > 0 denote the ramification mean of Γ. If p > max(7

3
ε−4, 2) then t = 1.

4.3 The n = p–case

Recall that Sp(2g,Z) is finitely generated (cf. [Fre, Anhang V]). Hence it has only
finitely many subgroups of a given index which means that the finiteness state-
ment of Theorem 4.3 is equivalent to giving for every ε > 0 a bound on the index
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of subgroups Γ < Sp(2g,Z) with ramification mean at least ε. In this section we
will prove this version of the theorem in the case where n = p is a prime. Together
with the reduction steps of the previous section the corresponding statement for
prime powers n = pt will then be an easy consequence.

Lemma 4.8 Let Γ < Sp(2g,Z) be a subgroup containing Γ(p) for some prime p.

Let ε > 0 denote the ramification mean of Γ. If p ≥ max(3, 8 ·
(

8
7

)g−1
ε−1) then

the index of Γ in Sp(2g,Z) is at most 4g−1·8
3
·
(

8
7

) g(g−1)
2 ε−g.

To prove this lemma we will proceed by induction on g. Since the proof is rather
involved, we will split it up into several parts. In the case where g = 1, the
symplectic group Sp(2,Z) coincides with the special linear group SL(2,Z). The
statement we are trying to prove is then given by the following proposition:

Proposition 4.9 Let Γ < SL(2,Z) contain Γ(p) for some prime p. If ε > 0
denotes the ramification mean of Γ and p ≥ max(3, 8ε−1) then Γ has index at
most 8

3
ε−1 in SL(2,Z).

Proof. We identify the quotient SL(2,Z)/Γ(p) with SL(2,Z/pZ) and thus can
consider H := Γ/Γ(p) as a subgroup of the finite group SL(2,Z/pZ). Note that
the index of H in SL(2,Z/pZ) is just the same as the index of Γ in SL(2,Z), the
one we want to bound.

Let p ≥ max (3, 8ε−1). Consider the space V := (Z/pZ)2. For any subset W ⊂ V
we define the ramification mean of W with respect to H as

rammeanH(W ) :=
1

(#W ∗)

∑
w∈W ∗

ramH(w) , (10)

where W ∗ := W \ {0}.

Consider all subgroups W1 ⊂ V with W1
∼= Z/pZ. Since the action of

SL(2,Z/pZ) on V ∗ is transitive, all primitive vectors v ∈ V ∗ appear in the same
number of subgroups. This implies that

ε =
1

#v

∑
v

ramH(v)

=
1

# {W1 ⊂ V ; W1
∼= Z/pZ}

∑
W1⊂V ,
W1

∼=Z/pZ

1

(#W ∗
1 )

∑
w∈W ∗

1

ramH(w)

=
1

# {W1 ⊂ V ; W1
∼= Z/pZ}

∑
W1⊂V ,
W1

∼=Z/pZ

rammeanH(W1) .
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Hence there must be one such W1 with rammeanH(W1) ≥ ε. W.l.o.g. we can
assume that rammeanH(V1) ≥ ε, where V1 = (∗, 0) ⊂ V . Indeed, by the tran-
sitivity of the action of SL(2,Z/pZ) on V ∗, we can conclude that all subgroups
W1 are conjugate with respect to this action. Since replacing H by a conjugate
in SL(2,Z/pZ) does neither change the ramification mean nor does it change the
index, we can replace H by a suitable conjugate to obtain the desired property
for V1.

Note that the condition on p given by p ≥ 8ε−1 can be rewritten as ε ≥ 8/p,
so rammeanH(V1) ≥ 8/p. Since p is a prime we have for any primitive vector
v ∈ V1 that either ramH(v) = 1/p or ramH(v) = 1. Thus there must be at least
one primitive vector v ∈ V1 with ramH(v) = 1. The corresponding transvection
rv,1 ∈ SL(2,Z/pZ) ∩H generates the group

GV1 =

{(
1 b
0 1

)
; b ∈ Z/pZ

}
< H .

Now consider two primitive elements v = (v1, v2), ṽ = (ṽ1, ṽ2) ∈ V ∗ with v2, ṽ2 6= 0
and the transvections

rv,1 =

(
1 + v1v2 −v2

1

v2
2 1− v1v2

)
and rṽ,1 =

(
1 + ṽ1ṽ2 −ṽ1

2

ṽ2
2 1− ṽ1ṽ2

)
.

Consider the cosets of rv,1 and rṽ,1 with respect to GV1 :(
1 + v1v2 −v2

1

v2
2 1− v1v2

)(
1 b
0 1

)
=

(
1 + v1v2 b(1 + v1v2)− v2

1

v2
2 bv2

2 + (1− v1v2)

)

and likewise for rṽ,1. Note that v and ṽ can only lie in the same coset if v2
2 = ṽ2

2.
Once we have chosen v2 6= 0 (ṽ2 6= 0) the other coordinate v1 (resp. ṽ1) is uniquely
determined. This shows that at most two primitive vectors v = (v1, v2) ∈ V ∗ with
v2 6= 0 can lie in the same coset.

We will now estimate how many primitive vectors v ∈ V ∗ we have with rv,1 ∈ H,
i.e. which satisfy ramH(v) = 1. Since ramH(v) ∈ {1/p, 1} this is equivalent to
asking how many v ∈ V ∗ we are guaranteed to have with ramH(v) > 1/p. We are
thus in the situation of Proposition B.1 from the appendix which tells us that
this number which we denote by γ is at least

γ ≥ ε− (1/p)

1− (1/p)
(p2 − 1) = (pε− 1)(p+ 1) = εp2 + (ε− 1)p− 1 . (11)

Using that ε ≥ 8/p we can further estimate that

γ ≥ 3

4
εp2 +

1

4
εp2︸ ︷︷ ︸
≥2p

+(ε− 1)p− 1 ≥ 3

4
εp2 + (p− 1) . (12)
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Since there are only p − 1 primitive vectors v = (v1, v2) ∈ V ∗ with v2 = 0, we
can conclude that we have at least (3/4)εp2 primitive vectors v = (v1, v2) ∈ V ∗

with v2 6= 0 such that rv,1 ∈ H. By our above considerations these give at least
(3/8)εp2 elements in (3/8)εp2 different cosets with respect to GV1 . Hence H has
at least (3/8)εp3 elements. For the index of H in SL(2,Z/pZ) this gives us

[SL(2,Z/pZ) : H] ≤ p(p2 − 1)

(3/8)εp3
<

8

3
ε−1

as claimed. �

Proof of Lemma 4.8. With the case g = 1 settled by Proposition 4.9, we will now
do the induction step from g − 1 to g. This part requires a number of technical
results which we will put into several individual claims to be shown at the end
of this proof.

We will again write H for the quotient Γ/Γ(p) which we consider as a subgroup
of G := Sp(2g,Z/pZ). We need to bound the index of H in G. Consider the
space V = (Z/pZ)2g. As in (10) we define for any subset W ⊂ V the ramification
mean of W with respect to H as follows:

rammeanH(W ) :=
1

(#W ∗)

∑
w∈W ∗

ramH(w)

Using the transitivity of the action ofG on V ∗ we can conclude as in the case g = 1
that among all subgroups W2g−1 ⊂ V which are isomorphic to (Z/pZ)2g−1 there
must be at least one with ramification mean greater than or equal to ε. W.l.o.g. we
can assume that this is the case for the subgroup V2g−1 = (∗, . . . , ∗, 0) ⊂ V (by
replacing H with a suitable conjugate if necessary), that is

rammeanH(V2g−1) ≥ ε . (13)

The stabilizer of V2g−1 in G can be computed to be given by

S2g−1 :=




A 0 B m3

mT
1 u mT

2 m4

C 0 D m5

0 0 0 u−1

 ;

(
A B
C D

)
∈ Sp(2g − 2,Z/pZ),

u ∈ (Z/pZ)∗,m1,m2,m3,m5 ∈ (Z/pZ)g−1,m4 ∈ Z/pZ,
A ·m2 −B ·m1 = u ·m3 ,
C ·m2 −D ·m1 = u ·m5

 .

(14)

We will need various results about S2g−1 which can be found in the appendix
(cf. Section A).



4.3. THE n = p–CASE 71

Consider the set of subgroups Wg ⊂ V2g−1 which are isomorphic to (Z/pZ)g. The
group S2g−1 acts on this set, however, this action is not transitive. We want to
conclude that we have w.l.o.g. rammeanH(Vg) ≥ ε/2, where

Vg := (∗, . . . , ∗︸ ︷︷ ︸
g times

, 0, . . . , 0︸ ︷︷ ︸
g times

) ⊂ V .

To achieve this, we restrict ourselves to subgroups Wg ⊂ V2g−1 which are in the
orbit of Vg under the action of S2g−1.

Claim 1: There exists a subgroup Wg ∈ orbS2g−1(Vg) with rammeanH(Wg) ≥ ε/2.

As mentioned earlier, we postpone the proof of this technical result and con-
tinue with the proof of the lemma. By using conjugation we can again assume
w.l.o.g. that we have rammeanH(Vg) ≥ ε/2. Note that since we are conjugating
with S2g−1 = StabG(V2g−1) this leaves V2g−1 invariant.

Primitive vectors v ∈ V ∗
g correspond to transvections rv,1 which lie in

GVg :=

{(
1 B
0 1

)
; B ∈ Sym(g,Z/pZ)

}
< Sp(2g,Z/pZ) .

Note that transvections rv,1 given by a primitive vectors v ∈ V ∗
g with ramH(v) = 1

are not only elements of GVg but also of H. The subgroup generated by them is
in fact all of GVg provided the ramification mean of Vg is sufficiently big as the
following claim shows.

Claim 2: If rammeanH(Vg) ≥ ε/2 then GVg < H.

Our next goal is to show that most of the elements in S2g−1 are in fact in H,
i.e. to get a bound on the index of H ∩ S2g−1 in S2g−1. We have just found
some elements in H ∩ S2g−1, namely all the elements of GVg . They will play an
important role in getting an estimate for the index.

Recall the description of S2g−1 given in (14). We define a surjective group homo-
morphism Ψ : S2g−1 → Sp(2g − 2,Z/pZ) by


A 0 B m3

mT
1 u mT

2 m4

C 0 D m5

0 0 0 u−1

 7→
(
A B
C D

)
.

We will estimate the index of Im(Ψ|H∩S2g−1) in Im(Ψ) = Sp(2g−2,Z/pZ) and the
index of ker(Ψ|H∩S2g−1) in ker(Ψ) and thus get a bound for the index of H∩S2g−1

in S2g−1. These calculations require some tedious counting arguments and matrix
computations. We therefore state the results here and show them together with
the other claims at the end of this proof.
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Claim 3:
[
Sp(2g − 2,Z/pZ) : Im(Ψ|H∩S2g−1)

]
≤ 4g−2·8

3
·
(

8
7

) g(g−1)
2 ε1−g

Claim 4: ker(Ψ) < H

With these results we can estimate the index of S2g−1 ∩H in S2g−1 as follows:

[S2g−1 : S2g−1 ∩H] =
|Im(Ψ)| / |ker(Ψ)|∣∣∣Im(Ψ|H∩S2g−1)

∣∣∣ / ∣∣∣ker(Ψ)|H∩S2g−1

∣∣∣
Claim 4

=
|Im(Ψ)|∣∣∣Im(Ψ|H∩S2g−1)

∣∣∣ =
[
Sp(2g − 2,Z/pZ) : Im(Ψ|H∩S2g−1)

]
Claim 3
≤ 4g−2 · 8

3
·
(

8

7

) g(g−1)
2

ε1−g . (15)

As our final step in this proof we will now estimate the index of H in
Sp(2g,Z/pZ). Consider primitive vectors v = (v1, . . . , v2g) ∈ V ∗ with v2g 6= 0
and the corresponding transvections rv,1. We want to know how many of these
can lie in the same coset of S2g−1 in G.

Let eg denote the g-th vector of the canonical basis of V = (Z/pZ)2g. Note that
the action of S2g−1 given by left multiplication leaves the subspace generated by
eg invariant whereas rv,1 maps eg to

eg + v2g · (v1, . . . , v2g) = (v2g · v1, . . . , v2g · vg−1, 1 + v2g · vg, v2g · vg+1, . . . , v
2
2g) .

So there are at most 2p primitive vectors v with v2g 6= 0 that lie in the same coset
of S2g−1.

Using that rammean(V ) = ε a short calculation as in (11) and (12) using Propo-
sition B.1 shows that we have at least (3/4)εp2g + p2g−1 primitive vectors v ∈ V ∗

with ramH(v) = 1 and hence rv,1 ∈ H. At least (3/4)εp2g of them have v2g 6= 0,
so they lie in at least (3/8)εp2g−1 different cosets of S2g−1. This implies that

[Sp(2g,Z/pZ) : H] =
|Sp(2g,Z/pZ)|

|H|
≤ |Sp(2g,Z/pZ)|
|H ∩ S2g−1| · (3/8)εp2g−1

.

Using Proposition A.1 we obtain

[Sp(2g,Z/pZ) : H] ≤ |Sp(2g,Z/pZ)|
|H ∩ S2g−1| · (3/8)εp2g−1

A.1
=

((p2g − 1)/(p− 1)) · |S2g−1|
|H ∩ S2g−1| · (3/8)εp2g−1

≤ 4

ε
· [S2g−1 : H ∩ S2g−1]

(15)

≤ 4g−1 · 8
3

·
(

8

7

) g(g−1)
2

ε−g
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which completes the proof of the lemma.

We will now prove the technical results we used in this proof.

Claim 1: There exists a subgroup Wg ∈ orbS2g−1(Vg) with rammeanH(Wg) ≥ ε/2.

Proof of Claim 1: Assume not. Then we have for all Wg lying in orbS2g−1(Vg) that
rammeanH(Wg) < ε/2. This implies∣∣∣orbS2g−1(Vg)

∣∣∣ · (ε/2) >
∑

Wg∈orbS2g−1
(Vg)

rammeanH(Wg)

=
1

pg − 1

∑
Wg∈orbS2g−1

(Vg)

∑
w∈W ∗

g

ramH(w) .

Since every primitive vector v ∈ V ∗
2g−1 appears at least

∏g−2
i=1 (pi + 1) times in this

double sum by Corollary A.5, we can conclude that

∣∣∣orbS2g−1(Vg)
∣∣∣ · (ε/2) >

∏g−2
i=1 (pi + 1)

pg − 1

∑
v∈V ∗

2g−1

ramH(v) .

Using that
∣∣∣orbS2g−1(Vg)

∣∣∣ =
∏g−1
i=1 (pi + 1) as shown in Corollary A.3, we get that

this implies that

(pg−1 + 1) · (ε/2) >
1

pg − 1

∑
v∈V ∗

2g−1

ramH(v) =
p2g−1 − 1

pg − 1
rammeanH(V2g−1)︸ ︷︷ ︸

≥ε by (13)

≥ p2g−1 − 1

pg − 1
· ε

which leads to a contradiction and thus proves the claim.

Claim 2: If rammeanH(Vg) ≥ ε/2 then GVg < H.

Proof of Claim 2: We will proceed by induction on g. The case g = 1 for the
group GV1 has been shown already in the proof of Proposition 4.9.

For the induction step let g ≥ 2. Consider the subspace

V g
g−1 = (∗, . . . , ∗︸ ︷︷ ︸

g−1 times

, 0, . . . , 0︸ ︷︷ ︸
g+1 times

) ⊂ V .

Using that rammeanH(Vg) ≥ ε/2 we want to conclude that w.l.o.g. we have
that rammeanH(V g

g−1) ≥ ε/2. For that note that the stabilizer of Vg in G
acts transitively on the set of all v ∈ V ∗

g which means that all such v appear
in the same number of subgroups W g

g−1 isomorphic to (Z/pZ)g−1 of Vg. As
before this implies that there must be at least one such subgroup W g

g−1 with
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rammeanH(W g
g−1) ≥ ε/2. Since the action of StabG(Vg) on Vg is transitive, all

subgroups W g
g−1
∼= (Z/pZ)g−1 are conjugate in StabG(Vg), so we can assume

w.l.o.g. that rammeanH(V g
g−1) ≥ ε/2 by replacing H with a suitable conjugate.

Note however, that we can not assume this outside the proof of this claim, since
this conjugation might not leave V2g−1 invariant.

If we take a primitive vector v ∈ V g
g−1 it defines a transvection rv,1 which lies in

GV g
g−1

:=


 1

B 0
0 0

0 1

 ; B ∈ Sym(g − 1,Z/pZ)

 .

We will now show that GV g
g−1

is contained in H. For that we use that V g
g−1
∼=

Vg−1 ⊂ (Z/pZ)2(g−1) and that GV g
g−1

∼= GVg−1 < Sp(2(g − 1),Z/pZ). Under this

isomorphism H∩GV g
g−1

is identified with some group H̃ < Sp(2(g−1),Z/pZ) and

we have that rammeanH(V g
g−1) = rammean

H̃
(Vg−1). Therefore we can conclude

by the induction hypothesis that GVg−1 < H̃ which implies that GV g
g−1

< H.

Define λ : GVg → (Z/pZ)g as the projection of

(
1 B
0 1

)
to the last row of B.

We have just seen that ker(λ) = GV g
g−1

< H. If we can show that Im(λ|H∩GVg
) =

Im(λ) = (Z/pZ)g, we can conclude that H ∩GVg = GVg which implies GVg < H.

We will do this by a counting argument using that rammeanH(Vg) ≥ ε/2. If γ
denotes the number of primitive vectors v ∈ V ∗

g with ramH(v) = 1 (or equivalently
with ramH(v) > 1/p), then we have by Proposition B.1 that

γ ≥ (ε/2)− (1/p)

1− (1/p)
(pg − 1) = ((ε/2)p− 1)

pg − 1

p− 1
> ((ε/2)p− 1) pg−1 .

Using that ε ≥ (8/p) · (8
7
)g−1 ≥ (8/p) we can deduce that γ > 3pg−1, which means

that we have at least that many primitive vectors in v ∈ V ∗
g with ramH(v) = 1.

In particular we are guaranteed to have 2pg−1 + 1 such primitive vectors v =
(v1, . . . , vg, 0, . . . , 0) which additionally satisfy vg 6= 0. Each of these v defines a
transvection rv,1 ∈ H ∩GVg and if we apply λ to it, we obtain

(−vg) · (v1, . . . , vg) = (−v1vg,−v2vg, . . . ,−v2
g) ∈ (Z/pZ)g .

Observe that there are at most two primitive vectors v = (v1, . . . , vg, 0, . . . , 0) with
vg 6= 0 having the same image in (Z/pZ)g. So we have at least pg−1+1/2 different
elements in Im(λ|H∩GVg

) ⊂ (Z/pZ)g. Since they generate a subgroup of (Z/pZ)g

they must generate all of (Z/pZ)g, which gives us Im(λ|H∩GVg
) = (Z/pZ)g as

desired.
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Claim 3:
[
Sp(2g − 2,Z/pZ) : Im(Ψ|H∩S2g−1)

]
≤ 4g−2·8

3
·
(

8
7

) g(g−1)
2 ε1−g

Proof of Claim 3: We will eventually use the induction hypothesis of Lemma 4.8
on the subgroup Ψ(S2g−1 ∩ H) of Sp(2g − 2,Z/pZ) (or more precisely on the
subgroup of Sp(2g− 2,Z) defined by this coset in Sp(2g− 2,Z)/Γg−1(p)). To do
this, we need to get an estimate on the ramification mean of this subgroup.

For that, define a map ψ : V2g−1 → (Z/pZ)2g−2 via

(v1, . . . , v2g−1, 0) 7→ (v1, . . . , vg−1, vg+1, . . . , v2g−1) .

Note that for any primitive vector v ∈ V ∗
2g−1 the image ψ(v) ∈ (Z/pZ)2g−2 is

again primitive except in the p− 1 cases where vg is the only nonzero coordinate.
We write Ṽ2g−1 for the subset of V2g−1 where ψ(v) is primitive. If we consider
the corresponding transvections rv,1 ∈ S2g−1 and rψ(v),1 ∈ Sp(2g − 2,Z/pZ), we
obtain the following connection between the maps Ψ and ψ:

Ψ(rv,1) = rψ(v),1

This implies that for all v ∈ Ṽ2g−1 we have that

ramH(v) = ramS2g−1∩H(v) = ramΨ(S2g−1∩H)(ψ(v)) .

Since ψ is surjective and p–to–1 we get that the ramification mean of Ṽ2g−1

with respect to H < Sp(2g,Z/pZ) is just the desired ramification mean of the
subgroup Ψ(S2g−1 ∩H) of Sp(2g − 2,Z/pZ), namely

rammeanH(Ṽ2g−1) =
1

#w

∑
w∈(Z/pZ)2g−2\{0}

ramΨ(S2g−1∩H)(w) . (16)

Using that rammeanH(V2g−1) ≥ ε by (13) it is straightforward to show that for
its subset Ṽ2g−1 we have rammeanH(Ṽ2g−1) ≥ (7/8)ε (We could certainly find a
better bound, but this bound will suffice for the proof of this claim).

We thus have that the subgroup Ψ(S2g−1∩H) of Sp(2g−2,Z/pZ) has ramification
mean at least (7/8)ε by (16). It now follows from the induction hypothesis (of
Lemma 4.8) on Ψ(S2g−1 ∩H) that

[Sp(2g − 2,Z/pZ) : Ψ(S2g−1 ∩H)] ≤ 4g−2 · 8
3

·
(

8

7

) (g−1)(g−2)
2

(
7

8
ε
)1−g

=
4g−2 · 8

3
·
(

8

7

) g(g−1)
2

ε1−g ,

which proves the claim.

Claim 4: ker(Ψ) < H
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Proof of Claim 4: The kernel of Ψ can be calculated explicitly to be

ker(Ψ) =




1 0 0 m2

mT
1 1 mT

2 m4

0 0 1 −m1

0 0 0 1

 ; m1,m2 ∈ (Z/pZ)g−1,m4 ∈ Z/pZ


which is isomorphic to (Z/pZ)2g−1. We already know that some of the elements
of ker(Ψ) are also in H, namely the elements of

GVg ∩ker(Ψ) =



1 0 0 b1
0 1 bT1 b2
0 0 1 0
0 0 0 1

 ; b1 ∈ (Z/pZ)g−1, b2 ∈ Z/pZ

 < H∩ker(Ψ) ,

since GVg < H by Claim 2. Note that this group is naturally isomorphic to
(Z/pZ)g and that under this isomorphism the multiplication of matrices corre-
sponds to the addition of elements in (Z/pZ)g.

We will use the elements of GVg∩ker(Ψ) to construct more elements inH∩ker(Ψ).
For that let

h := 1+


0

0 0

0
0 1

1 0

0 0

 ∈ GVg ∩ ker(Ψ) < H .

Take any primitive vector v = (v1, . . . , v2g−1, 0) ∈ V ∗
2g−1 and consider the corre-

sponding transvection rv,1 ∈ Sp(2g,Z/pZ). A short calculation shows that

rv,1 · h · r−1
v,1 = h + v2g−1



0 0
v1
...

vg−1

−vg+1 · · · − v2g−1 0 v1 · · · vg−1 2vg

0 0
vg+1

...
v2g−1

0


.

Observe that if we multiply an element of GVg ∩ ker(Ψ) with this matrix, the
product is essentially obtained by adding the coefficients in the upper right corners
of the matrices. It is thus easy to find a suitable matrix in GVg ∩ ker(Ψ) such
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that its product with rv,1 · h · r−1
v,1 is given by

1 + v2g−1



0
−vg+1 · · · − v2g−1 0

0

0 0
vg+1

...
v2g−1

0


. (17)

If rv,1 ∈ H then this matrix is in H ∩ ker(Ψ). Note that if we only consider
primitive vectors v = (v1, . . . , v2g−1, 0) ∈ V ∗

2g−1 with v2g−1 6= 0, then at most 2pg

of them give the same matrix.

Our next step will be to estimate how many different primitive vectors v with
rv,1 ∈ H and v2g−1 6= 0, and as a consequence how many different matrices in
H∩ker(Ψ), we are guaranteed to have. We will then conclude that these matrices
already generate all of ker(Ψ) which will prove the claim.

Using that rammeanH(V2g−1) ≥ ε by (13), we can apply Proposition B.1 to
conclude that we have at least

ε− (1/p)

1− (1/p)
(p2g−1 − 1) = (εp− 1)

p2g−1 − 1

p− 1
> (εp− 1) p2g−2 .

vectors v ∈ V ∗
2g−1 which satisfy ramH(v) > 1/p. Since ramH(v) ∈ {1/p, 1} these

in fact have ramH(v) = 1 which implies that rv,1 ∈ H. We can further estimate
this number to be no less than 7p2g−2 by using that ε ≥ (8/p). If we now discount
the p2g−2−1 primitive vectors v ∈ V ∗

2g−1 with v2g−1 = 0, we still are guaranteed to
have at least 6p2g−2 vectors v with rv,1 ∈ H which additionally satisfy v2g−1 6= 0.
These gives us at least 3pg−2 different matrices in H ∩ ker(Ψ) of the form given
in (17). Together with the matrices in GVg ∩ ker(Ψ) we thus have at least 3p2g−2

elements in H ∩ ker(Ψ). Comparing this with
∣∣∣ ker(Ψ)

∣∣∣ =
∣∣∣(Z/pZ)2g−1

∣∣∣ = p2g−1,

we get that in fact ker(Ψ) < H. �

4.4 Putting it all together

In this section we will assemble the results of the previous sections to obtain a
proof of Theorem 4.3.

We start with the corresponding statement for subgroups Γ < Sp(2g,Z) contain-
ing principal congruence subgroups Γ(pt) which follows directly from the n = p–
case and our considerations in Section 4.2.



78 CHAPTER 4. RAMIFICATION MEAN

Lemma 4.10 For every ε > 0 there are only finitely many subgroups Γ <
Sp(2g,Z) for which there is a prime p and an integer t with Γ(pt) < Γ and
which have ramification mean at least ε.

Proof. Since Sp(2g,Z) is finitely generated it suffices to show that there is
a number only depending on ε which bounds the index of every subgroup Γ of
Sp(2g,Z) with the given properties.

Let Γ < Sp(2g,Z) be a subgroup containing Γ(pt) for some prime power pt

and having ramification mean at least ε. If p is sufficiently big (namely p >
max(3ε−1, 2)), we can conclude by Proposition 4.4 that in fact t = 1, so Γ(p) < Γ.

If p even satisfies p ≥ max(3, 8 ·
(

8
7

)g−1
ε−1) we get an upper bound for the index

by Lemma 4.8.

This leaves us with those cases where p is not sufficiently big. However, by
Corollary 4.6 we can for each p give a bound on t. So in fact, we only have to
deal with a finite number of cases for pt. But for every prime power pt there are
only finitely many groups Γ(pt) ⊂ Γ < Sp(2g,Z) since every such Γ corresponds
to exactly one subgroup of the finite group Sp(2g,Z/ptZ). This means that we
have only finitely many subgroups Γ of Sp(2g,Z) containing some group Γ(pt)
which do not satisfy the hypothesis of Lemma 4.8 and we are done. �

To obtain the general result we will use the fact that every integer n can be
decomposed into distinct prime powers. This gives us a decomposition of the
ring Z/nZ which induces a decomposition of the group Sp(2g,Z/nZ). We then
can use the lemma we have just shown on each factor and finish the proof of the
main result of this chapter.

Theorem 4.3 For every ε > 0 there are only finitely many subgroups Γ <
Sp(2g,Z) of finite index with ramification mean at least ε.

Proof. Let Γ be a subgroup of Sp(2g,Z/nZ) of finite index. Let n = nΓ, i.e. the
minimal level n such that the principal congruence subgroup Γ(n) is contained
in Γ. Consider the factor group H := Γ/Γ(n) which can be identified with a
subgroup of Sp(2g,Z/nZ). If we decompose n into primes, say

n = pt11 · . . . p
tk
k , (pi, pj) = 1 for i 6= j ,

we also obtain a factorization of Sp(2g,Z/nZ) as follows:

Sp(2g,Z/nZ) ∼= Sp(2g,Z/pt11 Z)× · · · × Sp(2g,Z/ptkk Z)

We will now describe what happens under this factorization with the subgroup
H. For that we define

Hi := H ∩
(
{1} × · · · × {1} × Sp(2g,Z/ptii Z)× {1} × · · · × {1}

)
.
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We abuse notation and write Hi for the projection to the i-th coordinate of Hi

also. Note that all Hi are proper subgroups of Sp(2g,Z/ptii Z) by the minimality
of n. The group H certainly contains the cartesian product of the Hi, but is in
general not generated by it:

H > H1 × · · · ×Hk

However, we will see shortly that the corresponding description of the ramification
groups of H and Hi in fact gives the desired equality. Recall that a vector
v ∈ (Z/nZ)2g (given as v = (v1, . . . , vk) ∈ (Z/pt11 Z)2g × · · · × (Z/ptkk Z)2g) is
primitive if and only if v1, . . . , vk are primitive. Now it is easy to check that

RamSp(2g,Z/nZ)(v) ∼= Ram
Sp(2g,Z/p

t1
1 Z)

(v1)× · · · × Ram
Sp(2g,Z/p

tk
k
Z)

(vk) . (18)

Recall that Ram
Sp(2g,Z/p

ti
i Z)

(vi) ∼= Z/ptii Z, so the orders of Ram
Sp(2g,Z/p

ti
i Z)

(vk)

are all coprime to each other. Therefore the group RamH(v) < RamSp(2g,Z/nZ)(v)
under the identification given in (18) can be expressed as a cartesian product of
subgroups of Ram

Sp(2g,Z/p
ti
i Z)

(vi). Hence

RamH(v) ∼= RamH1(v1)× · · · × RamHk
(vk) .

We can now compare the ramification means of H and of Hi and obtain

ε ≤ 1

#v

∑
v

ramH(v) =
1

#v

∑
v1

· · ·
∑
vk

ramH1(v1) · · · · · ramHk
(vk)

=

(
1

#v1

∑
v1

ramH1(v1)

)
· · · · ·

(
1

#vk

∑
vk

ramHk
(vk)

)
=: ε1 · · · · · εk .

So the ramification mean of H is equal to the product of the ramification means
of the Hi. Since 0 < εi ≤ 1 this implies that

εi ≥ ε for all i = 1, . . . , k .

Given 1 ≥ ε > 0 there are by Lemma 4.10 only finitely many subgroups Γ of
Sp(2g,Z) containing Γ(pt) for some prime p and some integer t having ramifi-
cation mean at least ε. Let B be the set containing these (or equivalently their
images H = Γ/Γ(pt)). By what we have just seen all Hi must be contained in this
set (recall that Hi is a proper subgroup of Sp(2g,Z/ptii Z)). Since the number of
Hi is thus finite, so is the number of combinations H1 × · · · ×Hk with Hi 6= Hj

for i 6= j. This gives us a bound on n and thus a bound for the index of any
subgroup Γ with ramification mean at least ε. �



80 CHAPTER 4. RAMIFICATION MEAN

Remark 4.11 We could give an explicit bound on the index of subgroups Γ <
Sp(2g,Z) with ramification mean at least ε > 0 using the bounds given in the
propositions of the previous sections. However, this bound would be far away
from being optimal and be in fact much too large to be of any practical use, so we
omit it here.

We will need this result in Chapter 7 to conclude that subgroups Γ of Sp(2g,Z)
of sufficiently large index have relatively small ramifications means and thus do
not pose too many obstructions to extending pluricanonical forms. Moreover
this theorem will allow us to control the ramification occurring at boundary
components of higher codimension, which will be done in Chapter 6.



Chapter 5

Singularities in the interior

In this chapter we will study the singularities in the interior of AΓ. They occur
at the images of those points in Hg that have non–trivial stabilizers in Γ. We
will start in the first section by considering the stabilizers with respect to the
full symplectic group Sp(2g,Z). This will give us an explicit description of the
non–canonical singularities in the interior of the moduli space of abelian varieties
Ag. We will use this knowledge in the following section to derive a similar de-
scription for the space AΓ. Finally, we will relate the number of elements in Γ
(or more precisely their equivalence classes in Γ(n)) which lead to non–canonical
singularities in AΓ to the index of Γ in Sp(2g,Z). This will play an important
role when we calculate the obstructions to extending pluricanonical forms over
these singularities in Chapter 7.

For the general background on canonical and non–canonical singularities we refer
the reader to Section 1.5 where we introduced the notion of quotient singularities,
in particular with regard to Siegel modular varieties. Throughout this chapter
we will make frequent use of the results provided in that section.

5.1 Singularities in Ag

In this section we will study the singularities in Ag, or more precisely, determine
the locus of non–canonical singularities lying in the interior of Ag. For g = 2 this
question has been answered by Borisov (cf. [Bor, Section 4]). On the other hand,
for g ≥ 5 there is a paper by Tai in which he shows that Ag has only canonical
singularities (cf. [Tai, Section 4]). A careful analysis of his proof will allow us to
derive the non–canonical singularities in the cases g = 3 and g = 4.

Since we will follow Tai’s proof, we will also use his notation in this section to
avoid confusion. We first recall some general results from [Tai, Section 3] which

81
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will be used in the following discussion.

Let Γ be a finite group acting linearly on Cn and denote the quotient of this
action by X. For any element γ ∈ Γ, we can also consider Xγ := Cn/ 〈γ〉, the

quotient of Cn by the subgroup of Γ generated by γ. Let X̃ and X̃γ denote
nonsingular models of X and Xγ respectively. When we are concerned with the

extension of pluricanonical forms to X̃, the following proposition allows us to
restrict ourselves to the study of cyclic subgroups.

Proposition 5.1 Let η be a Γ–invariant pluricanonical form on Cn. The form
η extends to X̃ if and only if it extends to X̃γ for every γ ∈ Γ.

Proof. [Tai, Proposition 3.1] �

Remark 5.2 Note that this result does not imply that X has canonical singular-
ities if and only if all Xγ have canonical singularities. While the if part of this
statement is certainly true, the only if part fails since one then would have to
extend forms which are only invariant with respect to γ and not necessarily with
respect to Γ.

Let γ ∈ Γ and x ∈ Cn such that x is fixed by γ. Suppose that the action of γ on
the tangent space of x is given by multiplication in each coordinate by e2πiSj with
Sj ∈ Q, 0 ≤ Sj < 1. We then define the Reid–Tai sum {γ, x} of x with respect
to γ by

{γ, x} :=
N∑
j=1

Sj . (1)

With the help of this sum, the Reid–Shepherd–Barron–Tai criterion (cf. Theo-
rem 1.65) can be reformulated as follows to answer the question of extensibility
of pluricanonical forms:

Theorem 5.3 (Reid–Shepherd–Barron–Tai criterion) Let η be a pluri-
canonical form on Cn which is invariant under the action of a finite group Γ
acting linearly on Cn. The form η extends to a nonsingular model of Cn/Γ if for
every id 6= γ ∈ Γ and every x ∈ Fix(γ)

{γ, x} ≥ 1 .

Proof. [Tai, Theorem 3.3] �

In our situation, the case of the moduli space of g–dimensional abelian varieties
Ag, we have the group Sp(2g,Z) acting on the Siegel upper half spaceHg of genus
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g. The stabilizer of any point Z ∈ Hg is a finite group (cf. Proposition 1.64)
which can be linearized locally. By Proposition 5.1 it suffices to consider cyclic
subgroups of these stabilizers or equivalently their generators. So let Z ∈ Hg and
γ ∈ Sp(2g,Z) such that γ fixes Z. Note that γ has finite order m = ord(γ) and
thus can be diagonalized. Using the symplectic relation, we can even conclude
that γ is conjugate to(

Λ 0
0 Λ−1

)
, Λ = diag(ζt1 , . . . , ζtg), ζ = e2πi/m (2)

for some tj ∈ Z. According to [Tai, Lemma 4.1], we can then choose a local
coordinate system (xij) around Z such that the action of γ is given by

(xij) 7→ (ζti+tjxij) .

If m 6= 1, 2, 3, 4, 6 Tai shows that in this case {γ, x} ≥ 1 (This is basically due
to the fact that all primitive m-th roots of unity appear as eigenvalues, since the
characteristic polynomial of γ has rational coefficients (cf. [Tai, Lemma 4.4])).
Moreover if γ has order 1,2 or 4 easy combinatorics show that then also {γ, x} ≥ 1.

This leaves the case where ord(γ) = 6. Here Tai shows that {γ, x} ≥ 1 is again
satisfied for g ≥ 3 unless all eigenvalues of γ have either order 6 or order 1 (cf. [Tai,
Proof of Lemma 4.5]). If g ≥ 5 a short computation shows that this case also
gives {γ, x} ≥ 1 which implies that Ag then only has canonical singularities by
Theorem 5.3. However, for both g = 3 and g = 4 we have exactly one case
each which gives {γ, x} < 1, namely if γ has up to permutation the eigenvalues
(1, 1, %, 1, 1, %5) (resp. (1, 1, 1, %, 1, 1, 1, %5)), where % is a primitive 6th root of
unity.

Note that these calculations show that Sp(2g,Z) has no quasi–reflections for
g ≥ 3 in the sense of Definition 1.56. Indeed, such an element has exactly one
eigenvalue different from 1 which implies that its Reid–Tai sum must be strictly
less than 1. But we have just seen that the only elements with this property have
two primitive 6th roots of unity.

In the case of a group without quasi–reflections the Reid–Shepherd–Barron–Tai
criterion is in fact a characterization for canonical singularities (cf. Theorem
1.65). Thus the elements we have found for g = 3 and g = 4 having Reid–Tai
sum strictly less than 1 give indeed non–canonical singularities.

We summarize our discussion in the following theorem:

Theorem 5.4 Let % be a primitive 6th root of unity.

(i) A point in A3 is a non–canonical singularity if and only if it is the image
of a point in H3 whose stabilizer in Sp(6,Z) contains a matrix γ ∈ Sp(6,Z)
which has up to permutation the eigenvalues (1, 1, %, 1, 1, %5).



84 CHAPTER 5. SINGULARITIES IN THE INTERIOR

(ii) A point in A4 is a non–canonical singularity if and only if it is the image
of a point in H4 whose stabilizer in Sp(8,Z) contains a matrix γ ∈ Sp(8,Z)
which has up to permutation the eigenvalues (1, 1, 1, %, 1, 1, 1, %5).

(iii) For g ≥ 5 the moduli space Ag has only canonical singularities in the open
part.

In the remainder of this section we will look for g = 3 and g = 4 at automorphisms
of abelian varieties to determine the locus in Ag where non–canonical singulari-
ties can occur. For abelian threefolds the automorphisms have been studied by
Birkenhake, Gonzáles–Aguilera and Lange (cf. [BGAL]) and also by Schmidt in
his thesis(cf. [Sch]).

Let A = Cg/Λ be an abelian variety of dimension g and let α be an automorphism
of A, that is a biholomorphic map α : A → A respecting the group law on A.
Any automorphism α has an analytic and a rational representation, denoted by
%a(α) and %r(α) respectively (cf. [BGAL, p. 3] for an explicit construction). The
latter, %r(α), can be considered as an element of Sp(2g,Z) fixing the point in Hg

corresponding to the abelian variety A. In the light of our results from Theorem
5.4 we are interested in those abelian varieties A that admit an automorphism
α ∈ Aut(A) whose rational representation %r(α) has exactly the eigenvalues given
for the matrix γ from the theorem.

For every α ∈ Aut(A) we can consider Fix(α), the subgroup of A containing the
fixed points of α given by

Fix(α) := ker(idA − α) . (3)

The number of elements in Fix(α) is related to the eigenvalues of %r(α) by the
following proposition:

Proposition 5.5 The set of fixed points Fix(α) on an abelian variety A is finite
with respect to an automorphism α if and only if all eigenvalues of a rational
representation %r(α) are primitive dα–th roots of unity, where dα is the order of
α.

Proof. [BGAL, Prop. 1.4] �

This immediately tells us that we need to investigate the case where we have
infinitely many fixed points. For this we can use the following decomposition
theorem due to Roan:

Theorem 5.6 Let A be an abelian variety and let α be an automorphism of A
of finite order. Let 1 ≤ d1 < d2 < · · · < dr be the orders of the eigenvalues of
%r(α), a rational representation of α. Then there are α–stable abelian subvarieties
A1, . . . , Ar of A such that
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(a) αi := α|Ai
is of order di,

(b) the set of fixed points Fix(αi) ⊂ Ai under the action of αi on Ai is finite
for i > 1,

(c) the addition map
µ : A1 × · · · × Ar → A

is an isogeny.

Proof. [BGAL, Theorem 2.1] �

Using this theorem we can conclude that we have to consider the product of an
elliptic curve E with an abelian variety Ag−1 of dimension g − 1. Under the
isogeny

µ : E × Ag−1 → A

the automorphism α has to have order 6 on the elliptic curve E and must be
trivial on Ag−1. Since 6 is not a prime power, we can conclude by the fixed point
formula for complex tori that Fix(α|E) is trivial on E (cf. [BGAL, Lemma 1.2
and Corollary 1.7]). This implies by [Sch, Satz 3.4] that the kernel of µ is trivial,
which means that µ is in fact an isomorphism (cf. also [BGAL, Proposition 5.2]).

We have to look at automorphisms of elliptic curves of order 6. Up to isomorphism
there is only one elliptic curve which admits such an automorphism, the curve E0

having j–invariant 0. The automorphism is given by multiplication by −% where
% = e2πi/3 (cf. [BGAL, Example 1.9]).

Its rational representation is given by the matrix

β6 :=


1 0 0 0
0 1 0 1
0 0 1 0
0 −1 0 0

 ∈ Sp(2g,Z) . (4)

As an element of Sp(2g,Z) it operates on the Siegel upper half space Hg and we
can consider its set of fixed points which is given by

Fix(β6) =

{(
Z 0
0 %

)
; Z ∈ Hg−1

}
.

Note that each point in Fix(β6) corresponds to a product E0 × Ag−1 as desired.
All abelian varieties isomorphic to such a product can be obtained by looking at
the orbit of Fix(β6) in Sp(2g,Z), that is⋃

M∈Sp(2g,Z)

M · Fix(β6) .
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For M ∈ Sp(2g,Z) we have the identity

Fix(Mβ6M
−1) = M · Fix(β6) ,

which implies that the respective automorphism is given by taking the conjugate
of β6 with respect to M .

The following theorem summarizes our results:

Theorem 5.7 For g = 3 and g = 4 the locus of non–canonical singularities in
the interior of Ag is exactly the image of⋃

M∈Sp(2g,Z)

Fix(Mβ6M
−1) ⊂ Hg ,

where β6 ∈ Sp(2g,Z) is the matrix defined in (4).

Our discussion allows us also to give a geometric interpretation in terms of abelian
varieties. Though it will not be needed in the rest of this thesis, it might be of
independent interest, so we put it in the following remark:

Remark 5.8 Each point in Fix(β6) corresponds to a product of an elliptic curve
E0 with j–invariant 0 with an abelian variety Ag−1 of dimension g − 1. Consid-
ered as an automorphism in Aut(E0 × Ag−1), β6 acts trivially on Ag−1 and by
multiplication by −% on E0, where % = e2πi/3.

5.2 Singularities in AΓ

In this section we will describe for any subgroup Γ of Sp(2g,Z) the non–canonical
singularities in the interior of the corresponding moduli space AΓ using the results
on Ag from the previous section.

Let Γ be a subgroup of Sp(2g,Z) of finite index for any g ≥ 3. To describe the
singularities in the corresponding moduli space AΓ := Hg/Γ we have to look at
fixed points in Hg under the action of Γ. The stabilizer of any point Z ∈ Hg in Γ
is contained in the stabilizer of Z in Sp(2g,Z) since Γ is a subgroup of Sp(2g,Z).
Hence we can use our results from the previous section on the Reid–Tai sums
for elements in Sp(2g,Z) to conclude that AΓ can only have a non–canonical
singularity at the image of a point Z ∈ Hg if Ag has one at its image. This tells
us immediately that AΓ has only canonical singularities for g ≥ 5. For g = 3
and g = 4 we obtain that the image of a point Z ∈ Hg in AΓ is a non–canonical
singularity if and only if the stabilizer of Z in Γ contains a conjugate of β6.



5.2. SINGULARITIES IN AΓ 87

Remark 5.9 Note carefully that the mere fact that Ag has a canonical singularity
at the image of a point Z ∈ Hg is in general not enough to conclude that AΓ has
a canonical singularity at the image of that point. This is due to the fact that the
Reid–Shepherd–Barron–Tai criterion as stated in Theorem 5.3 only works in one
direction, namely that we have a canonical singularity if the Reid–Tai sum is no
less than 1. The converse is only true if you add the assumption that there are
no quasi–reflections (cf. Theorem 1.65).
Since in our case this assumption is true for g ≥ 3, we could have used this
converse here. However, in the preceding argument we used the explicit knowledge
of the Reid–Tai sums calculated in the previous section instead.

The following theorem follows from our discussion:

Theorem 5.10 Let Γ be a subgroup of Sp(2g,Z) of finite index and AΓ := Hg/Γ
be the corresponding moduli space.

(i) For g = 3 and g = 4 a point in the interior of AΓ is a non–canonical
singularity if and only if it lies in the image of⋃

Mβ6M−1∈Γ

Fix(Mβ6M
−1) ⊂ Hg ,

where the union is taken over all M ∈ Sp(2g,Z) such that Mβ6M
−1 ∈ Γ.

(ii) For g ≥ 5 the moduli space AΓ has only canonical singularities in the open
part.

Let Γ be a subgroup of Sp(2g,Z) of finite index. By Theorem 1.18 it contains
a principal congruence subgroup Γ(n) of some level n and we can describe the
moduli space AΓ as the quotient of Ag(n) := Hg/Γ(n) by the action of the finite
group H := Γ/Γ(n). Using the quotient map pg,n : Sp(2g,Z)→ Sp(2g,Z/nZ) ∼=
Sp(2g,Z)/Γ(n) we can consider β6 and its conjugates as elements of Sp(2g,Z/nZ)
which will be useful in the following section. Moreover, instead of pg,n(β6) we can
also work with the involution given by its third power

ϕ0 := (pg,n(β6))
3 = diag(1, . . . , 1︸ ︷︷ ︸

g−1 times

,−1, 1, . . . , 1︸ ︷︷ ︸
g−1 times

,−1) ∈ Sp(2g,Z/nZ) . (5)

Its set of fixed points in Ag(n) is given as the image of

Fix(β3
6) =

{(
Z 0
0 τ

)
; Z ∈ Hg−1, τ ∈ H1

}
⊂ Hg .

under the natural quotient map πg,n : Hg → Ag(n). Each point in this set
corresponds to the product of an abelian variety Ag−1 with an arbitrary elliptic
curve E. We denote the image in Ag(n) by

X0 := πg,n(Fix(β3
6)) . (6)
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Let {ϕα} be the set containing all Sp(2g,Z/nZ)–conjugates of ϕ0 and {Xα} be
the corresponding sets of fixed points in Ag(n). Note that if a certain conjugate
of β6 is in Γ, the corresponding involution ϕα is in H, since it is just the image
of the 3rd power of this conjugate. This implies the following corollary:

Corollary 5.11 Let Γ be a subgroup of Sp(2g,Z) for g = 3 or g = 4 such that
Γ(n) < Γ for some n. If AΓ has a non–canonical singularity at the image of a
point Z ∈ Ag(n), then there is an index α such that Z ∈ Xα and ϕα ∈ H, where
H := Γ/Γ(n).

Note carefully that the converse is no longer true, since we replaced β6 with
the involution ϕ0. However, this description will be sufficient for the further
discussion; in fact, it will simplify the proofs of the following section.

In the last part of this section we will establish a correspondence between the ϕα
and certain pairs of complementary submodules of V = (Z/nZ)2g.

For that, consider the submodules of V given by

W 1
0 := (∗, . . . , ∗︸ ︷︷ ︸

g−1 times

, 0, ∗, . . . , ∗︸ ︷︷ ︸
g−1 times

, 0) and W 2
0 := (0, . . . , 0︸ ︷︷ ︸

g−1 times

, ∗, 0, . . . , 0︸ ︷︷ ︸
g−1 times

, ∗) . (7)

As an element of G := Sp(2g,Z/nZ) the involution ϕ0 acts on V by left multi-
plication and thus on W 1

0 and W 2
0 . There we have that

ϕ0|W 1
0
≡ id|W 1

0
and ϕ0|W 2

0
≡ −id|W 2

0
. (8)

We can extend this to a G–equivariant correspondence as follows.

Proposition 5.12 (i) The involutions {ϕα} are in one–to–one G–equivariant
correspondence with pairs (W 1

α,W
2
α) of submodules W 1

α,W
2
α ⊂ V with the

following properties:

(a) W 1
α
∼= (Z/nZ)2g−2, W 2

α
∼= (Z/nZ)2,

(b) W 1
α is orthogonal to W 2

α with respect to the standard skew form on V ,

(c) 〈W 1
α,W

2
α〉 = V .

(ii) In (i) condition (c) can be replaced by the following equivalent condition:

(c’) The restriction of the standard skew form 〈 , 〉 on V to W 2
α satisfies

the following property: For each primitive vector w2 ∈ W 2
α there exists

a vector w′
2 ∈ W 2

α such that 〈w2, w
′
2〉 = 1.

(iii) Every involution ϕα together with its corresponding pair (W 1
α,W

2
α) satisfies

the relations
ϕα|W 1

α
≡ id|W 1

α
and ϕα|W 2

α
≡ −id|W 2

α
.
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Proof.

(ii) We start by showing the equivalence of conditions (c) and (c’).

Let (c) be satisfied and let w2 be any primitive vector in W 2
α. Then there

exists a primitive vector w̃2 in the full module V with 〈w2, w̃2〉 = 1 (a
suitable multiple of one of the vectors e1, . . . , eg of the canonical basis of V
will satisfy this condition). By (c) this vector w̃2 can be written as

w̃2 = w′
1 + w′

2 ,

where w′
1 ∈ W 1

α and w′
2 ∈ W 2

α.

By condition (b) we have that 〈w2, w
′
1〉 = 0, so

1 = 〈w2, w̃2〉 = 〈w2, w
′
1〉︸ ︷︷ ︸

=0

+〈w2, w
′
2〉 = 〈w2, w

′
2〉 ,

which shows condition (c’).

The converse can be shown by a similar argument using the fact that W 1
α

is orthogonal to W 2
α as given in (b).

(i) A straightforward calculation shows that the stabilizers in G of ϕ0 and of
the standard pair (W 1

0 ,W
2
0 ) coincide and are given by:



A 0 B 0
0 a 0 b
C 0 D 0
0 c 0 d

;

(
A B
C D

)
∈ Sp(2g − 2,Z/nZ),

(
a b
c d

)
∈ SL(2,Z/nZ)


Now it suffices to check that every pair (W 1

α,W
2
α) with the given properties

is conjugate to the standard one.

(iii) We have seen this in (8) for the standard involution and the standard pair.
The claim thus follows from the G–equivariance of the correspondence.

�

Remark 5.13 Note that by part (ii) of the above proposition the involutions
{ϕα} are determined by W 2

α alone. Indeed, for any W 2
α with the given properties,

W 1
α is uniquely determined as the orthogonal complement of W 2

α.

With the knowledge of the stabilizer of the standard involution, we can calculate
the number of conjugates in G.
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Corollary 5.14 The number of conjugates {ϕα} of the standard involution ϕ0

in G = Sp(2g,Z/nZ) (or equivalently the number of Xα) is given by

#α := #ϕα =
|Sp(2g,Z/nZ)|

|Sp(2g − 2,Z/nZ)| · |SL(2,Z/nZ)|
= n4(g−1)

k∏
i=1

1− p−2g
i

1− p−2
i

,

where n = pt11 · . . . ptkk with (pi, pj) = 1 for i 6= j.

Proof. We have just seen in the proof of Proposition 5.12 (i) that the stabilizer
of ϕ0 in G is isomorphic to

StabG(ϕ0) ∼= Sp(2g − 2,Z/nZ)× SL(2,Z/nZ) .

Since the action of G on the set of conjugates ϕα is by definition transitive, this
implies the result. �

5.3 Ramification

We have seen in the previous section that the question if the moduli space AΓ

has a non–canonical singularity at the image of a point in Xα ⊂ Ag(n) depends
on whether the corresponding involution ϕα is in H = Γ/Γ(n) or not. We will
give a measure for the number of involutions in H by defining a ramification
mean similar to the one introduced in Chapter 4 for boundary divisors. In fact,
the results from that chapter will be used to relate the ramification mean for the
involutions to the index of Γ in Sp(2g,Z).

Let Γ be a subgroup of Sp(2g,Z) containing a principal congruence subgroup
Γ(n) for some level n. As usual we denote the group Sp(2g,Z/nZ) by G and its
subgroup Γ/Γ(n) by H.

Definition 5.15 For any subgroup H of G we define ramH(Xα) to be equal to 1
if the corresponding involution ϕα is in H and 0 otherwise.

Rather than looking at an individual Xα we will usually consider all conjugates
at once and look at the following mean:

1

#α

∑
α

ramH(Xα) , (9)

where #α denotes the number of Xα as calculated in Corollary 5.14. Note that
this mean can be associated to any subgroup Γ of Sp(2g,Z) of finite index; in
particular it does not depend on the level n of the principal congruence subgroup
Γ(n) contained in Γ.

We will now formulate and prove the main result of this section.
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Theorem 5.16 For every ε > 0 there are only finitely many subgroups Γ <
Sp(2g,Z) with the following properties:

(i) Γ has finite index in Sp(2g,Z), which means that it contains a principal
congruence subgroup Γ(n) for some level n.

(ii)
∑
α

ramH(Xα) ≥ ε ·#α, where H denotes the factor group Γ/Γ(n).

Proof. We will first reduce the problem to the case where n = pt is a prime
power. This can be done by an argument analogous to the one used in the proof
of Theorem 4.3 in the previous section with ramH(v) replaced by ramH(Xα).

Let Γ be a subgroup of Sp(2g,Z) containing Γ(n) for some n. We will assume
that n is minimal with this property, i.e. n = nΓ in the sense of Section 4.2.
Decomposing n into primes, say

n = pt11 · . . . p
tk
k , (pi, pj) = 1 for i 6= j ,

we obtain a factorization of Sp(2g,Z/nZ) as follows:

Sp(2g,Z/nZ) ∼= Sp(2g,Z/pt11 Z)× · · · × Sp(2g,Z/ptkk Z)

Note that under this isomorphism the involution ϕα ∈ Sp(2g,Z/nZ) is identified
with (ϕ1

α, . . . , ϕ
k
α) where each ϕiα ∈ Sp(2g,Z/ptii Z) is a conjugate of the corre-

sponding standard involution ϕi0 ∈ Sp(2g,Z/ptii Z) defined in (5). If we denote
the fixed set corresponding to ϕiα by X i

α, we obtain that

ramH(Xα) =
k∏
i=1

ramHi
(X i

α) , (10)

where Hi is defined as in the proof of Theorem 4.3. Indeed, ϕα is in H if and
only if all its components ϕiα are contained in the Hi.

An easy calculation using Corollary 5.14 shows that the number of components
Xα is related to #αi, the number of components X i

α, as follows:

#α = # {Xα} =
k∏
i=1

#αi

As in the proof of Theorem 4.3 this together with the description of ramH(Xα)
in (10) implies that the ramification mean of H is equal to the product of the
ramification means εi of the Hi, i.e.

ε ≤ 1

#α

∑
α

ramH(Xα) = ε1 · · · · · εk .
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Since 0 < εi ≤ 1 we can conclude that εi ≥ ε for all i = 1, . . . , k. We can then
use the corresponding finiteness result for the Hi which we will show next. Since
the argument is no different from the one at the end of the proof of Theorem 4.3
we omit it here.

We thus have reduced the proof of the theorem to the case where n = pt is a
power of a prime. In this case we will make use of the corresponding result for
the ramification mean of boundary divisors given in Lemma 4.10. Namely, we
will show that the condition∑

α

ramH(Xα) ≥ ε ·#α

implies that ∑
α

ramH(vα) > r(ε) · (#vα) ,

where r is a function in ε which is independent of n and H (cf. Definition 4.2
for the definition of ramH(vα)). We then can conclude by Lemma 4.10 that Γ
belongs to some finite set of subgroups of Sp(2g,Z).

So let Γ < Sp(2g,Z) such that Γ(pt) < Γ for some prime p and some integer
t. For any set I of indices we define the ramification mean of I with respect to
H = Γ/Γ(pt) to be

rammeanH(I) :=
1

|I|
∑
α∈I

ramH(Xα) . (11)

Consider for any primitive vector v ∈ V = (Z/ptZ)
2g

the set Iv of indices α such
that v is an eigenvector of the involution ϕα for the eigenvalue −1, i.e.

Iv := {α ; ϕα · v = −v} . (12)

Note that all sets Iv contain the same number of indices α. Indeed, take any set
Iv and a primitive vector w ∈ V . Since the action of Sp(2g,Z/ptZ) on the set
of primitive vectors is transitive there exists a matrix M ∈ Sp(2g,Z/ptZ) such
that w = M · v. It is easy to check that given an involution ϕα with α ∈ Iv,
i.e. ϕα · v = −v, the involution MϕαM

−1 has w = M · v as an eigenvector and
its index is thus in Iw. This shows |Iv| ≤ |Iw|. Since v was arbitrary we have in
fact equality.

On the other hand, since all the matrices ϕα are conjugate, each ϕα has the same
number of eigenvectors, this means that each α belongs to the same number of
sets Iv. These two observations imply that

ε ≤ 1

#α

∑
α

ramH(Xα) =
1

#v

∑
v

1

#Iv

∑
α∈Iv

ramH(Xα)

=
1

#v

∑
v

rammeanH(Iv) .

(13)
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It now follows that there are at least (ε/2) · (#v) primitive vectors v ∈ V such
that the ramification mean of Iv is bigger than (ε/2). Indeed, assume this were
not the case. Then we would have∑

v

rammeanH(Iv) < (ε/2) · (#v) · 1 + ((#v)− (ε/2) · (#v)) · (ε/2)

= ε · (#v)− (ε2/4) · (#v) < ε · (#v)

which contradicts (13).

We will now estimate ramH(v) (cf. Definition 4.2) for any primitive vector v with
the property that rammeanH(Iv) > (ε/2). It will turn out that we have

ramH(v) > (ε/2)(2g−1)/2g−2)

if p > 2 and

ramH(v) >
1

8
(ε/2)(2g−1)/2g−2)

for p = 2. Since we are guaranteed to have at least (ε/2) · (#v) such primitive
vectors, we can then conclude that∑

v

ramH(v) > (ε/2)(2g−1)/2g−2) · (ε/2) · (#v) = (ε/2)(4g−3)/(2g−2) · (#v)

if p > 2 and

∑
v

ramH(v) >
1

8
(ε/2)(2g−1)/2g−2) · (ε/2) · (#v) =

1

8
(ε/2)(4g−3)/(2g−2) · (#v)

for p = 2. We can then apply Lemma 4.10 to finish the proof once we have shown
the estimate for ramH(v) which will be established by the following lemma. �

Lemma 5.17 Let Γ be a subgroup of Sp(2g,Z) such that Γ(pt) is contained in
Γ for some prime power pt. Let ε > 0 and v ∈ (Z/ptZ)2g be a primitive vector
with rammeanH(Iv) > ε, where H = Γ/Γ(pt) and rammeanH(Iv) is defined as in
(11). Then its ramification satisfies

ramH(v) >

 ε(2g−1)/(2g−2) if p > 2
1
8
ε(2g−1)/(2g−2) if p = 2

.

Proof. Since Sp(2g,Z/ptZ) acts transitively on the set of primitive vectors,
we can assume w.l.o.g. that v = eg, the g–th vector of the canonical basis of
V = (Z/ptZ)2g.

We will now determine explicitly all involutions ϕα with α ∈ Iv. Recall that by
Proposition 5.12 (i) the involutions ϕα are in one–to–one correspondence with
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certain pairs (W 1
α,W

2
α) of submodules of V . Moreover, by Remark 5.13 every

involution ϕα is uniquely determined by the choice of W 2
α alone.

Let α ∈ Iv and (W 1
α,W

2
α) be the corresponding pair of submodules. We will now

choose a basis {b1, . . . , b2g} of V such that

〈b1, . . . , bg−1, bg+1, . . . , b2g−1〉 = W 1
α, 〈bg, b2g〉 = W 2

α . (14)

Recall that by definition of Iv as given in (12) we have that ϕα · v = −v. Since
ϕα|W 1

α
≡ id|W 1

α
and ϕα|W 2

α
≡ −id|W 2

α
as we have seen in Proposition 5.12 (iii), we

thus can conclude that v ∈ W 2
α. Furthermore, since v is primitive, we can choose

the basis in (14) in such a way that

bg = v .

It then follows from Proposition 5.12 (ii) that the other basis vector b2g is given
by

b2g = (β1, . . . , βg−1, 0, βg+1, . . . , β2g−1, 1)

for some βi ∈ Z/ptZ.

Since W 1
α is uniquely determined by W 2

α as its orthogonal complement with
respect to the standard skew form on V , we can choose the following basis
{b1, . . . , bg−1, bg+1, . . . , b2g−1} for W 1

α:

bi =

ei − βg+i eg for i = 1, . . . , g − 1 ,

ei + βi−g eg for i = g + 1, . . . , 2g − 1 .

Using that ϕα maps bg and b2g to −bg and −b2g respectively and fixes all other bi,
a simple calculation tells us that ϕα is represented with respect to the canonical
basis {e1, . . . , e2g} of V by the following matrix:



1
0
...
0

0
−2β1

...
−2βg−1

−2βg+1 · · · − 2β2g−1 −1 2β1 . . . 2βg−1 0

0 1
−2βg+1

...
−2β2g−1

0 . . . 0 −1


We denote this matrix by ϕ(β1,...,βg−1,βg+1,...,β2g−1), or for short by ϕ(β1,...,β2g−1). Our
discussion shows that these are exactly the involutions ϕα with α ∈ Iv.
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Since rammeanH(Iv) > ε > 0 we have at least one of these involutions in H.
We may assume w.l.o.g. that this involution is ϕ0 = ϕ(0,...,0). Indeed, we can
replace H with a suitable conjugate in StabG(v) while respecting our previous
assumption on v.

For two involutions ϕ(β1
1 ,...,β

1
2g−1), ϕ(β2

1 ,...,β
2
2g−1) we compute

(
ϕ(β1

1 ,...,β
1
2g−1) · ϕ0 · ϕ(β2

1 ,...,β
2
2g−1)

)2
=


1 0

0
...
0

0 . . . 0 η

0 1

 ,

where

η := 8
(
β1

1β
2
g+1 + · · ·+ β1

g−1β
2
2g−1 − (β1

g+1β
2
1 + · · ·+ β1

2g−1β
2
g−1)

)
. (15)

Note that if both involutions ϕ(β1
1 ,...,β

1
2g−1) and ϕ(β2

1 ,...,β
2
2g−1) are contained in H,

then this gives us an element of RamH(v). To get an estimate for the order of
the subgroup generated by this element, and thus an estimate for ramH(v), we
will need to consider

gcd
(
β1

1β
2
g+1 + · · ·+ β1

g−1β
2
2g−1 − (β1

g+1β
2
1 + · · ·+ β1

2g−1β
2
g−1), p

t
)
. (16)

The rest of this proof will thus be dedicated to showing that the fact that
rammeanH(Iv) > ε implies, that we have so many different ϕ(β1,...,β2g−1) ∈ H,
such that we can find two of them for which the greatest common divisor as
given in (16) is sufficiently small, so we can conclude that ramH(v) is as big
as claimed. This will require some combinatorics and some number theoretic
computations for which we will mostly refer to Section B of the appendix.

We have rammeanH(Iv) > ε which means that we have more than ε(pt)2g−2

involutions ϕ(β1,...,β2g−1) in H. By Proposition B.2 there are at most ε(pt)2g−2

different (β1
1 , . . . , β

1
g−1, β

1
g+1, . . . , β

1
2g−1) ∈ (Z/ptZ)2g−2 with

gcd(β1
1 , . . . , β

1
g−1, β

1
g+1, . . . , β

1
2g−1, p

t) ≥ ε−1/(2g−2) .

This implies that we have at least one involution ϕ(β1
1 ,...,β

1
2g−1) ∈ H where the β1

i

satisfy
gcd(β1

1 , . . . , β
1
g−1, β

1
g+1, . . . , β

1
2g−1, p

t) < ε−1/(2g−2) , (17)

say this greatest common divisor is ps for some 0 ≤ s ≤ t.

We need to find (β2
1 , . . . , β

2
g−1, β

2
g+1, . . . , β

2
2g−1) ∈ (Z/ptZ)2g−2 such that the great-

est common divisor given in (16) is sufficiently small. Note that this quantity
can be rewritten as

ps · gcd
(
β̃1

1β
2
g+1 + · · ·+ β̃1

g−1β
2
2g−1 − (β̃1

g+1β
2
1 + · · ·+ β̃1

2g−1β
2
g−1), p

t−s
)
,
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where β̃1
i := β1

i /p
s. We now have that

gcd(β̃1
1 , . . . , β̃

1
g−1, β̃

1
g+1, . . . , β̃

1
2g−1, p

t−s) = 1

and can thus use Proposition B.3 to conclude that for any r > 0 there are at
most

((pt−s)2g−2/r) · (ps)2g−2 = (pt)2g−2/r

different (β2
1 , . . . , β

2
g−1, β

2
g+1, . . . , β

2
2g−1) ∈ (Z/ptZ)2g−2 with

gcd
(
β̃1

1β
2
g+1 + · · ·+ β̃1

g−1β
2
2g−1 − (β̃1

g+1β
2
1 + · · ·+ β̃1

2g−1β
2
g−1), p

t−s
)
≥ r .

So by setting r = 1/ε and comparing this with the number of involutions in H,
we can conclude that there is at least one tuple (β2

1 , . . . , β
2
g−1, β

2
g+1, . . . , β

2
2g−1) ∈

(Z/ptZ)2g−2 such that the corresponding involution ϕ(β2
1 ,...,β

2
2g−1) is inH and which

satisfies

gcd
(
β̃1

1β
2
g+1 + · · ·+ β̃1

g−1β
2
2g−1 − (β̃1

g+1β
2
1 + · · ·+ β̃1

2g−1β
2
g−1), p

t−s
)
< 1/ε . (18)

Putting the results of (17) and (18) together we obtain that

gcd
(
β1

1β
2
g+1 + · · ·+ β1

g−1β
2
2g−1 − (β1

g+1β
2
1 + · · ·+ β1

2g−1β
2
g−1), p

t
)
< ε−(2g−1)/(2g−2).

For p > 2 we then have for η as defined in (15) that

gcd(η, pt) < ε−(2g−1)/(2g−2) ,

which implies that the subgroup of RamG(v) generated by(
ϕ(β1

1 ,...,β
1
2g−1) · ϕ0 · ϕ(β2

1 ,...,β
2
2g−1)

)2
∈ H

has order at least ε(2g−1)/(2g−2) · pt, i.e. ramH(v) ≥ ε(2g−1)/(2g−2) as claimed.

In the case p = 2 we have to take the factor of 8 in η into account and thus obtain
ramH(v) ≥ (1/8)ε(2g−1)/(2g−2). �

Remark 5.18 Note that the proof of Theorem 5.16 could be used to give an
explicit bound on the index of Γ in Sp(2g,Z). But as in the case of the ramification
mean for boundary divisors this bound is far from being optimal, so we just give
the finiteness statement.

This main result will be used in Chapter 7 to conclude that subgroups Γ of suffi-
ciently large index in Sp(2g,Z) do not pose too many obstructions to extending
pluricanonical forms over the singularities in the interior of AΓ.



Chapter 6

Singularities in the boundary

In this chapter we will study elements in Sp(2g,Z/nZ) which fix boundary com-
ponents of AVor

g (n) pointwise. Since for our main result as stated in Theorem
2.14 we can ignore boundary components lying in β3, the locus of semi–abelian
varieties with torus rank ≥ 3, we will restrict our study to components of the
space of rank ≤ 2–degenerations (AVor

g (n))(2) (cf. Section 2.3 for the definitions

of β3 and (AVor
g (n))(2)).

In Chapter 4 we have already considered the case of boundary divisors and have
shown there that subgroups of Sp(2g,Z/nZ) which fix many boundary divisors
pointwise have small index in Sp(2g,Z/nZ) (cf. Theorem 4.3). In fact, we will use
this theorem here to get similar results for the components of higher codimension
in (AVor

g (n))(2), namely the intersections Di1 ∩Di2 of two boundary divisors and
the intersections Di1 ∩Di2 ∩Di3 of three boundary divisors of global type. These
results will play an important role in Chapter 7 when we consider the obstructions
coming from singularities in the boundary of AVor

3 (n). Since we will specialize
there to the case g = 3, we will give the results in this chapter only for this case,
although they can easily be generalized to arbitrary g.

6.1 Intersections of two boundary divisors

In this section we will consider intersections Di1 ∩Di2 of two boundary divisors
as described in Proposition 3.15.

Recall the correspondence between primitive ±vectors and boundary divisors
established in Corollary 3.11. Let D1 and D2 denote the divisors corresponding to
the primitive vectors ±e1 and ±e2, where {ek}k=1,...,6 denotes the canonical basis
of (Z/nZ)6. We now define the subgroup RamG(D1 ∩ D2) of G = Sp(6,Z/nZ)

97
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by

RamG(D1 ∩D2) := RamG(D1)⊕ RamG(D2)

=




1

b1 0

0 b2
0

0 0

0 1

 ; b1, b2 ∈ Z/nZ


,

where RamG(D1) := RamG(e1) and RamG(D2) := RamG(e2) are defined as in
Definition 4.1. We will see later in Chapter 7 that this is the group fixing the
general point on D1 ∩D2 if we add the transposition switching D1 and D2.

Definition 6.1 Let Di1 , Di2 be boundary divisors and M ∈ G = Sp(6,Z/nZ)
such that Di1 ∩Di2 = M · (D1 ∩D2). Then the ramification group of Di1 ∩Di2

with respect to G is defined by

RamG(Di1 ∩Di2) := RamG(M · (D1 ∩D2)) := M · RamG(D1 ∩D2) ·M−1 .

Remark 6.2 Note that this defines the ramification group for any non–trivial
intersection Di1 ∩ Di2 of two boundary divisors, since by Lemma 3.14 all such
intersections are equivalent to the standard intersection D1∩D2, i.e. there always
exists a matrix M ∈ G such that Di1 ∩Di2 = M · (D1 ∩D2).

To simplify notation we define

I2 :=
{
{i1, i2}; Di1 , Di2 intersect non-trivially

}
(1)

and write DI := Di1 ∩ Di2 for the intersection of two divisors Di1 , Di2 with
I = {i1, i2} ∈ I2 and RamG(DI) for their ramification group.

Since we will usually work with subgroups of G, we extend this notion to any
subgroup H by setting

RamH(DI) := H ∩ RamG(DI) (2)

for any I ∈ I2. Furthermore we define ramH(DI) to be the maximum order of
the elements in RamH(DI) divided by n, i.e.

ramH(DI) :=
1

n
max

M∈RamH(DI)
ord(M) . (3)

Note that since RamG(DI) ∼= (Z/nZ)2, we have that every element of RamH(DI)
has order dividing n. Hence ramH(DI) = (k/n) for some k ∈ {1, . . . , n}. In
particular ramG(DI) = 1 for all I ∈ I2.
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We will be not so much interested in the values of ramH(DI) for individual I ∈ I2,
but more in the mean for all I, and thus consider for each subgroup H of G

1

#I2
∑
I∈I2

ramH(DI) . (4)

Note that this mean can be associated to any subgroup Γ of Sp(6,Z) of finite
index. Indeed, every such subgroup contains a principal congruence subgroup
Γ(n) of some level n by Theorem 1.18 and we can consider the mean as defined
in (4) for the factor group H = Γ/Γ(n). Note also that this mean is independent
of the level n and thus does only depend on Γ.

We are now ready to formulate the main result of this section.

Theorem 6.3 For every ε > 0 there are only finitely many subgroups Γ <
Sp(6,Z) with the following properties:

(i) Γ has finite index in Sp(6,Z), which means that it contains a principal
congruence subgroup Γ(n) for some level n.

(ii)
1

#I2
∑
I∈I2

ramH(DI) > ε, where H denotes the factor group Γ/Γ(n).

Since we want to use the corresponding result for the ramification mean of bound-
ary divisors given in Theorem 4.3, we need to do some reduction steps before we
can give the proof of this theorem. For that we will need the following definition
which, as we will see, can be used to relate the ramification of an intersection
Di1 ∩ Di2 of two divisors to the ramifications of the individual divisors Di1 and
Di2 in the sense of Definition 4.2.

Definition 6.4 For any I = {i1, i2} ∈ I2 and k ∈ {1, 2} we define the group
RamH(DI ⊂ Dik) to be the image of

RamH(DI) ⊂ RamG(DI) ∼= RamG(Di1)⊕ RamG(Di2)

under the projection to RamG(Dik). We write ramH(DI ⊂ Dik) for the order of
this subgroup of RamG(Dik) divided by n, i.e.

ramH(DI ⊂ Dik) :=
1

n

∣∣∣RamH(DI ⊂ Dik)
∣∣∣ .

We can interpret the quantity ramH(DI ⊂ Dik) as follows:

Remark 6.5 If Di1 = D1, the standard divisor corresponding to the primitive
±vector e1, we have that ramH(DI ⊂ Di1) is the inverse of the minimum gcd(b, n)
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in the set of all b ∈ Z/nZ such that 1
b 0
0 0

0 1

 ·M ∈ H (5)

for some M ∈ RamG(Di2). To see this, it suffices to note that the order of the
first matrix in the above product is given by (n/ gcd(b, n)).

We will now investigate the relation between ramH(DI) and ramH(DI ⊂ Dik).
Clearly, we always have that

ramH(DI) ≥ ramH(DI ⊂ Dik)

for k ∈ {1, 2}. For general n this is all we can say. However, if n = pt is a prime
power, we can say more.

Proposition 6.6 Let n = pt for some prime p and some integer t. Then for any
subgroup H of G = Sp(6,Z/ptZ) the following equality holds

ramH(DI) = max
k∈{1,2}

{ramH(DI ⊂ Dik)} (6)

for all I = {i1, i2} ∈ I2.

Proof. Say ramH(DI) = 1/ps for some 0 ≤ s ≤ t. This means that there is
an element of order pt−s in RamH(DI). Since n = pt is a prime power we can
conclude that under the embedding

RamH(DI) ⊂ RamG(DI) ∼= RamG(Di1)⊕ RamG(Di2)

this element must have the same order pt−s in one of the two components,
i.e. ramH(DI ⊂ Dik) = 1/ps for k = 1 or k = 2.

�

With the help of this proposition we will now prove Theorem 6.3 in the case
where n = pt is a prime power.

Proposition 6.7 For every ε > 0 there are only finitely many subgroups Γ of
Sp(6,Z) containing Γ(pt) for some prime p and some integer t which satisfy∑

I∈I2

ramH(DI) ≥ ε ·#I2

for the factor group H = Γ/Γ(pt).
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Proof. Let Γ be any subgroup of Sp(6,Z) with the above properties. Since for
each prime power pt there are only finitely many groups Γ containing Γ(pt), we
might as well assume that pt > 2 and that pt > 16/ε.

For any boundary divisor Di1 we can consider the set of all divisors Di2 inter-
secting Di1 non–trivially. We define

I2(Di1) := {i2; Di2 intersects Di1 non-trivially} . (7)

The ramification mean of this divisor Di1 with respect to I2(Di1) is then given
by

rammeanH(Di1 , I2(Di1)) :=
1

#I2(Di1)

∑
i2∈I2(Di1

)

ramH(Di1 ∩Di2 ⊂ Di1) . (8)

As an immediate consequence of Proposition 6.6 we have that

ramH(DI) < ramH(DI ⊂ Di1) + ramH(DI ⊂ Di2) (9)

for all I = {i1, i2} ∈ I2. We can use this to obtain

ε ·#I2 ≤
∑
I∈I2

ramH(DI)

(9)
<

∑
I={i1,i2}∈I2

(
ramH(DI ⊂ Di1) + ramH(DI ⊂ Di2)

)
=
∑
i1

∑
i2

ramH(Di1 ∩Di2 ⊂ Di2)

=
∑
i1

(#I2(Di1)) · rammeanH(Di1 , I2(Di1)) .

Note that since all boundary divisors Di1 are equivalent under the action of
Sp(6,Z/ptZ), the number #I2(Di1) of divisors intersecting a given divisor Di1 is
the same for all divisors Di1 and does only depend on pt. We can thus divide the
above equation by #I2(Di1) and get that∑

i1

rammeanH(Di1 , I2(Di1)) > (ε/2) · (#Di1) . (10)

We are interested in divisors Di1 with sufficiently big ramification mean with
respect to I2(Di1). We can apply Proposition B.1 to conclude that at least

(ε/2)− (ε/4)

1− (ε/4)
· (#Di1) > (ε/4) · (#Di1)

of the divisors Di1 have rammeanH(Di1 , I2(Di1)) > (ε/4).
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We will show in the next lemma that all these divisors have ramH(Di1) >
1
3
(ε/8)7

in the sense of Chapter 4, so

∑
i1

ramH(Di1) ≥
1

3
(ε/8)7 · (ε/4) · (#Di1) =

2

3
(ε/8)8 · (#Di1) ,

i.e. H and thus Γ has ramification mean at least 2
3
(ε/8)8 (cf. Definition 4.2). The

claim then follows from Lemma 4.10. �

Lemma 6.8 Let Γ be a subgroup of Sp(6,Z) such that Γ(pt) is contained in
Γ for some prime power pt. Let ε > 0 and Di be a boundary divisor with
rammeanH(Di, I2(Di)) > ε, where H = Γ/Γ(pt) and rammeanH(Di, I2(Di)) is
defined as in (8). If pt > 4/ε, then the ramification of Di satisfies ramH(Di) >
1
3
(ε/2)7.

Proof. W.l.o.g. we can assume that the divisor Di is the standard divisor,
i.e. Di = D0 where D0 is the divisor corresponding to the primitive ±vector e3,
the third vector of the canonical basis of (Z/ptZ)6.

We will start by estimating how many divisors Di2 which intersect D0 non–
trivially and satisfy ramH(D0 ∩ Di2 ⊂ D0) > ε/2 we are guaranteed to have.
Since rammeanH(D0, I2(D0)) > ε we can apply Proposition B.1 to conclude that
we have at least

ε− (ε/2)

1− (ε/2)
· (#I2(D0)) > (ε/2) · (#I2(D0)) (11)

divisors Di2 with these properties where #I2(D0) denotes the total number of all
divisors intersecting D0 non–trivially as in (7).

Recall that we have a map π : AVor
3 (pt)→ ASat

3 (pt) from the Voronoi compactifi-
cation to the Satake compactification and that there is a stratification of ASat

3 (pt)
into several components as described in Section 2.3. The boundary divisors Di

are the closures of the preimages of the top–dimensional components Aj22 (pt) of
this stratification. We denote the top–dimensional component corresponding to
the standard divisor D0 by A0

2(p
t). Non–trivial intersections of divisors Di2 with

D0 then occur over the top–dimensional cusps of A0
2(p

t), i.e. those components
Aj11 (pt) of the stratification which are contained in A0

2(p
t). We know from Propo-

sition 3.12 (ii) that we have µ2(p
t) = 1

2
p4t(1− p−4) such cusps Aj11 (pt).

To determine the number of divisors Di2 intersecting D0 over a given cusp Aj11 (pt)
we can either use the geometric interpretation of D0 → A0

2(p
t) given in [Hul,

Chapter 3] or use the correspondence between the components Aj11 (pt) of the
stratification and pairs (W j1

1 ,±f
j1
1 ) established in Proposition 3.10 (i), where W j1

1

is a 2–dimensional isotropic submodule of (Z/ptZ)6 and f j11 is a non–degenerate
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alternating bilinear form on W j1
1 . We will use the correspondence here, since we

will need it later in the proof anyway.

The standard component A0
1(p

t) corresponds to the pair (W 0
1 ,±f 0

1 ) given by

W 0
1 := (0, ∗, ∗, 0, 0, 0) ⊂ (Z/ptZ)6, f 0

1 (e2, e3) = 1 (mod pt) .

Using that D0 corresponds to the primitive ±vector e3 it now follows from Propo-
sition 3.15 that the divisors Di2 intersecting D0 over A0

1(p
t) are exactly those

corresponding to the primitive vectors

±(0, 1, a, 0, 0, 0) ∈ (Z/ptZ)6, a ∈ Z/ptZ . (12)

Since all cusps Aj11 (pt) of A0
2(p

t) are equivalent, we can conclude that over each
cusp there are exactly pt divisors Di2 intersecting D0.

This means that we have

#I2(D0) = µ2(p
t) · pt =

1

2
p5t(1− p−4)

different divisors Di2 intersecting D0. Comparing this with the number of such
divisors with ramH(D0 ∩ Di2 ⊂ D0) > ε/2 computed in (11), we can conclude
that there must be at least one cusp Aj11 (pt) over which there are at least (ε/2) ·pt
intersections with D0 with this property. W.l.o.g. we can assume that this is the
standard cusp A0

1(p
t). Note that the fact that pt > 4/ε implies that we have at

least two such intersections over A0
1(p

t).

We can thus use the description of the divisors Di2 given in (12). By Remark 6.5
we have for each divisorDi2 corresponding to ±(0, 1, a, 0, 0, 0) for some a ∈ Z/ptZ
with the property that ramH(D0 ∩Di2 ⊂ D0) > ε/2, that there are b, c ∈ Z/ptZ
with gcd(b, pt) < 2/ε such that

1
0 0 0
0 b ab
0 ab a2b+ c

0 1

 ∈ H .

Moreover, by taking appropriate powers of this matrix if necessary, we can find
one such b0 = b ∈ Z/ptZ with gcd(b0, p

t) < 2/ε which works for all such a, i.e. all
such divisors Di2 . We will now choose a1 and a2 (resp. two divisors Di2) that
give us matrices of the above form in H for some c1, c2 ∈ Z/ptZ and additionally
satisfy gcd(a2 − a1, p

t) < 2/ε. The existence of such a1, a2 follows from an easy
number theoretic argument or from Proposition B.2 and the fact that we have at
least (ε/2) · pt divisors Di2 with the property that ramH(D0 ∩Di2 ⊂ D0) > ε/2.



104 CHAPTER 6. SINGULARITIES IN THE BOUNDARY

If we multiply one of these matrices with the inverse of the other, we obtain

ϕ0 :=


1

0 0 0
0 0 (a2 − a1)b0
0 (a2 − a1)b0 (a2

2 − a2
1)b0 + (c2 − c1)

0 1

 ∈ H .

Our goal is to find a different matrix in H such that when we multiply ϕ0 with
it, we obtain an element of RamH(D0). For that we have to consider a different
cusp Aj11 (pt). Note that for a divisor Di2 to intersect D0 over some cusp it has
to correspond to a primitive vector of the form (d, e, f, g, h, 0) with (d, e, g, h)
primitive in (Z/ptZ4). This is a consequence of Proposition 3.15. These are
#I2(D0) = 1

2
p5t(1 − p−4) primitive vectors and we know from our calculation

in (11) that at least (ε/2) · #I2(D0) of the corresponding divisors Di2 satisfy
ramH(D0∩Di2 ⊂ D0) > ε/2. A short calculation using Proposition B.2 now shows
that at least one of them additionally satisfies gcd(h, pt) < (2/ε) · (1 − p−4)−1.
By Remark 6.5 this implies that H contains a matrix of the form

ϕ1 := b0



dg dh 0 −d2 −de −df
eg eh 0 −de −e2 −ef
fg fh 0 −df −ef −f 2

g2 gh 0 −dg −eg −fg
gh h2 0 −dh −eh −fh
0 0 0 0 0 0


+


1

0 0 0
0 0 0
0 0 c̃

0 1



for some c̃ ∈ Z/ptZ and with gcd(h, pt) < (2/ε) · (1− p−4)−1. Here we used again
that the b from Remark 6.5 can be chosen in such a way that it coincides with
b0 by taking appropriate powers if necessary.

A calculation then gives that

ϕ1 ϕ0 ϕ
−1
1 ϕ−1

0 ϕ1 ϕ
−1
0 ϕ−1

1 ϕ0 =


1

0 0 0
0 0 0
0 0 2h2b30(a2 − a1)

2

0 1

 ∈ H , (13)

which is in fact an element of RamH(D0).

By our assumptions on the greatest common divisors of b0,a2− a1 and h with pt,
we can conclude that

gcd(2h2b30(a2 − a1)
2, pt) < 2 · (2/ε)7(1− p−4)−2 < 3 · (2/ε)7 .

Hence the matrix in (13) has order greater than 1
3
(ε/2)7 · pt which means that

ramH(D0) >
1
3
(ε/2)7 as claimed. �

Theorem 6.3 now follows from a reduction argument and the above proposition.
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Theorem 6.3 For every ε > 0 there are only finitely many subgroups Γ <
Sp(6,Z) with the following properties:

(i) Γ has finite index in Sp(6,Z), which means that it contains a principal
congruence subgroup Γ(n) for some level n.

(ii)
1

#I2
∑
I∈I2

ramH(DI) > ε, where H denotes the factor group Γ/Γ(n).

Proof. The proof can be reduced to the case n = pt which has been taken care
of in Proposition 6.7. The reduction argument is completely analogous to the
one given in the proof of Theorem 4.3 with RamH(D) = RamH(v) replaced by
RamH(Di1 ∩Di2), so we omit it here. �

We will use this result in Chapter 7 to conclude that subgroups Γ of Sp(6,Z)
of sufficiently big index do not pose too many obstructions to extending pluri-
canonical forms over the singularities at points lying on the intersection of two
boundary divisors.

6.2 Intersections of three boundary divisors of

global type

We will now turn our attention in this section to intersections Di1 ∩Di2 ∩Di3 of
three boundary divisors of global type.

As in the previous section we use the correspondence between primitive ±vectors
and boundary divisors to define ramification groups for the intersections of three
boundary divisors of global type. As before, let D1 and D2 denote the divisors
corresponding to the vectors ±e1 and ±e2 respectively. Furthermore, we denote
the divisor corresponding to ±(e1 + e2) by D12. The subgroup RamG(D1 ∩D2 ∩
D12) of G = Sp(6,Z/nZ) is then defined by

RamG(D1 ∩D2 ∩D12) := RamG(D1)⊕ RamG(D2)⊕ RamG(D12)

=




1

b1 b3

b3 b2
0

0 0

0 1

 ; b1, b2, b3 ∈ Z/nZ


.

It will turn out that this is in fact the stabilizer of the general point on the
intersection D1 ∩ D2 ∩ D12 in G if we add the group permuting these three
divisors which is isomorphic to S3.
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Definition 6.9 Let Di1 , Di2 , Di3 be boundary divisors and let
M ∈ G = Sp(6,Z/nZ) such that Di1 ∩Di2 ∩Di3 = M · (D1 ∩D2 ∩D12). Then
the ramification group of Di1 ∩Di2 ∩Di3 with respect to G is defined by

RamG(Di1 ∩Di2 ∩Di3) := RamG(M · (D1 ∩D2 ∩D12))

:=M · RamG(D1 ∩D2 ∩D12) ·M−1 .

Unlike in the case of the intersection of two boundary divisors, not all intersections
of three boundary divisors are equivalent. In fact, there are two disjoint orbits as
we have seen in Lemma 3.16, containing intersections of global and of local type
respectively. However, since we are in this section only interested in intersections
of global type, we can still proceed as in the previous section. We thus have
that all intersections of global type are equivalent to the standard intersection
D1 ∩D2 ∩D12. Hence the above definition defines the ramification groups for all
intersections of global type.

In analogy to the set I2, we define

I glob
3 :=

{
{i1, i2, i3}; Di1 , Di2 , Di3 intersect of global type

}
(14)

and write DI := Di1∩Di2∩Di3 for the intersection given by I = {i1, i2, i3} ∈ I glob
3

and RamG(DI) for its ramification group.

For any subgroup H of G and any I ∈ I glob
3 we set

RamH(DI) := H ∩ RamG(DI)

and write ramH(DI) for the maximum order of the elements in RamH(DI) divided
by n, i.e.

ramH(DI) :=
1

n
max

M∈RamH(DI)
ord(M) .

Our aim in this section is to describe the singularities occurring at the image of the
general point of each intersection DI when we take the quotient by RamH(DI).
For eachDI and each general point P ∈ DI there is a natural choice of coordinates
(x1, . . . , x6) in a neighborhood of P with the following two properties:

(i) DI is locally given by {x1 = x2 = x3 = 0},

(ii) RamH(DI) ⊂ RamG(DI) = RamG(Di1) ⊕ RamG(Di2) ⊕ RamG(Di3)
∼=

(Z/nZ)3 acts on this neighborhood by

(ξ1, ξ2, ξ3) · (x1, . . . , x6) = (e2πiξ1/n x1, e
2πiξ2/n x2, e

2πiξ3/n x3, x4, x5, x6)

for each (ξ1, ξ2, ξ3) ∈ RamH(DI) ⊂ RamG(DI) ∼= (Z/nZ)3.
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One way to describe the singularity at the image of the point P is to determine
the RamH(DI)–invariant monomials xk11 · . . . ·xk66 . While it is clear that with this
choice of coordinates the monomials x4, x5 and x6 are invariant, the invariance
of monomials involving powers of x1, x2 or x3 depends on the group RamH(DI)
and thus on H. We will therefore only consider monomials in the first three
coordinates. Instead of calculating all these monomials we will look at their
orders and define

δ(H,DI) := δ(H,P ) :=
1

n
min

(k1,k2,k3) 6=0
(k1 + k2 + k3) , (15)

where the minimum is taken over all non–trivial RamH(DI)–invariant monomials
xk11 x

k2
2 x

k3
3 . Note carefully that δ(H,P ) does not depend on the point P or the

coordinates chosen, but only on RamH(DI). It thus makes sense to denote the δ
for the general point of DI by δ(H,DI).

Although δ(H,DI) does not describe the invariant ring precisely, it nevertheless
gives a good measure on how big this ring is. If δ(H,DI) is small, there tend to
be quite a few invariant monomials and the resulting singularity at the image of
P is usually well–behaved. On the other hand if δ(H,DI) is big, we have only a
couple of invariant monomials and tend to get bad singularities.

As in the previous section, where we considered the ramification mean, we will
now consider the mean of all δ(H,DI) over all intersections DI and show that
if the index of H in G is sufficiently big, this mean can be bounded from above
and consequently there are not too many bad singularities. More precisely, we
will show the following theorem:

Theorem 6.10 For every ε > 0 there are only finitely many subgroups Γ <
Sp(6,Z) with the following properties:

(i) Γ has finite index in Sp(6,Z), which means that it contains a principal
congruence subgroup Γ(n) for some level n.

(ii)
1

#I glob
3

∑
I∈I glob

3

δ(H,DI) ≥ ε, where H denotes the factor group Γ/Γ(n).

Before we start proving this theorem, we relate the situation to the g = 2–case.
Locally, each intersection DI = Di1 ∩Di2 ∩Di3 for I ∈ I glob

3 is isomorphic to the
product of a point Pαβγ with C3. This point Pαβγ is one of the deepest points in
AVor

2 (n), i.e. one of the points at the intersection of three boundary divisors Dα,
Dβ, Dγ in AVor

2 (n). To see this, one has to look at the toroidal compactification.
Recall that bothDI and Pαβγ are given as the quotient of a toric variety TΣDI

resp.
TΣαβγ

by some finite group. We know from Chapter 3 that these intersections
both lie over components of the Satake compactification which correspond to
2–dimensional isotropic submodules of (Z/nZ)6 resp. (Z/nZ)4 equipped with
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some alternating bilinear form (cf. Proposition 3.10 (i)). In the sense of toroidal
compactifications this means that in both cases the toric varieties TΣDI

resp.
TΣαβγ

are constructed by giving a decomposition of a three–dimensional cone. It
is now easy to check by looking at the standard components that these two cones
are essentially the same; the one corresponding to TΣDI

is just the embedding
of the other one into a 6–dimensional space. Hence the same is true for the
decompositions and we have that TΣDI

∼= TΣαβγ
× C3. Since the action of the

finite group is the same on the three torus coordinates, this isomorphism extends
to the quotients and we get the desired isomorphism as claimed. We summarize
our discussion in the following proposition:

Proposition 6.11 For each I ∈ I glob
3 the intersection DI = Di1 ∩ Di2 ∩ Di3 is

locally isomorphic to a product of a deepest point Pαβγ in AVor
2 (n) with C3.

If we consider a general point on DI this proposition allows us to make use of the
results of Borisov for the g = 2–case (cf. [Bor, Section 3]). We start by proving
Theorem 6.10 in the case where n = pt is a prime power. This is essentially an
easy consequence of the corresponding result for points Pαβγ.

Proposition 6.12 For every ε > 0 there are only finitely many subgroups Γ of
Sp(6,Z) containing Γ(pt) for some prime p and some integer t which satisfy∑

I∈I glob
3

δ(H,DI) ≥ ε ·#I glob
3

for the factor group H = Γ/Γ(pt).

Proof. Recall the correspondence between boundary divisors Di in AVor
3 (pt)

and primitive ±vectors vi in (Z/ptZ)6 described in Corollary 3.11. Given any
intersectionDI = Di1∩Di2∩Di3 of three boundary divisors which is of global type,
there is by Proposition 3.17 (i) a unique 2–dimensional isotropic submodule W j1

1

in (Z/ptZ)6 containing the three corresponding primitive ±vectors vi1 , vi2 , vi3 .
For simplicity, we will say in this case that the intersection is contained in W j1

1 .
Conversely, every such submodule contains an intersection of global type in that
sense and the number of these intersections contained is the same for every such
submodule by Lemma 3.16 (this number is given by (1/12)p4t(1− p−2)(1− p−1)
as can be easily calculated by combining the formulas in Lemma 3.24 (iii) (a) and
Lemma 3.10 (ii)). We write I glob

3 (W j1
1 ) for the subset of I glob

3 of the intersections
contained in W j1

1 , i.e.

I glob
3 (W j1

1 ) :=
{
{i1, i2, i3} ∈ I glob

3 ; vi1 , vi2 , vi3 ∈ W
j1
1

}
.

By our above observations the set W1 of all 2–dimensional isotropic submodules
defines a partition {I glob

3 (W j1
1 ); W j1

1 ∈ W1} of I glob
3 . Hence∑

W
j1
1 ∈W1

∑
I∈I glob

3 (W
j1
1 )

δ(H,DI) =
∑

I∈I glob
3

δ(H,DI) ≥ ε ·#I glob
3 . (16)
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Note that the cardinality #I glob
3 (W j1

1 ) = (1/12)p4t(1− p−2)(1− p−1) is the same
for each W j1

1 ∈ W1. We thus have

#I3 = #W1 ·#I glob
3 (W j1

1 ) ,

which implies that the inequality in (16) can be rewritten as follows:

∑
W

j1
1 ∈W1

1

#I glob
3 (W j1

1 )

∑
I∈I glob

3 (W
j1
1 )

δ(H,DI) ≥ ε ·#W1 . (17)

Since 1/pt ≤ δ(H,DI) ≤ 1, we can conclude from this inequality by Proposi-
tion B.1 that there are at least (ε/2) ·#W1 submodules W j1

1 ∈ W1 which satisfy∑
I∈I glob

3 (W
j1
1 )

δ(H,DI) ≥ (ε/2) ·#I glob
3 (W j1

1 ) . (18)

Recall from (1) that I2 contains all those sets {i1, i2} such that the intersection
Di1∩Di2 of the corresponding divisors is non–trivial. In analogy to the definition
of the subset I glob

3 (W j1
1 ) of I glob

3 , we define the following subset of I2:

I2(W j1
1 ) :=

{
{i1, i2} ∈ I2; vi1 , vi2 ∈ W

j1
1

}
We will now show that each of the submodules W j1

1 satisfying (18) satisfies also∑
I∈I2(W

j1
1 )

ramH(DI) ≥ 2−52ε16 ·#I2(W j1
1 ) (19)

and then use Proposition 6.7.

Since allW j1
1 are equivalent under the action of Sp(6,Z/ptZ) it suffices to consider

the submodule W 0
1 given by

W 0
1 := (0, ∗, ∗, 0, 0, 0) ⊂ (Z/ptZ)6 .

This is naturally isomorphic to the 2–dimensional isotropic submodule V2 of
(Z/ptZ)4 given by

V2 := (∗, ∗, 0, 0) ⊂ (Z/ptZ)4 .

For every I = {i1, i2, i3} ∈ I glob
3 (W 0

1 ) the primitive vectors vi1 , vi2 , vi3 ∈ W 0
1 are

mapped under this isomorphism to primitive vectors vα, vβ, vγ ∈ V2. Moreover,
these primitive vectors correspond by [Bor, Proposition 2.5] to three boundary
divisors Dα, Dβ, Dγ in AVor

2 (pt) which intersect in a point Pαβγ. This point Pαβγ
is exactly that point which corresponds to the intersection DI ⊂ AVor

3 (pt) in the
sense of Proposition 6.11.

In the beginning of the proof of [Bor, Proposition 3.21] Borisov defines a number
δ(H,Pαβγ) which motivated the definition of δ in (15). This δ only depends on the
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action of the ramification group of Pαβγ in a neighborhood of Pαβγ. Note that by
Definition 4.1 the isomorphism W 0

1
∼= V2 induces an isomorphism RamG(DI) ∼=

Ram
G̃
(Pαβγ) which respects the actions on DI resp. Pαβγ, where Ram

G̃
(Pαβγ)

denotes the ramification group of Pαβγ in G̃ := Sp(4,Z/ptZ) in the sense of [Bor,
Definition 3.19]. Under this isomorphism RamH(DI) < RamG(DI) is identified
with a subgroup K of Ram

G̃
(Pαβγ) which can be considered as a ramification

group Ram
H̃

(Pαβγ) of Pαβγ with respect to a suitable subgroup H̃ of G̃ (one

natural choice for H̃ is the subgroup K itself). Note that the groups RamH(DI)
and K = Ram

H̃
(Pαβγ) do not depend on I as long as I ∈ I glob

3 (W 0
1 ) (although

the action of these groups does depend on DI resp. Pαβγ). Therefore we can

choose the same group H̃ for all I ∈ I glob
3 (W 0

1 ) and have that

δ2(H̃, Pαβγ) = δ(H,DI) , (20)

where we wrote δ2 for the δ defined in Borisov’s paper to have a clear distinction.
This implies that∑

vα,vβ ,vγ∈V2

δ2(H̃, Pαβγ)
(20)
=

∑
I∈I glob

3 (W 0
1 )

δ(H,DI)

(18)

≥ (ε/2) ·#I glob
3 (W 0

1 ) = (ε/2) ·#(vα, vβ, vγ ∈ V2) .

It now follows from the proof of [Bor, Proposition 3.21] that∑
vα,vβ∈V2

ram
H̃

(lαβ) ≥ ε1 ·#(vα, vβ ∈ V2) , (21)

where ram
H̃

(lαβ) is the analogue of ramH(Di1∩Di2) for the g = 2–case in Borisov’s
notation and ε1 ≥ 2−52ε16 (there is an obvious misprint in Borisov’s paper).

As before we can now use the isomorphism V2
∼= W 0

1 to conclude that

ram
H̃

(lαβ) = ramH(Di1 ∩Di2) (22)

for each I = {i1, i2} ∈ I2(W j1
1 ). Hence∑

I∈I2(W 0
1 )

ramH(DI)
(22)
=

∑
vα,vβ∈V2

ram
H̃

(lαβ)

(21)

≥ ε1 ·#(vα, vβ ∈ V2) ≥ 2−52ε16 ·#I2(W 0
1 )

as claimed in (19).

By our considerations at the beginning of this proof we are guaranteed to have
at least (ε/2) · #W1 submodules W j1

1 ∈ W1 with this property. Since the sets{
I2(W j1

1

}
define a partition of I2 we can take the sum and obtain that

∑
I∈I2

ramH(DI) =
∑
W

j1
1

∑
I∈I2(W

j1
1 )

ramH(DI)
(19)

≥ 2−53ε17 ·#I2 (23)
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where we used that #I2(W j1
1 ) is the same for each isotropic submoduleW j1

1 which
implies that we have the identity

#I2 = #W1 ·#I2(W j1
1 ) .

The result now follows from Proposition 6.7. �

The proof of Theorem 6.10 now follows by the usual reduction arguments.

Theorem 6.10 For every ε > 0 there are only finitely many subgroups Γ <
Sp(6,Z) with the following properties:

(i) Γ has finite index in Sp(6,Z), which means that it contains a principal
congruence subgroup Γ(n) for some level n.

(ii)
1

#I glob
3

∑
I∈I glob

3

δ(H,DI) ≥ ε, where H denotes the factor group Γ/Γ(n).

Proof. This proof is a slight variation of the one given for Theorem 4.3. We will
reduce the claim to the case where n = pt is a prime power which has been taken
care of in Proposition 6.12. We decompose n into distinct prime powers, say

n = pt11 · . . . p
tk
k , (pi, pj) = 1 for i 6= j ,

This gives us the following factorization of Sp(6,Z/nZ):

Sp(6,Z/nZ) ∼= Sp(6,Z/pt11 Z)× · · · × Sp(6,Z/ptkk Z)

Exactly as in the proof of Theorem 4.3, we obtain a description of RamH(Dj) =
RamH(vj) as

RamH(vj) ∼= RamH1(vj1)× · · · × RamHk
(vjk) ,

where the Hi are certain projections of H and each vji is a primitive vector in
(Z/ptii Z)6. This induces a decomposition on

RamH(DI) = RamH(Di1)⊕ RamH(Di2)⊕ RamH(Di3)

∼= RamH1(D
j1
I )× · · · × RamHk

(Djk
I )

for each I = {i1, i2, i3} ∈ I glob
3 , which in particular allows us to regard RamH(DI)

as a subgroup of (Z/pt11 Z× · · · ×Z/ptkk Z)3. Under this decomposition the action
of RamH(DI) in a neighborhood of a general point P ∈ DI is given by(
(ξ1

1 , . . . , ξ
k
1 ), (ξ1

2 , . . . , ξ
k
2 ), (ξ1

3 , . . . , ξ
k
3 )
)
· (x1, . . . , x6)

= (e2πi(ξ
1
1/p

t1
1 +...+ξk

1/p
tk
k

) x1, e
2πi(ξ12/p

t1
1 +...+ξk

2/p
tk
k

) x2, e
2πi(ξ13/p

t1
1 +...+ξk

3/p
tk
k

) x3, x4, x5, x6)
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for each
(
(ξ1

1 , . . . , ξ
k
1 ), (ξ1

2 , . . . , ξ
k
2 ), (ξ1

3 , . . . , ξ
k
3 )
)
∈ RamH(DI). Note that a mono-

mial is H–invariant with respect to this action if and only if it is Hi–invariant
since all the orders of RamHi

(DI) are coprime.

We can now compare δ(H,DI) with δ(Hi, D
ji
I ) and claim that

δ(H,DI) ≤ δ(Hi, D
ji
I )

for each i = 1, . . . , k. Indeed, say xl11 x
l2
2 x

l3
3 is a non–zero Hi–invariant monomial

with

δ(Hi, D
ji
I ) =

1

ptii
(l1 + l2 + l3) .

If we consider the (n/ptii )–th power of this monomial we obtain a monomial which

is not only still Hi–invariant, but also Hj–invariant for all j 6= i since x
l1·(n/p

ti
i )

1

is a power of x
(p

tj
j )

1 and likewise for x2 and x3. By our observation it is thus also
H–invariant and we can estimate

δ(H,DI) ≤
1

n
·
(
n

ptii
· (l1 + l2 + l3)

)
=

1

ptii
· (l1 + l2 + l3) = δ(Hi, D

ji
I )

as claimed.

Hence we have as a necessary condition that δ(Hi, D
ji
I ) ≥ ε for all i = 1, . . . , k in

order to have δ(H,DI) ≥ ε. Since for each ε > 0 there are only finitely many Hi

with this property by Proposition 6.12 we can conclude by the same arguments
as in the proof of Theorem 4.3 that the same is true for H and we are done. �

In Chapter 7 we will use this result to control the obstructions to extending
pluricanonical forms over the point lying at the intersection of three boundary
divisors of global type.



Chapter 7

Putting it all together

In this chapter we will assemble all the parts from the previous chapters to finally
prove the main result of this thesis:

Theorem 7.14 There are only finitely many subgroups Γ of Sp(6,Z) of finite

index such that the space of pluricanonical sections on
(
ÃVor

Γ

)(2)
does not grow

maximally.

Throughout this chapter we will restrict to the case g = 3 and Γ will thus be
a subgroup of Sp(6,Z) of finite index. By Theorem 1.18 it contains a principal
congruence subgroup Γ(n) of some level n. Note that with respect to the main
result as stated above we can always assume that n is sufficiently big, since
for each integer n there are only finitely many subgroups Γ which contain the
principal congruence subgroup Γ(n).

We will give conditions which ensure that the space of pluricanonical sections on

the moduli space defined by Γ (or more precisely on the open part
(
ÃVor

Γ

)(2)
away

from β̃3 of a smooth projective model) grows maximally and will eventually show
that these conditions are violated by only a finite number of subgroups Γ.

In the first two sections we will reduce the problem in several steps to some
calculation of obstructions on the Voronoi compactification AVor

3 (n) of the moduli
space given by Γ(n), the moduli space of principally polarized abelian threefolds
with a level n–structure. These obstructions will be calculated in Section 7.3 and
will be used to complete the proof of the main result in the last section.

113
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7.1 A first reduction

Recall from Chapter 2 that for each subgroup Γ of Sp(6,Z) of finite index the
corresponding moduli space AΓ := H3/Γ can be described as the quotient of
the moduli space A3(n) := H3/Γ(n) by the action of the finite group H :=
Γ/Γ(n) which we can consider as a subgroup of G := Sp(6,Z/nZ). We have
seen in Section 2.4 that the Voronoi compactification AVor

3 (n) of A3(n) induces a
compactification of AΓ via the action of H which we denoted by AVor

Γ .

Unlike AVor
3 (n), this variety is in general singular and thus needs to be desin-

gularized to obtain a smooth projective model. Let π̃Γ : ÃVor
Γ → AVor

Γ be such
a desingularization of AVor

Γ . We write −1 + δ for its minimum discrepancy in
the sense of Definition 1.61. Note that as the quotient of a smooth projective
variety AVor

3 (n) by a finite group H the variety AVor
Γ has at most log–terminal

singularities which implies that δ is a positive rational number (cf. Proposition
1.63).

With respect to the main theorem we are interested in the space of pluricanoni-
cal sections on an open subvariety of this desingularization. For that, recall from
Section 2.3 the definitions of β3 ⊂ AVor

3 (n), the locus of semi–abelian varieties

with torus rank ≥ 3, and the space of rank ≤ 2–degenerations
(
AVor

3 (n)
)(2)

=

AVor
3 (n) \ β3. By abuse of notation we denoted the image of β3 under the quo-

tient map p : AVor
3 (n) → AVor

Γ by the same letter and wrote
(
AVor

Γ

)(2)
for its

complement in AVor
Γ . This description can be extended to ÃVor

Γ , if we define β̃3

as the preimage of β3 under the desingularization π̃Γ : ÃVor
Γ → AVor

Γ and set(
ÃVor

Γ

)(2)
:= ÃVor

Γ \ β̃3 (cf. also Section 2.5).

For brevity we will from now on write X(n) for AVor
3 (n) and X for AVor

Γ whenever
the group Γ resp. Γ(n) is clear. Likewise, we denote the desingularization π̃Γ of
X by π̃ : X̃ → X. The open subvarieties we just defined are then represented by
X(n)(2), X(2) and X̃(2) respectively.

We denote the canonical sheaves on X(2) and X̃(2) by ωX(2) resp. ω
X̃(2) (cf. Def-

inition 1.60 for the notion of a canonical sheaf on a normal variety). To obtain
pluricanonical sections on X̃(2), we want to have global sections in the pluricanon-
ical sheaf ω⊗m

X(2) which vanish of order at least m(1 − δ) at each non–canonical

singularity of X(2), i.e. which lie in m
m(1−δ)
X(2),x

(
ω⊗m
X(2)

)
x

for every non–canonical sin-

gularity x ∈ X(2). In other words, we are interested in sections in

H0(X(2), ω⊗m
X(2) ⊗ Jm(1−δ)

X
(2)
nc

) ,

where X(2)
nc denotes the locus of non–canonical singularities in X(2) and J

X
(2)
nc

its ideal sheaf. Here and from now on, we will assume that m is sufficiently
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big and sufficiently divisible whenever necessary. We can do this, since for the
main theorem we only need to consider the space of m–canonical sections as m
tends to infinity. At this point we also refer the reader to the preface in which
we introduced various symbols and notations which will be used subsequently to
describe the growth of certain dimensions with respect to m.

We start by pulling the problem from X̃(2) to X(2).

Proposition 7.1 We have

dimH0(X̃(2), ω⊗m
X̃(2)

) ≥ dimH0(X(2), ω⊗m
X(2) ⊗ Jm(1−δ)

X
(2)
nc

) .

Proof. It suffices to note that the pullback π̃∗s of a section s ∈ H0(X(2), ω⊗m
X(2) ⊗

Jm(1−δ)
X

(2)
nc

) vanishes outside π̃−1β3 of order at least m(1− δ) at exceptional divisors

with negative discrepancies. Hence π̃∗s is in fact a global section in the pluri-
canonical sheaf ω⊗m

X̃(2)
if we restrict it to the dense open subset X̃(2) ⊂ X̃. This

defines an injective linear map from H0(X(2), ω⊗m
X(2) ⊗Jm(1−δ)

X
(2)
nc

) to H0(X̃(2), ω⊗m
X̃(2)

)

which proves the claim. �

The global sections in the pluricanonical sheaf ω⊗m
X(2) have to vanish of order at

least m(1 − δ) at each non–canonical singularity of X(2)
nc , in particular at those

non–canonical singularities which lie at the image of the intersection of three
boundary divisors in X(n) under the quotient map p : X(n) → X. As we
already remarked in Section 6.2 these singularities are closely related to the ones
occurring at the deepest points in the g = 2–case. To estimate their obstructions
we will thus be able to reduce the calculations to the corresponding result for
g = 2 which has been shown by Borisov in [Bor, Proposition 5.6].

To carry out this reduction, we first have to introduce some notations. We
define X(2◦) as the open subset of X(2) obtained by taking out the images of the
intersections of three boundary divisors of global type, i.e.

X(2◦) := X(2) \ {p(DI) ; I ∈ I glob
3 } , (1)

where DI and I glob
3 are given as in Section 6.2. Then X(2◦)

nc := X(2)
nc ∩X(2◦) can

be interpreted as the locus of non–canonical singularities in X(2) which do not
lie at the image of the intersection of three boundary divisors in X(n). Note
that although X(2◦)

nc is an open subset of X(2), it is closed in X(2◦), so it makes
sense to talk about its ideal sheaf J

X
(2◦)
nc

in X(2◦). Via the natural inclusion

ι : X(2◦) → X(2), we can push this sheaf to X(2). We can then interpret

dimH0
(
X(2), ω⊗m

X(2) ⊗ ι∗Jm(1−δ)
X

(2◦)
nc

)
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as the space of global sections in the pluricanonical sheaf ω⊗m
X(2) which vanish of

order at least m(1 − δ) at each non–canonical singularity in X(2◦)
nc , i.e. which lie

in m
m(1−δ)
X(2),x

(
ω⊗m
X(2)

)
x

for every x ∈ X(2◦)
nc .

Proposition 7.2 Given ε > 0, for all but finitely many subgroups Γ of Sp(6,Z)
of finite index, the obstructions coming from singularities in X(2) which lie at the
image of the intersection of three boundary divisors in X(n) grow no faster than
εm6 |G : H|, i.e.

dimH0
(
X(2), ω⊗m

X(2) ⊗ ι∗Jm(1−δ)
X

(2◦)
nc

)
− dimH0

(
X(2), ω⊗m

X(2) ⊗Jm(1−δ)
X

(2)
nc

)
� εm6 |G : H|

as m→∞.

Proof. We start by relating the obstructions to the ones in the g = 2–case,
so we can make use of Borisov’s results. The claim then will follow from our
calculations in Section 6.2, in particular from Theorem 6.10.

Recall that we have a finite number of intersections DI , I ∈ I glob
3 , of three

boundary divisors in X(n). We want to consider the obstructions coming from
the singularities at the image of these intersections under the map p : X(n)→ X
separately for each DI . For that, we make the following rather weak estimate:

dimH0
(
X(2), ω⊗m

X(2) ⊗ ι∗Jm(1−δ)
X

(2◦)
nc

)
− dimH0

(
X(2), ω⊗m

X(2) ⊗ Jm(1−δ)
X

(2)
nc

)
≤

∑
p(DI)

[
dimH0

(
X(2), ω⊗m

X(2) ⊗ ι∗Jm(1−δ)
X

(2◦)
nc

)
− dimH0

(
X(2), ω⊗m

X(2) ⊗ ι∗Jm(1−δ)
X

(2◦)
nc

⊗ Jm(1−δ)
p(DI)

)]
, (2)

where the sum is taken in such a way that we have exactly one image p(DI) for
each orbit of the DI , I ∈ I glob

3 , in H.

For each p(DI) we have the exact sequence

0→ ω⊗m
X(2)⊗ ι∗Jm(1−δ)

X
(2◦)
nc

⊗ Jm(1−δ)
p(DI) ↪→ ω⊗m

X(2) ⊗ ι∗Jm(1−δ)
X

(2◦)
nc

�
(
ω⊗m
X(2) ⊗ ι∗Jm(1−δ)

X
(2◦)
nc

)/(
ω⊗m
X(2) ⊗ ι∗Jm(1−δ)

X
(2◦)
nc

⊗ Jm(1−δ)
p(DI)

)
→ 0 .

As a consequence we can estimate each summand in (2) as follows:

dimH0
(
X(2), ω⊗m

X(2) ⊗ ι∗Jm(1−δ)
X

(2◦)
nc

)
− dimH0

(
X(2), ω⊗m

X(2) ⊗ ι∗Jm(1−δ)
X

(2◦)
nc

⊗ Jm(1−δ)
p(DI)

)
≤ dimH0

(
X(2),

(
ω⊗m
X(2) ⊗ ι∗Jm(1−δ)

X
(2◦)
nc

)/(
ω⊗m
X(2) ⊗ ι∗Jm(1−δ)

X
(2◦)
nc

⊗ Jm(1−δ)
p(DI)

))
. (3)

Note that the support of this quotient sheaf lies on p(DI) which means that we
can consider this problem in a neighborhood of p(DI).
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Recall from Proposition 6.11 that on X(n) = AVor
3 (n) the intersection of three

boundary divisors DI is locally isomorphic to a product of a deepest point Pαβγ in
AVor

2 (n) with C3. This description can be extended to p(DI) ⊂ X = AVor
3 (n)/H

as follows: p(DI) is locally given as the quotient of DI by some subgroup of
H, essentially by RamH(DI). As in the proof of Proposition 6.12 we can find a
subgroup H̃ of G̃ = Sp(4,Z/nZ) such that the induced action on Pαβγ is given
by Ram

H̃
(Pαβγ) ∼= RamH(DI). If we denote the quotient map on AVor

2 (n) given

by H̃ by p̃, we have the following diagram:

X ⊃ p(DI) ∼= p̃(Pαβγ)× C3 ←↩ p̃(Pαβγ) ⊂ AVor
2 (n)/H̃

X(n) ⊃ DI
∼= Pαβγ × C3 ←↩ Pαβγ ⊂ AVor

2 (n)
.......................................................................................
...
.........
...

p

.......................................................................................
...
.........
...

p̃

Thus p(DI) is locally isomorphic to the product of the image of Pαβγ with C3.
Moreover, the singularities on p(DI)∩X(2) are all just copies of the singularity at
p̃(Pαβγ) and their obstructions can be estimated using Borisov’s calculation for
this singularity given in [Bor, Proposition 5.6]. This gives us that

dimH0
(
X(2), ω⊗m

X(2) ⊗ ι∗Jm(1−δ)
X

(2◦)
nc

)
− dimH0

(
X(2), ω⊗m

X(2) ⊗ ι∗Jm(1−δ)
X

(2◦)
nc

⊗ Jm(1−δ)
p(DI)

)
≤multp̃(Pαβγ)

m6

6
(4)

for all sufficiently big m, where p̃(Pαβγ) is the point corresponding to the singu-
larities of p(DI) ∩ X(2) as above and multp̃(Pαβγ) is the multiplicity of the local

ring of AVor
2 (n)/H̃ at p̃(Pαβγ).

To be able to use Theorem 6.10 to finish the proof, we have to relate this mul-
tiplicity to δ(H,DI) as defined in (15) in Section 6.2. For that, consider the
singularity at the image of Pαβγ in the quotient of a neighborhood of Pαβγ by
the group Ram

H̃
(Pαβγ). If mult

H̃
(Pαβγ) denotes the multiplicity of this singular

point, this multiplicity is by [Bor, Lemma 5.7] related to multp̃(Pαβγ) as follows:

multp̃(Pαβγ) ≤ 63 mult
H̃

(Pαβγ) (5)

Recall the definition of δ(H,DI) as given in (15) in Section 6.2. This rough
measure for the ring of RamH(DI)–invariant monomials coincides by (20) in the
same section with δ2(H̃, Pαβγ) as defined by Borisov, which measures the ring of
Ram

H̃
(Pαβγ)–invariant monomials. By [Bor, Proposition 7.14] we can compare

the multiplicities we considered above to these deltas and obtain

mult
H̃

(Pαβγ) ≤
n3 · δ2(H̃, Pαβγ)∣∣∣Ram

H̃
(Pαβγ)

∣∣∣ =
n3 · δ(H,DI)

|RamH(DI)|
. (6)
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Combining (2), (4), (5) and (6) we thus have for all sufficiently big m

dimH0
(
X(2), ω⊗m

X(2) ⊗ ι∗Jm(1−δ)
X

(2◦)
nc

)
− dimH0

(
X(2), ω⊗m

X(2) ⊗ Jm(1−δ)
X

(2)
nc

)
(2),(4)

≤ m6

6

∑
p(DI)

multp̃(Pαβγ)

(5),(6)

≤ 62m6
∑
p(DI)

n3

|RamH(DI)|
· δ(H,DI) . (7)

The last part of this proof will be dedicated to relating the sum over p(DI) ⊂ X
in (7) to the sum over all DI ⊂ X(n), I ∈ I glob

3 , as given in Theorem 6.10.

Recall from Lemma 3.16 that the action of G on the intersections of global type
DI in X(n) is transitive. While this is no longer true for the subgroup H, we
nevertheless know how many DI are in each orbit of this action. This number is
given by

|H|
StabH(DI)

for each DI , where StabH(DI) denotes the stabilizer of DI in H (not pointwise,
but in the sense of an invariant subset).

Since StabH(DI), RamH(DI) and δ(H,DI) are invariant within each orbit, we
can rewrite the sum in (7) in terms of intersections DI in X(n) as follows:

∑
p(DI)

n3

|RamH(DI)|
· δ(H,DI) =

∑
I∈I glob

3

StabH(DI)

|H|
· n3

|RamH(DI)|
· δ(H,DI) . (8)

Note that
|StabH(DI)|
|RamH(DI)|

≤ |StabG(DI)|
|RamG(DI)|

. (9)

Indeed, RamH(DI) is just the intersection of RamG(DI) with StabH(DI) and we
then have

StabH(DI)/RamH(DI) = StabH(DI)/
(

RamG(DI) ∩ StabH(DI)
)

∼=
(

StabH(DI) · RamG(DI)
)
/RamG(DI)

< StabG(DI)/RamG(DI)

which shows (9).

This implies that for all sufficiently big m

dimH0
(
X(2), ω⊗m

X(2) ⊗ ι∗Jm(1−δ)
X

(2◦)
nc

)
− dimH0

(
X(2), ω⊗m

X(2) ⊗ Jm(1−δ)
X

(2)
nc

)
(7),(8)

≤ 62m6
∑

I∈I glob
3

StabH(DI)

|H|
· n3

|RamH(DI)|
· δ(H,DI)

(9)

≤ 62m6
∑

I∈I glob
3

StabG(DI)

|H|
· δ(H,DI) , (10)
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where we also used that |RamG(DI)| = n3.

Using that the action of G on the intersections DI of global type is transitive, we
obtain the identity

#I glob
3 =

|G|
|StabG(DI)|

which allows us to rewrite (10) as follows:

dimH0
(
X(2), ω⊗m

X(2) ⊗ ι∗Jm(1−δ)
X

(2◦)
nc

)
− dimH0

(
X(2), ω⊗m

X(2) ⊗ Jm(1−δ)
X

(2)
nc

)
≤62m6 [G : H] ·

(
1

#I glob
3

∑
I∈I glob

3

δ(H,DI)
)
. (11)

The claim now follows from Theorem 6.10. �

Recall that global sections in ω⊗m
X(2) ⊗ ι∗Jm(1−δ)

X
(2◦)
nc

are coming from Γ–invariant

modular forms of weight 4m which satisfy certain vanishing conditions at the
boundary and at X(2◦)

nc (cf. Theorem 2.5 and Remark 2.6). Rather than looking
at the space of all these forms, we will look at modular forms which can be
expressed as the product of a weight 3m form with a weight m form. More
precisely, we will show that there is a special weight 3m modular form f3m which
satisfies all the necessary vanishing conditions and multiply it with an arbitrary
modular form fm. The resulting form f3m · fm has weight 4m and gives a global
section in ω⊗m

X(2) ⊗ ι∗Jm(1−δ)
X

(2◦)
nc

as desired. Since fm was arbitrary we will obtain

sufficiently many different sections which can be lifted to X̃(2) to conclude that
the space of m–canonical sections on X̃(2) grows maximally, i.e. as m6, as we will
show in the next proposition.

However, we first have to impose an extra condition on the group Γ which en-
sures the extensibility of these forms over the singularities we took care of in
Proposition 7.2.

Remark 7.3 Given ε = 1/(6! · 362880) there are by the above proposition only
finitely many subgroups Γ of Sp(6,Z) of finite index not satisfying

dimH0
(
X(2), ω⊗m

X(2) ⊗ ι∗Jm(1−δ)
X

(2◦)
nc

)
− dimH0

(
X(2), ω⊗m

X(2) ⊗ Jm(1−δ)
X

(2)
nc

)
� 1

6!
· 1

362880
m6 |G : H|

(∗)

as m→∞.
We will say that Γ satisfies (∗) if Γ does not belong to this finite exceptional set.

We can now formulate the proposition.



120 CHAPTER 7. PUTTING IT ALL TOGETHER

Proposition 7.4 Let Γ be a subgroup of Sp(6,Z) satisfying (∗). If there is a

non–trivial global section in H0(X(2),OX(2)(m(KX(2) − L)) ⊗ ι∗Jm(1−δ)
X

(2◦)
nc

) for all

sufficiently big m, then the space of pluricanonical sections on X̃(2) grows maxi-
mally.

Proof. Note that any global section in H0(X(2),OX(2)(mL)) multiplied with the

global section in H0(X(2),OX(2)(m(KX(2) − L)) ⊗ ι∗Jm(1−δ)
X

(2◦)
nc

) gives a section in

H0(X(2),OX(2)(mKX(2))⊗ ι∗Jm(1−δ)
X

(2◦)
nc

). Hence

dimH0(X(2),OX(2)(mKX(2))⊗ ι∗Jm(1−δ)
X

(2◦)
nc

) ≥ dimH0(X(2),OX(2)(mL)) , (12)

provided that H0(X(2),OX(2)(m(KX(2) − L))⊗ ι∗Jm(1−δ)
X

(2◦)
nc

) is non–trivial as guar-

anteed by our hypothesis.

The dimension of the space on the right hand side of this inequality is just the
dimension of the space of modular forms of weight m with respect to Γ which we
calculated in Corollary 2.13 to be

dimH0(X(2),OX(2)(mL)) = dim[Γ,m] =
1

6!
· 1

181440
· [Sp(6,Z) : Γ]m6 (13)

if −1 6∈ Γ and

dimH0(X(2),OX(2)(mL)) = dim[Γ,m] =
1

6!
· 1

90720
· [Sp(6,Z) : Γ]m6 (14)

otherwise. By Proposition 7.1 and Proposition 7.2 we thus have

dimH0(X̃(2), ω⊗m
X̃(2)

) ≥ dimH0(X(2), ω⊗m
X(2) ⊗ Jm(1−δ)

X
(2)
nc

)

(∗)
≥ H0(X(2), ω⊗m

X(2) ⊗ ι∗Jm(1−δ)
X

(2◦)
nc

)− 1

6!
· 1

362880
m6 |G : H|

(12)

≥ H0(X(2),OX(2)(mL))− 1

6!
· 1

362880
m6 |G : H|

(13),(14)

≥ 1

6!
· 1

362880
m6 · |G : H| .

This means that the space of m–canonical sections on X̃(2) grows as fast as m6

as claimed. �

As a first step we have thus reduced the problem on the desingularization X̃ to
a problem on X itself.
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7.2 Reduction to AVor
3 (n)

We know much more about the space X(n) than we know about X. Not only
do we have a better understanding of the geometry at the boundary but also
and most importantly we know the G–invariant part of the Chow ring of X(n).
Therefore we want to do our calculations for the obstructions on X(n) rather
than on X itself.

Recall that X is obtained from X(n) by taking the quotient by H < Sp(6,Z/nZ),
so we have a natural quotient map p : X(n) → X. Note that the involution
−1 ∈ Sp(6,Z/nZ) acts trivially, which means that the map p is effectively given
by H/ {±1}. For simplicity we will from now on assume w.l.o.g. that −1 ∈ H
and considerH as a subgroup of PSp(6,Z/nZ) whenever we consider the quotient
map p.

We need to impose conditions on an H–invariant pluricanonical form on X(n)
such that it descends to a global section in H0(X(2),OX(2)(m(KX(2) − L)) ⊗
ι∗Jm(1−δ)

X
(2◦)
nc

) under the quotient map p. For that, we have to take into account

that p is branched. Thus we will not only have to ensure that the pluricanonical
form on X(n) vanishes of sufficiently high order along the preimage of X(2◦)

nc but
also along the branch divisors. We will address each of these problems individu-
ally in the following sections and then assemble all the parts.

7.2.1 Branch divisors

Consider the morphism µ : AVor
3 (n)→ AVor

3 which is given by taking the quotient
by the group PSp(6,Z/nZ). It is branched of order n along the boundary and
its ramification divisor is thus given by (n − 1)

∑
αDα. Note that unlike in the

g = 2–case where we also have ramification divisors in the interior of AVor
2 (n)

(cf. [Bor, Proposition 5.12]), although there is ramification in the interior for
g ≥ 3, it occurs only in higher codimension and thus does not contribute to the
ramification divisor (cf. [Tai, p. 439]).

Recall that the morphism p : X(n) = AVor
3 (n)→ X is given by the action of the

subgroup H = Γ/Γ(n) of PSp(6,Z/nZ) and can thus be considered as a partial
quotient map when compared to µ. Hence its ramification divisor is contained
in the ramification divisor of µ. The subgroup of PSp(6,Z/nZ) fixing all points
of the divisor Dα has order n and is just the group RamG(Dα) we introduced in
Chapter 4. The corresponding subgroup of H is then given by RamH(Dα) and
has order n ramH(Dα). We summarize our discussion on the branch divisors in
the following proposition:
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Proposition 7.5 The ramification divisor of the map p : X(n) → X equals∑
α (n ramH(Dα)− 1)Dα.

7.2.2 Singularities

We will now determine the vanishing conditions at the preimage of X(2◦)
nc , the

locus of non–canonical singularities in X(2) which do not lie at the image of
the intersection of three boundary divisors. As we have seen in Proposition 7.4
we need a global section in H0(X(2),OX(2)(m(KX(2) − L)) ⊗ ι∗Jm(1−δ)

X
(2◦)
nc

), so in

particular we need the section to vanish of order at least m(1 − δ) along X(2◦)
nc .

For that, we have to find out what order of vanishing is required on the preimage
of X(2◦)

nc in X(n) to ensure that we get the desired order on X(2◦)
nc after pushing

down to X. This is essentially a question on the local rings of the corresponding
points in X(n) and X and their maximal ideals. The answer can be found in the
appendix of Borisov’s paper. But first, we need to recall some definitions from
group theory.

Recall that a group G is called solvable if it has a normal series whose factor
groups are all abelian, i.e. if there is a sequence of normal subgroups

{id} = G0 CG1 C . . .CGs = G

such that Gi/Gi−1 is abelian for all i = 1, . . . , s. If G is also finite, all the factor
groups Gi/Gi−1 are finite and we can denote the exponent of Gi/Gi−1 by ki, i.e. ki
is the smallest positive integer n such that gn = id for all g ∈ G. We can then
consider the product k := k1 · · · · · ks and define k(G) to be the smallest integer
k that can be obtained in this way if we consider all possible normal series of G.
Clearly k(G) is bounded by the order of G.

Proposition 7.6 Let X be a projective algebraic variety with an action of a
finite solvable group G and Y = X/G be the corresponding quotient. Then there
is a constant N such that for all x ∈ X which satisfy gx = x for all g ∈ G, the
inclusion

m
k(G)l+N
X,x ∩ OGX,x ⊂ nlY,y

holds for all l ≥ 0, where (OX,x,mX,x) is the local ring of x in X and (OY,y, nY,y) =
(OGX,x,mG

X,x) is the local ring of the image y ∈ Y of x under the quotient mor-
phism.

Proof. [Bor, Proposition 7.10] �

Remark 7.7 This proposition can be interpreted for l >> 0 as follows. The
constant N is then dominated by l and we obtain that a function which vanishes
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at a point x ∈ X of order k(G)l vanishes roughly of order l at its image in Y ,
or more precisely: for all sufficiently big l >> 0 and all x ∈ X satisfying the
hypothesis of the proposition we have the inclusion m

(k(G)+1)l
X,x ∩ OGX,x ⊂ nlY,y.

To formulate the necessary vanishing conditions on the preimage of X(2◦)
nc in X(n)

we thus need to know the stabilizers of these points in H = Γ/Γ(n). We start by
looking at the ones corresponding to non–canonical singularities in the interior.

7.2.2.1 Singularities in the interior

Recall that by Corollary 5.11 the preimage of the locus of these non–canonical
singularities is contained in the union of those Xα for which the corresponding
involution ϕα is an element of H. While the stabilizer of a general point of such
an Xα just contains this involution, we will in general have larger stabilizers at
special points. These special points correspond to abelian varieties with extra
automorphisms. Recall that each point in Xα corresponds to a product of an
elliptic curve E with an abelian surface A. We can thus determine the stabilizers
by looking at the automorphisms of special elliptic curves and special abelian
surfaces.

It is well–known that the order of the automorphism group of an elliptic curve is
at most 6 (realized by E0). For an abelian surface Borisov showed in the proof of
Proposition 4.3 in [Bor] that the stabilizer of any point in H2 is a solvable group
of order at most 72. Since the direct product of solvable groups is again solvable,
we obtain a solvable group of order at most 432. Additionally, there might be
automorphisms permuting components of the product E × A, which can be the
case if the abelian surface A itself is a product of two elliptic curves. This would
then be a subgroup of the permutation group S3. However, those permutations
which fix E and only permute components in A are already included in our
calculation of the order of the stabilizer of a point in H2. The other permutations
thus only contribute a factor of at most 3. Overall, we get that the stabilizer of
any point in Xα is a group of order at most 3 · 432 = 1296. The fact that its
normal subgroup of index at most 3 containing the trivial permutations is solvable
implies that the stabilizer itself is solvable. This finishes the proof of the following
proposition:

Proposition 7.8 Let x ∈ Xα for some index α. Then the order of the stabilizer
in H of the point x is a solvable group of order at most 1296.

Remark 7.9 This order is realized by the automorphism group of the product of
three copies of the elliptic curve E0. There is an automorphism of order 6 on
each component of this product and an action of S3 permuting the factors which
gives the order of 64 = 1296.
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7.2.2.2 Singularities in the boundary

We will now determine the vanishing conditions for the preimages of the non–
canonical singularities in the boundary. We want to use Proposition 7.6 and thus
need to determine the stabilizers of these points. Unlike the stabilizers of points
in the interior, the stabilizers in the boundary depend on the level n. However,
we will see that the only contribution of n comes from the ramification groups
we already studied in Chapter 4.

Recall that any divisor Dα can be considered as the closure of the preimage
of a top–dimensional component Aα2 (n) of the Satake compactification. If we
just consider the preimage D◦

α of a component Aα2 (n), we obtain a fibration
D◦
α → Aαg−1(n) = A2(n) which is the universal family of abelian surfaces with

level–n structure for n ≥ 3 (cf. [Hul, Lemma 2.1]). This fibration can be extended
to a mapDα → AVor

2 (n) which still has a geometric interpretation as given in [Hul,
Proposition 3.1]. When we now look at the action of H < G = PSp(6,Z/nZ) on
Dα, we can interpret it in terms of this fibration.

From the description in Chapter 3 we know that the divisors Dα are in one–
to–one correspondence with primitive ±vectors which are in turn in one–to–one
correspondence with isotropic lines. Since all divisors Dα are equivalent under
the action of G, it suffices to look at the standard divisor resp. the standard line.
Its stabilizer is generated by the image in G of certain elements g1, g2, g3, g4 ∈
PSp(6,Z) given on page 260 of [Hul]. They operate on the fibration Dα →
AVor

2 (n) by a combination of modular transformations of the base, additions of
points of order n in the fibers, and the involution x 7→ −x of the fibers. Note that
the elements of type g4 form the group RamG(Dα) as described in Chapter 4. It is
easy to check that they fix the divisor Dα pointwise and are in fact the stabilizer
of the general point on Dα. Hence if we look at the stabilizer of a general point
on Dα in the subgroup H, we obtain that it is given by RamH(Dα). However, at
certain special points the stabilizer might be larger.

Proposition 7.10 Let x ∈ D◦
α for some index α. Then StabH(x)/RamH(Dα)

is a solvable group of order at most 144.

Proof. We have seen in the above discussion that the stabilizer of the general
point is given by RamH(Dα), the group generated by elements of type g4 in H. It
thus remains to look at the actions of the elements g1, g2 and g3. The operation
of g1 on the base of the fibration D◦

α → A2(n) is the one coming from modular
transformations on H2. As we already remarked in the previous section this gives
us a solvable group of order at most 72. While g2 is just an involution, it is easy
to check that g3 operates on D◦

α without fix points. This gives the bound of 144
for the order. The solvability follows from the solvability of its normal subgroup
of order at most 72. �
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We will now determine the stabilizers of the points lying on the intersection
Di1 ∩Di2 of two boundary divisors. Since G acts on the set of boundary divisors,
every element in the stabilizer in G has to either leave Di1 and Di2 invariant or
has to switch them. We will restrict to the subgroup of index 2 which leaves both
Di1 and Di2 invariant. Certainly we have the groups RamG(Di1) and RamG(Di2)
in this stabilizer since they fix all points of Di1 resp. Di2 as we have seen in the
above discussion. They generate the group RamG(Di1 ∩ Di2) we introduced in
Section 6.1. It will follow from our discussion that this is the stabilizer of the
general point on Di1 ∩Di2 . If we consider the subgroup H of G, we thus get that
the stabilizer in H of the general point is given by RamH(Di1 ∩Di2).

Proposition 7.11 Let x ∈ Di1 ∩Di2 be a point lying on the intersection of two
boundary divisors which does not lie on the intersection of three or more divisors.
Then StabH(x)/RamH(Di1 ∩Di2) is a solvable group of order at most 24.

Proof. As we already remarked StabH(x) contains a subgroup of index 2 which
leaves both Di1 and Di2 invariant. We can thus consider the map Di1 → AVor

2 (n)
we used above when we determined the stabilizer of a point on Di1 . We are now
over a point P in AVor

2 (n) \ A2 of type II (cf. [Hul, p. 266]), which means that
P lies on the open part of a boundary divisor of AVor

2 (n). It follows from [Bor,
Proposition 5.13] that the contribution coming from this point P is a group of
order at most 6 |RamH(Di2)|.

In terms of the elements g1, g2, g3, g4 ∈ PSp(6,Z) given on page 260 of [Hul], we
still have to consider g2 and g4. While g2 is just an involution, the elements of
type g4 generate RamH(Di1). Regarding the order of StabH(x)/RamH(Di1∩Di2)
we have a contribution of a factor of 2 from g2, another factor of 2 from our
assumption on the invariance of Di1 and Di2 and a factor of 6 from Borisov’s
result. This gives the order of 24 as claimed. The solvability follows from the
fact that the smallest non–solvable group is A5 having order 60 or can be seen
directly by a short calculation. �
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7.2.3 Conclusions

With the results of the previous sections we can now formulate conditions on a
pluricanonical form on X(n) which guarantees that it can be pushed down to a

global section in H0
(
X(2),OX(2)(m(KX(2) − L))⊗ ι∗Jm(1−δ)

X
(2◦)
nc

)
under the quotient

map p.

Proposition 7.12 If Γ satisfies (∗) and if there is a non–trivial global section
in

H0
(
X(n),OX(n)

(
m(K − L)−m

∑
α

n ramH(Dα)144Dα

)
⊗
∏
α

J 1296m·ramH(Xα)
Xα

⊗
∏
I∈I2

J 24mn·ramH(DI)
DI

)

for all sufficiently big m, then the space of pluricanonical sections on X̃(2) grows
maximally.

Proof. It suffices to show that H0
(
X(2),OX(2)(m(KX(2) − L))⊗ ι∗Jm(1−δ)

X
(2◦)
nc

)
has

a non–trivial global section for all sufficiently big m, because we can then use
Proposition 7.4.

Given any non–trivial section as in the hypothesis of the proposition, we can
multiply it with all its H–conjugates to obtain an H–invariant global section in

H0
(
X(n),OX(n)

(
m̃(K − L)− m̃

∑
α

n ramH(Dα)144Dα

)
⊗
∏
α

J 1296m̃·ramH(Xα)
Xα

⊗
∏
I∈I2

J 24m̃n·ramH(DI)
DI

)
,

where m̃ is the product of m with the number of H–conjugates. This H–invariant
section can be pushed down to give an element of H0

(
X,OX(m̃(KX −L)

)
, since

it vanishes at the the ramification divisor of the map p : X(n)→ X as calculated
in Proposition 7.5. Moreover, for every point y ∈ Xα we have

m
1296m̃·ramH(Xα)
X(n),y ∩ OStabH(y)

X(n),y ⊂ m
m̃(1−δ)
X,p(y) . (15)

Indeed, by Proposition 7.8 we have

1296m̃ · ramH(Xα) ≥ m̃ · k(StabH(y)) (16)

where k(StabH(y)) is defined as in Section 7.2.2. We can thus apply Proposi-
tion 7.6 to obtain (15), where the −m̃δ is dropped from the vanishing conditions
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upstairs to compensate for the constant N from the proposition as the inequality

1296m̃ · ramH(Xα)
(16)

≥ m̃ · k(StabH(y))

>m̃ · k(StabH(y))−m̃ · k(StabH(y))δ +N︸ ︷︷ ︸
<0 for m̃>>0

= k(StabH(y))m̃(1− δ) +N ,

which holds for all sufficiently big m̃ >> 0, shows. The condition on m̃ can be
made precise and can be given in such a way that it only depends on the group H.
We can therefore restrict w.l.o.g. to considering only the non–trivial sections from
the hypothesis of the proposition for those m which are sufficiently big to satisfy
the condition on m̃.

Likewise using Proposition 7.10 we obtain for any point y ∈ D◦
α that

m
144m̃n·ramH(Dα)
X(n),y ∩ OStabH(y)

X(n),y ⊂ m
m̃(1−δ)
X,p(y) . (17)

For any point y ∈ DI = Di1 ∩ Di2 lying on the intersection of two boundary
divisors which does not lie on the intersection of three or more divisors we get by
Proposition 7.11 that

m
24m̃n·ramH(DI)
X(n),y ∩ OStabH(y)

X(n),y ⊂ m
m̃(1−δ)
X,p(y) . (18)

Here we additionally used that, although the order of StabH(y) is bounded only
by 24 |RamH(DI)| which can be as big as 24n2, the value for k(StabH(y)) is at
most 24n ramH(DI), which is no larger than 24n. This is due to the fact that
RamH(DI) is contained in RamG(DI) ∼= Z/nZ× Z/nZ which has exponent n.

The inclusions in (15), (17) and (18) imply that we have in fact a section which
vanishes at the non–canonical singularities in X(2◦)

nc ⊂ X(2) of order m̃(1− δ) and

thus defines a global section in H0
(
X(2),OX(2)(m̃(KX(2) −L))⊗ ι∗J m̃(1−δ)

X
(2◦)
nc

)
when

restricted to X(2). Since this argument works for all sufficiently big m (resp. m̃),
we can apply Proposition 7.4 to finish the proof. �

In order to show the existence of a non–trivial global section as in the above
proposition, we will have to calculate the obstructions imposed by these vanishing
conditions. The following proposition allows us to do this separately for each
condition.

Proposition 7.13 Let Γ be a subgroup of Sp(2g,Z) such that the space of pluri-
canonical sections on X̃(2) does not grow maximally. Then at least one of the
following conditions is satisfied:
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(i) Γ does not satisfy (∗).

(ii) dimH0
(
X(n),m(K − L)

)
− dimH0

(
X(n),m(K − L)−m

∑
α

n ramH(Dα)144Dα

)
� 1

4

(
(1/6!) c1(KX(n) − L)6m6

)
as m→∞ .

(iii) dimH0
(
X(n),m(K − L)

)
− dimH0

(
X(n),OX(n)

(
m(K − L)

)
⊗
∏
α

J 1296m·ramH(Xα)
Xα

)
� 1

4

(
(1/6!) c1(KX(n) − L)6m6

)
as m→∞ .

(iv) dimH0
(
X(n),m(K − L)

)
− dimH0

(
X(n),OX(n)

(
m(K − L)

)
⊗
∏
I∈I2

J 24mn·ramH(DI)
DI

)
� 1

4

(
(1/6!) c1(KX(n) − L)6m6

)
as m→∞ .

Proof. If (ii),(iii) and (iv) are all false, then

dimH0
(
X(n),m(K − L)

)
− dimH0

(
X(n),OX(n)

(
m(K − L)−m

∑
α

n ramH(Dα)144Dα

)
⊗
∏
α

J 1296m·ramH(Xα)
Xα

⊗
∏
I∈I2

J 24mn·ramH(DI)
DI

)

� 3

4

(
(1/6!) c1(KX(n) − L)6m6

)
as m tends to infinity. On the other hand, dimH0

(
X(n),m(K − L)

)
grows like

(1/6!) c1(KX(n) − L)6m6, since (K − L) is ample for n ≥ 5 by Theorem 2.11. So
there must be a non–trivial global section in

H0
(
X(n),OX(n)

(
m(K − L)−m

∑
α

n ramH(Dα)144Dα

)
⊗
∏
α

J 1296m·ramH(Xα)
Xα

⊗
∏
I∈I2

J 24mn·ramH(DI)
DI

)

for all sufficiently big m. If (i) is also false, then Proposition 7.12 gives a contra-
diction, since it implies that the space of pluricanonical sections on X̃(2) grows
maximally. �
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7.3 Calculating obstructions

We will now calculate the obstructions coming from the singularities in the in-
terior and the ones imposed by the boundary. This will allows us to conclude
that the conditions given in Proposition 7.13 are only satisfied by finitely many
subgroups Γ.

The reformulation of the required vanishing conditions carried out in the last
section allows us to work on X(n), which is smooth for n ≥ 3 by Theorem 2.10.
Recall from our discussion in Section 2.3 that the canonical divisor on this space
is given by K = KX(n) = 4D − L.

We start by calculating the obstructions from the boundary.

Proposition 7.14 There is an integer n0 such that for all n ≥ n0 and all sub-
groups H < Sp(6,Z/nZ) the following inequality holds for all sufficiently big
m:

dimH0
(
X(n),m(K − L)

)
− dimH0

(
X(n),m(K − L)−m

∑
α

n ramH(Dα)144Dα

)
<

1

7
· 1446 ·

(
1

#α

∑
α

ramH(Dα)
)
m6

5!
γ(n) ,

where γ(n) is the order of Sp(6,Z/nZ) as calculated in Section 3.1 and #α
denotes the number of boundary divisors as given in Lemma 3.24 (i).

Proof. We start with a rather strong estimate which allows us to consider the
obstructions coming from each Dα individually:

dimH0
(
X(n),m(K − L)

)
− dimH0

(
X(n),m(K − L)−m

∑
α

n ramH(Dα)144Dα

)
≤
∑
α

[
dimH0

(
X(n),m(K − L)

)
− dimH0

(
X(n),m(K − L)−mn ramH(Dα)144Dα

)]

The standard exact sequence associated to Dα ⊂ X(n) yields

0→ H0
(
X(n),m(K − L)−Dα

)
→ H0

(
X(n),m(K − L)

)
→ H0

(
Dα,m(K − L)

)
.
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This can be generalized to

0→ H0
(
X(n),m(K − L)− (j + 1)Dα

)
→ H0

(
X(n),m(K − L)− jDα

)
→ H0

(
Dα,m(K − L)− jDα

)
for each integer j. This implies that

dimH0
(
X(n),m(K − L)

)
− dimH0

(
X(n),m(K − L)−mn ramH(Dα)144Dα

)
=

144mn ramH(Dα)−1∑
j=0

[
dimH0

(
X(n),m(K − L)− jDα

)
− dimH0

(
X(n),m(K − L)− (j + 1)Dα

)]

≤
144mn ramH(Dα)−1∑

j=0

dimH0
(
Dα,m(K − L)− jDα

)
.

We want to use Riemann–Roch and the Kodaira vanishing theorem to estimate
dimH0

(
Dα,m(K − L) − jDα

)
for each integer 0 ≤ j ≤ 144mn ramH(Dα) − 1.

For that we want to express m(K − L)− jDα as the sum of an ample and a nef
divisor on Dα.

We have that m(K−L) is ample on X(n) for n ≥ 5 by Theorem 2.11. The same
is true for its restriction to Dα and we can even subtract KDα if m is sufficiently
big. So we have that m(KX(n) − L)−KDα is ample on Dα.

The divisor −Dα might not be nef, but we can use the following relation for its
normal bundle:

−Dα

∣∣∣
Dα

=
1

n
M(n)− 1

n
L ,

where L is just the restriction of the line bundle of modular forms to Dα and
M(n) is a bundle described in [Hul, p. 262]. It follows from Proposition C.1 in
the appendix that the bundle M(n) is nef.

The line bundle L is big and nef on X(n). Hence mL has a non–trivial section
for all sufficiently big m and we can estimate

dimH0
(
Dα,m(K − L)− jDα

)
≤ dimH0

(
Dα,m(K − L)− jDα + 144mL

)
= dimH0

(
Dα,m(K − L)− j(Dα −

1

n
L) + (144m− j

n
)L
)

for all 0 ≤ j ≤ 144mn ramH(Dα)− 1. Then

−j(Dα −
1

n
L)
∣∣∣∣
Dα

=
j

n
M(n)
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is nef on Dα and

m(KX(n) − L)− j(Dα −
1

n
L) + (144m− j

n
)L−KDα

is ample as the sum of ample and nef divisors. We can therefore apply the Kodaira
vanishing theorem to obtain that

H i
(
Dα,m(K + 143L)− jDα

)
=H i

(
Dα,m(K − L)− j(Dα −

1

n
L) + (144m− j

n
)L
)

= 0 for all i > 0 .

Hence

χ
(
ODα(m(K + 143L)− jDα

)
= dimH0

(
Dα,m(K + 143L)− jDα

)
. (19)

Let

Lj := ODα

(
m(K + 143L)− jDα

)
.

Recall that the exponential Chern character ch(Lj) of Lj is given by

ch(Lj) = 1 + c1(Lj) +
1

2
c1(Lj)2 +

1

3!
c1(Lj)3 +

1

4!
c1(Lj)4 +

1

5!
c1(Lj)5 .

Let T denote the tangent sheaf of Dα and td(T ) its Todd class. We can now
apply Hirzebruch–Riemann–Roch and obtain

dimH0(Dα,Lj)
(19)
= χ(Lj) = deg(ch(Lj). td(T ))5 ,

where ( )5 denotes the component of degree 5 in A(Dα) ⊗ Q with A(Dα) the
Chow ring of Dα.

We want to get an estimate for big m, so we only need to consider the coefficient
of the highest power of m. Since only c1(Lj) depends on m, this coefficient is
coming from c1(Lj)5, i.e.

dimH0(Dα,Lj) ∼
1

5!
c1(Lj)5

for all sufficiently big m.

Instead of calculating this top–intersection on Dα, we use the fact that the bundle
Lj is the restriction to Dα of a bundle on X(n) to do the calculation on X(n)
where we know the intersection numbers thanks to a paper of van der Geer. We
thus have

1

5!
c1(Lj)5 =

1

5!
c1

(
ODα

(
m(K + 143L)− jDα

))5

=
1

5!
c1

(
OX(n)

(
m(K + 143L)− jDα

))5

. c1
(
OX(n)(Dα)

)
.

(20)
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To simplify notation we will from now on omit the Chern classes in the intersec-
tions, e.g. we write

1

5!

(
m(K + 143L)− jDα

)5
. Dα (21)

for the last term in (20).

Clearly this intersection number depends on j. Our next goal will be to find an
uniform bound on this number which works for all j and all boundary divisorsDα.

We first expand the term in (21) and take the absolute values of the individual
summands:

1

5!

(
m(K + 143L)− jDα

)5
. Dα

=
1

5!

[
5∑
i=0

(−1)i
(

5
i

)
m5−iji(K + 143L)5−i. Di+1

α

]

≤ 1

5!

[
5∑
i=0

(
5
i

)
m5−iji

∣∣∣(K + 143L)5−i. Di+1
α

∣∣∣] (22)

Note that since 0 < ramH(Dα) ≤ 1 we have that

0 ≤ j ≤ 144mn ramH(Dα)− 1 < 144mn . (23)

Since the term in (22) has only positive summands and is thus increasing in j,
we can use (23) to conclude that

1

5!

(
m(K + 143L)− jDα

)5
. Dα

≤m
5

5!

[
5∑
i=0

(
5
i

)
(144n)i

∣∣∣(K + 143L)5−i. Di+1
α

∣∣∣] .
Note that this intersection number is now independent of j but also independent
of α, since all Dα are equivalent under the action of Sp(6,Z/nZ). We can thus
estimate

1

5!

(
m(K + 143L)− jDα

)5
. Dα

≤ 1

#α

m5

5!

∑
α

[
5∑
i=0

(
5
i

)
(144n)i

∣∣∣(K + 143L)5−i. Di+1
α

∣∣∣]

=
1

#α

m5

5!

[
5∑
i=0

(
5
i

)
(144n)i

∣∣∣∣∣(K + 143L)5−i.
(∑

α

Di+1
α

)∣∣∣∣∣
]
. (24)

Note that
∑
αD

k
α is a symmetric polynomial in the Dα. We denote the i–th

elementary symmetric polynomial by ∆i and can thus express
∑
αD

k
α in terms of

∆i. For example,
∑
αD

3
α is given by∑

α

D3
α = ∆3

1 + 3∆3 − 3∆1∆2 .
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Recalling that K = KX(n) = 4L − D = 4L − ∆1, we can thus express the
intersection given in (24) with L and ∆i only. These intersection numbers have
been calculated by van der Geer in [vdG2]. For instance, the term corresponding
to i = 2 in (24) can be computed as follows:

(K + 143L)3.
(∑

α

D3
α

)
= (147L−∆1)

3.
(
∆3

1 + 3∆3 − 3∆1∆2

)
=
(
1473 · 1

720
· 1

n3
− 147 · 23

80
· 1

n5
+

215

144
· 1

n6

)
γ(n) ,

where γ(n) is the order of Sp(6,Z/nZ) as calculated in Section 3.1.

If we assume that n is sufficiently big, we only have to look at the highest power
of n in this term which means that this intersection grows as

(K + 143L)3.
(∑

α

D3
α

)
∼ 1473 · 1

720
· 1

n3
γ(n) .

All the other terms in (24) can be computed by a similar calculation.

Putting all the individual calculations together we obtain that

1

5!

(
m(K + 143L)− jDα

)5
. Dα

≤ 1

#α

m5

5!

[
5∑
i=0

(
5
i

)
(144n)i

∣∣∣∣∣(K + 143L)5−i.
(∑

α

Di+1
α

)∣∣∣∣∣
]

∼ 1

#α

m5

5!

[(
1473

72
· γ(n)

n3

)
+ 5 · 144

(
1473

180
· γ(n)

n2

)
+ 10 · 1442

(
1473

720
· γ(n)

n

)

+10 · 1443
(

147 · 7
120

· γ(n)

n2

)
+ 5 · 1444

(
147

80
· γ(n)

n

)
+ 1445

(
7

144
· γ(n)

n

)]

.
1

#α

m5

5!
· 1445 · 1

7
· γ(n)

n
(25)

for n sufficiently big. Note that this assumption on n can be made precise, i.e. we
can explicitly calculate an integer n0 such that for all n ≥ n0 the strict inequality
is satisfied. Note also that the integer n0 does neither depend on m nor α and is
also independent of the subgroup H.

The estimate in (25) holds true for all integers j, so we can take the sum and
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have for all n ≥ n0 and all sufficiently big m

144mn ramH(Dα)−1∑
j=0

dimH0
(
Dα,m(K − L)− jDα

)

<
144mn ramH(Dα)−1∑

j=0

(
1

#α

m5

5!
· 1445 · 1

7
· γ(n)

n

)

= 144mn ramH(Dα) ·
(

1

#α

m5

5!
· 1445 · 1

7
· γ(n)

n

)

=
1

7
· 1446 · ramH(Dα)

#α

m6

5!
γ(n) .

If we now consider all Dα and use the estimate from the beginning of this proof
we can conclude that

dimH0
(
X(n),m(K − L)

)
− dimH0

(
X(n),m(K − L)−m

∑
α

n ramH(Dα)144Dα

)

≤
∑
α

144mn ramH(Dα)−1∑
j=0

dimH0
(
Dα,m(K − L)− jDα

)

<
1

7
· 1446 ·

(
1

#α

∑
α

ramH(Dα)
)
m6

5!
γ(n)

for all n ≥ n0 and all sufficiently big m as claimed. �

We can now use our results from Chapter 4 to show that condition (ii) of Propo-
sition 7.13 is satisfied by at most finitely many groups Γ.

Lemma 7.15 There are only finitely many subgroups Γ of Sp(6,Z) of finite index
which satisfy

dimH0
(
X(n),m(K − L)

)
− dimH0

(
X(n),m(K − L)−m

∑
α

n ramH(Dα)144Dα

)
� 1

4

(
(1/6!) c1(KX(n) − L)6m6

)
as m tends to infinity.

Proof. As we remarked in the beginning of this chapter we can assume that n is
sufficiently big whenever necessary since there are only finitely many subgroups
Γ of Sp(6,Z) which contain each Γ(n).
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Recall that the canonical divisor KX(n) on X(n) is given by 4L−D, so

KX(n) − L = 3L−D .

The top–intersection c1(KX(n) − L)6 = c1(3L − D)6 can be computed by using
the tables in van der Geer’s paper [vdG2]. However, for large n this intersection
number is dominated by the highest power of n which comes from the top–
intersection of 3L and is given by

c1(KX(n) − L)6 ∼ c1(3L)6 =
36

181440
γ(n) .

By Proposition 7.14 we have for all but finitely many subgroups Γ of Sp(6,Z)
(disregarding those for which n ≤ n0) that

dimH0
(
X(n),m(K − L)

)
− dimH0

(
X(n),m(K − L)−m

∑
α

n ramH(Dα)144Dα

)
<

1

7
· 1446 ·

(
1

#α

∑
α

ramH(Dα)
)
m6

5!
γ(n) .

To prove the claim we just need to show that there are only finitely many sub-
groups Γ of Sp(6,Z) for which

1

7
· 1446 ·

(
1

#α

∑
α

ramH(Dα)
)
m6

5!
γ(n)

≥ 1

4

(
(1/6!) c1(KX(n) − L)6m6

)
∼ 1

4
· 36

181440
· m

6

6!
γ(n) .

The latter condition is equivalent to

(
1

#α

∑
α

ramH(Dα)
)

&
1

168
· 36

1814400
· 1

1446
,

so we have a lower bound for the ramification mean of H. By Theorem 4.3 there
are only finitely many subgroups exceeding this lower bound which proves the
claim. �

We will now proceed in a similar manner with the obstructions coming from the
singularities in the interior. For that, recall the definitions of the involutions ϕα
and their fix loci Xα as given in Section 5.2.

Proposition 7.16 There is an integer n0 such that for all n ≥ n0 and all sub-
groups H < Sp(6,Z/nZ) the following inequality holds for all sufficiently big
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m:

dimH0
(
X(n),m(K − L)

)
− dimH0

(
X(n),OX(n)

(
m(K − L)

)
⊗
∏
α

J 1296m·ramH(Xα)
Xα

)

<
12965

1728
·
(

1

#α

∑
α

ramH(Xα)
)
m6

5!
γ(n) ,

where γ(n) is the order of Sp(6,Z/nZ) as calculated in Section 3.1 and #α
denotes the number of components Xα as given in Corollary 5.14.

Proof. We can proceed as in the proof of Proposition 7.14 and obtain

dimH0
(
X(n),OX(n)(m(K − L))

)
− dimH0

(
X(n),OX(n)

(
m(K − L)

)
⊗
∏
α

J 1296m·ramH(Xα)
Xα

)

≤
∑
α

[
dimH0

(
X(n),OX(n)

(
m(K − L)

))
(26)

− dimH0
(
X(n),OX(n)

(
m(K − L)

)
⊗ J 1296m·ramH(Xα)

Xα

)]
which allows us to consider each Xα separately. We blow up X(n) along one such
Xα and obtain the following diagram:

Xα ⊂ X(n)

Eα ⊂ X̃(n)
........................................................................
...
.........
...
π

........................................................................
...
.........
...

where Eα is the exceptional divisor of this blow–up π : X̃(n)→ X(n). By [CEL,
Lemma 3.3] we have for sufficiently big m >> 0

dimH0
(
X(n),OX(n)

(
m(K − L)

)
⊗ J 1296m·ramH(Xα)

Xα

)
= dimH0

(
X̃(n),O

X̃(n)

(
mπ∗(K − L)− 1296m ramH(Xα)Eα

))
.

As in the proof of Proposition 7.14 we can now use the standard exact sequence
associated to Eα ⊂ X̃(n) to conclude that

dimH0
(
X(n),OX(n)

(
m(K − L)

))
− dimH0

(
X(n),OX(n)

(
m(K − L)

)
⊗ J 1296m·ramH(Xα)

Xα

)

≤
1296m·ramH(Xα)−1∑

j=0

dimH0
(
Eα,

(
O
X̃(n)

(mπ∗(K − L)− jEα)
)∣∣∣
Eα

)
. (27)
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Eα as the exceptional divisor of the blow–up of X(n) along Xα is a fiber bundle
over Xα which we denote by abuse of notation again by π : Eα → Xα. It can be
identified with the projectivization P(N ∨

Xα/X(n)) of the conormal bundle N ∨
Xα/X(n)

of Xα in X(n). (Recall our convention that for any vector bundle E , the bundle
P(E) is the projectivized bundle of lines in E .) If ζ = OP(N∨

Xα/X(n)
)(1) denotes

the tautological bundle on P(N ∨
Xα/X(n)), we have that −Eα|Eα = ζ. With this

notation the summands in (27) are the dimensions of the spaces of global sections
of the bundles

π∗
(
OXα(m(K − L))

)
⊗ ζ⊗j (28)

on Eα.

By [Har1, Lemma 3.1] the higher direct images of this bundle vanish, i.e.

Riπ∗

(
π∗
(
OXα(m(K − L))

)
⊗ ζ⊗j

)
= 0

for all i > 0. Thus as a special case of the Leray spectral sequence, we obtain
that

H i
(
Eα, π

∗
(
OXα(m(K − L))

)
⊗ ζ⊗j

)
=H i

(
Xα, π∗

(
π∗
(
OXα(m(K − L))

)
⊗ ζ⊗j

))
=H i

(
Xα,OXα

(
m(K − L)

)
⊗ Sj

(
N ∨
Xα/X(n)

)) (29)

for all i ≥ 0 (cf. [Laz1, Proposition B.1.1]).

Our next step will be to use the following version of Griffiths vanishing theorem
(cf. [Laz2, Theorem 7.3.1 and Variant 7.3.2]) on Xα:

Theorem 7.17 (Griffiths vanishing theorem) Let X be a smooth complex
irreducible projective variety. If E is a nef vector bundle, and L is any ample line
bundle, then

H i
(
X,ωX ⊗ SmE ⊗ det(E)⊗ L

)
= 0

for all i > 0 and all m ≥ 0.

For that we need explicit knowledge of the conormal bundle N ∨
Xα/X(n). Recall

that Xα is up to isomorphism the closure of A1(n)×A2(n) ⊂ A3(n) in X(n). By
a result of van der Geer this is just

Xα
∼= AVor

1 (n)×AVor
2 (n) .

Let E1 and E2 denote the Hodge bundles on AVor
1 (n) and on AVor

2 (n) respectively.
By explicitly calculating the transition functions we can show that

N ∨
Xα/X(n) = E1 � E2 := pr∗1E1 ⊗ pr∗2E2 ,
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where pr1 and pr2 denote the projections to AVor
1 (n) resp. AVor

2 (n).

The Hodge bundles E1 and E2 are positive semi-definite in the sense of Griffith
(cf. [Gri]) by [Zuo, Theorem 1.2] and thus nef (cf. [DPS, Theorem 1.12]) on
AVor

1 (n) resp. AVor
2 (n). (Recall that by definition a vector bundle E is said to

be nef, if the Serre line bundle OP(E)(1) is a nef line bundle on the projectivized
bundle P(E).) Hence their pullbacks pr∗1E1 and pr∗2E are nef and so is N ∨

Xα/X(n)

as the tensor product of these pullbacks by [Laz2, Theorem 6.2.12 (iv)].

We also need the canonical divisor of Xα
∼= AVor

1 (n) × AVor
2 (n). Recall that the

canonical divisors on AVor
1 (n) and AVor

2 (n) are given by

KAVor
1 (n) = 2L1 −D1 and KAVor

2 (n) = 3L2 −D2

respectively, where L1 and L2 denote the line bundles of modular forms and D1

and D2 the boundary of these spaces. Hence as the product of AVor
1 (n) and

AVor
2 (n) the canonical divisor on Xα is just given by

KXα = pr∗1(KAVor
1 (n)) + pr∗2(KAVor

2 (n)) = pr∗1(2L1 −D1) + pr∗2(3L2 −D2) . (30)

We need to know one more bundle to use Griffiths’ vanishing theorem, namely
the determinant bundle det(N ∨

Xα/X(n)) of N ∨
Xα/X(n). Its first Chern class is given

by

c1(det(E1 � E2)) = c1
(

pr∗1E1 ⊗ pr∗2E2

)
= 2c1(pr∗1E1) + c1(pr∗2E2)

= 2 pr∗1 L1 + pr∗2 L2 . (31)

If we consider the tensor product of this determinant bundle with the canonical
bundle on Xα, we obtain

ωXα ⊗
(
N ∨
Xα/X(n)

)
(30),(31)

= OXα

(
pr∗1(4L1 −D1) + pr∗2(4L2 −D2)

)
(32)

which is just the restriction of the line bundle on X(n) given by 4L−D to Xα.

Note that the line bundle (m− 1)(3L−D)− L is ample on X(n) for n ≥ 5 and
m ≥ 3 (cf. [Hul, Theorem 0.2]) and so is its restriction to Xα. We can thus apply
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Griffiths vanishing theorem and obtain

H i
(
Xα,OXα

(
m(KX(n) − L)

)
⊗ Sj

(
N ∨
Xα/X(n)

))
= H i

(
Xα,OXα

([
(3L−D) + L

]
+
[
(m− 1)(3L−D)− L

])
⊗ Sj

(
N ∨
Xα/X(n)

))
(32)
= H i

(
Xα, ωXα ⊗ Sj

(
N ∨
Xα/X(n)

)
⊗ det(N ∨

Xα/X(n))

⊗OXα

(
(m− 1)(3L−D)− L

))
= 0

for all i > 0. By (29) we have that the corresponding higher cohomology groups
vanish upstairs on Eα and thus

χ
(
π∗
(
OXα(m(K−L))

)
⊗ζ⊗j

)
= dimH0

(
Eα, π

∗
(
OXα(m(K−L))

)
⊗ζ⊗j

)
. (33)

For each integer j we set

Fj := π∗
(
OXα(m(K − L))

)
⊗ ζ⊗j .

As in the proof of Proposition 7.14 we can now apply Hirzebruch–Riemann–Roch
and obtain

dimH0(Eα,Fj)
(33)
= χ(Fj) = deg(ch(Fj). td(T ))5 .

Since the Todd class td T of the tangent sheaf T of Eα does not depend on m,
we get that

dimH0(Eα,Fj) ∼
1

5!
c1(Fj)5 (34)

for all sufficiently big m.

We expand the term on the right hand side and obtain

1

5!
c1(Fj)5 =

1

5!
c1(π

∗
(
OXα(m(K − L))

)
⊗ ζ⊗j)5

=
1

5!

5∑
k=0

(
5
k

)
m5−kjkc1

(
π∗OXα(K − L)

)5−k
. c1(ζ)

k (35)

As in the proof of Proposition 7.14, we will from now on simplify the notation by
omitting the Chern classes in the notation and write

1

5!

5∑
k=0

(
5
k

)
m5−kjkπ∗(K − L)5−k. ζk (36)
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for the term in (35).

By [Ful, Remark 3.2.4] the tautological bundle ζ on Eα satisfies the relation

ζ2 + c1(π
∗N ∨

Xα/X(n)). ζ + c2(π
∗N ∨

Xα/X(n)) = 0 .

With this relation we can rewrite the sum in (36) and obtain after a straightfor-
ward calculation that

1

5!

5∑
k=0

(
5
k

)
m5−kjkπ∗(K − L)5−k. ζk

=
1

5!

[
π∗
[
m5(K − L)5 − 10m3j2(K − L)3. c2(N ∨)

+ 10m2j3(K − L)2. c1(N ∨). c2(N ∨)

+ 5mj4(K − L) .
(
c2(N ∨)2 − c1(N ∨)2. c2(N ∨)

)
+ j5

(
c1(N ∨)3. c2(N ∨)− 2c1(N ∨). c2(N ∨)2

)]
+π∗

[
5m4j(K − L)4 − 10m3j2(K − L)3. c1(N ∨)

+ 10m2j3(K − L)2.
(
c1(N ∨)2 − c2(N ∨)

)
+ 5mj4(K − L) .

(
2c1(N ∨). c2(N ∨)− c1(N ∨)3

)
+ j5

(
c2(N ∨)2 + c1(N ∨)4 − 3c1(N ∨)2. c2(N ∨)

)]
. ζ

]
,

where N ∨ := N ∨
Xα/X(n). Note that all the terms in the first of the two summands

consists of pullbacks of intersections coming from Xα. Consequently, they all
have to vanish, sinceXα is only 4–dimensional. For the second summand, we have
pullbacks of top–dimensional intersections onXα intersected with the tautological
bundle, which means that we can calculate these terms on Xα. Hence

1

5!
c1(Fj)5 =

1

5!

[
5m4j(K − L)4 − 10m3j2(K − L)3. c1(N ∨)

+ 10m2j3(K − L)2.
(
c1(N ∨)2 − c2(N ∨)

)
+ 5mj4(K − L) .

(
2c1(N ∨). c2(N ∨)− c1(N ∨)3

)
+ j5

(
c2(N ∨)2 + c1(N ∨)4 − 3c1(N ∨)2. c2(N ∨)

)]
,

(37)

where the intersection on the right hand side is now on Xα.

Recall from (31) that the first Chern class of the conormal bundle N ∨ is given
by

c1(N ∨) = 2 pr∗1 L1 + pr∗2 L2 .
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The second Chern class of the product N ∨ = E1 �E2 can be expressed in terms
of the Chern classes of E1 and E2 as follows:

c2(N ∨) = c2(pr∗2E2) + c1(pr∗1E1) . c1(pr∗2E2) + c1(pr∗1E1)
2︸ ︷︷ ︸

=0

=
1

2
c1(pr∗2E2)

2 + c1(pr∗1E1) . c1(pr∗2E2) =:
1

2
pr∗2 L

2
2 + pr∗1 L1 . pr∗2 L2 ,

where we used the identity 2 c2(E2) = c1(E2)
2 on AVor

2 (n) (cf. [vdG2, §2]) and
the fact that c1(E1)

2 ≡ 0 on the 1–dimensional space AVor
1 (n).

We then have

c1(N ∨) = 2 pr∗1 L1 + pr∗2 L2 = L+ pr∗1 L1

c1(N ∨)2 − c2(N ∨) =
3

2
L2 + 2 pr∗1 L1 . pr∗2 L2

2c1(N ∨) . c2(N ∨)− c1(N ∨)3 = −2 pr∗1 L1 . pr∗2 L
2
2

c2(N ∨)2 + c1(N ∨)4 − 3c1(N ∨)2 . c2(N ∨) = 0 ,

where we used that pr∗1 L1+pr∗2 L2 coincides with the restriction of the line bundle
L on X(n) to Xα and the fact that all terms involving pr∗1 L

2
1 or pr∗2 L

4
2 vanish.

Thus the intersection in (37) can be rewritten in terms of K, L, pr∗1 L1, and pr∗2 L2

as follows:

1

5!
c1(Fj)5 =

1

5!

[
5m4j(K − L)4 − 10m3j2(K − L)3.

(
L+ pr∗1 L1

)
+ 10m2j3(K − L)2.

(3

2
L2 + 2 pr∗1 L1 . pr∗2 L2

)
− 10mj4(K − L) .

(
pr∗1 L1 . pr∗2 L

2
2

)]
.

As in the proof of Proposition 7.14 we can get an estimate for 1
5!
c1(Fj)5 which

is independent of j by first taking absolute values and then using that 0 ≤ j ≤
1296m · ramH(Xα)− 1 < 1296m. This gives us

1

5!
c1(Fj)5 ≤ m5

5!

[
5 · 1296

∣∣∣(K − L)4
∣∣∣+ 10 · 12962

∣∣∣(K − L)3.
(
L+ pr∗1 L1

)∣∣∣
+ 10 · 12963

∣∣∣(K − L)2.
(3

2
L2 + 2 pr∗1 L1 . pr∗2 L2

)∣∣∣
+ 10 · 12964

∣∣∣(K − L) .
(

pr∗1 L1 . pr∗2 L
2
2

)∣∣∣]
(38)

for all j.
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We will now calculate each of the above summands. Using that K = KX(n) =
4L−D, the third summand reads

(3L−D)2.
(3

2
L2 + 2 pr∗1 L1 . pr∗2 L2

)
=

27

2
L4 + 18L2. pr∗1 L1 . pr∗2 L2 − 9L3. D − 12L . pr∗1 L1 . pr∗2 L2 . D

+
3

2
L2. D2 + 2 pr∗1 L1 . pr∗2 L2 . D

2

In principal we could calculate all these terms. However, if n is sufficiently big,
we only need to consider the terms with the highest power of n involved. Since
every boundary divisor D contributes a factor of 1/n these are exactly the ones
containing only the classes L, pr∗1 L1, and pr∗2 L2. Thus

(3L−D)2.
(3

2
L2 + 2 pr∗1 L1 . pr∗2 L2

)
∼ 27

2
L4 + 18L2. pr∗1 L1 . pr∗2 L2

for all sufficiently big n.

Note that

L2. pr∗1 L1 . pr∗2 L2 = (pr∗1 L1 + pr∗2 L2)
2. pr∗1 L1 . pr∗2 L2

= pr∗1 L
3
1. pr∗2 L2︸ ︷︷ ︸
=0

+2 pr∗1 L
2
1. pr∗2 L

2
2︸ ︷︷ ︸

=0

+ pr∗1 L1 . pr∗2 L
3
2

= pr∗1 L1 . pr∗2 L
3
2 ,

where we used again that the class pr∗1 L
2
1 vanish. Comparing this with

L4 = (pr∗1 L1 + pr∗2 L2)
4

= pr∗1 L
4
1︸ ︷︷ ︸

=0

+4 pr∗1 L
3
1. pr∗2 L2︸ ︷︷ ︸
=0

+6 pr∗1 L
2
1. pr∗2 L

2
2︸ ︷︷ ︸

=0

+4 pr∗1 L1 . pr∗2 L
3
2 + pr∗2 L

4
2︸ ︷︷ ︸

=0

= 4 pr∗1 L1 . pr∗2 L
3
2

we get that

L2. pr∗1 L1 . pr∗2 L2 = pr∗1 L1 . pr∗2 L
3
2 =

1

4
L4 (39)

on Xα. Hence

(3L−D)2.
(3

2
L2 + 2 pr∗1 L1 . pr∗2 L2

)
∼ 18L4

for all sufficiently big n. The other terms in (38) can be estimated analogously
and we obtain for all sufficiently big n and all integers j

1

5!
c1(Fj)5 .

m5

5!

[
5 · 1296 · 81 |L4|+ 10 · 12962 · 135

4
|L4|

+ 10 · 12963 · 18 |L4|+ 10 · 12964 · 3
4
|L4|

]
<
m5

5!
· 10 · 12964 |L4| .
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The fact that L is just the restriction of the line bundle L on X(n) to Xα allows
us to calculate this intersection number on X(n), namely

1

5!
c1(Fj)5 .

m5

5!
· 10 · 12964 |L4. [Xα]| , (40)

where [Xα] denotes the class of Xα in the Chow ring of X(n).

Since all components Xα are equivalent under the action of Sp(6,Z/nZ), we can
rewrite this intersection as follows:

L4. [Xα] =
1

#α
L4. [Y ] , (41)

where Y =
∑
αXα and #α denotes the number of components.

Note that Y is just the pullback of the product AVor
1 × AVor

2 ⊂ AVor
3 = X(1) to

X(n). According to [vdG2, Proposition 3.2] its class in the Chow ring of X(n) is
thus given by

[Y ] =
21

2
L2 − 5

2
nL .D +

1

8
n2D2 +

1

24
n2∆2 ,

where ∆2 is the second elementary symmetric polynomial in the Di. Using the
tables of van der Geer (cf. [vdG2]), we can now calculate the intersection in (41)
and obtain

L4. [Xα] =
1

#α
L4.

(21

2
L2 − 5

2
nL .D +

1

8
n2D2 +

1

24
n2∆2

)
=

1

#α

(21

2
· 1

181440
− 0 + 0 + 0

)
γ(n) =

1

#α
· 1

17280
γ(n) .

It now follows from (40) and (41) that we have for all j and all sufficiently big n
that

1

5!
c1(Fj)5 .

1

#α
· m

5

5!
· 12964 · 1

1728
γ(n) .

Note that we can explicitly give an integer n0 such that the strict inequality holds
in the above statement for all n ≥ n0. Moreover, this integer is independent of
m and α and also does not depend on the subgroup H. By our observations in
(28) and (34) at the beginning of this proof, we thus have for all n ≥ n0 and all
sufficiently big m that

dimH0
(
Eα,

(
O
X̃(n)

(mπ∗(K − L)− jEα)
)∣∣∣
Eα

)
<

1

#α
· m

5

5!
· 12964

1728
γ(n) . (42)
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Since this estimate holds for all integers j, we can take the sum and obtain that

dimH0
(
X(n),OX(n)

(
m(K − L)

))
− dimH0

(
X(n),OX(n)

(
m(K − L)

)
⊗ J 1296m·ramH(Xα)

Xα

)
(27)

≤
1296m·ramH(Xα)−1∑

j=0

dimH0
(
Eα,

(
O
X̃(n)

(mπ∗(K − L)− jEα)
)∣∣∣
Eα

)
(42)
<
[
1296m · ramH(Xα)

]
· 1

#α
· m

5

5!
· 12964

1728
γ(n)

=
1

#α
ramH(Xα)

m6

5!
· 12965

1728
γ(n) .

Summing over all α now gives the claim together with (26). �

We proceed as in Lemma 7.15 to use this result to conclude that condition (iii)
of Proposition 7.13 is satisfied by at most finitely many groups Γ.

Lemma 7.18 There are only finitely many subgroups Γ of Sp(6,Z) of finite index
which satisfy

dimH0
(
X(n),m(K − L)

)
− dimH0

(
X(n),OX(n)

(
m(K − L)

)
⊗
∏
α

J 1296m·ramH(Xα)
Xα

)
� 1

4

(
(1/6!) c1(KX(n) − L)6m6

)
as m tends to infinity.

Proof. We can proceed exactly as in the proof of Lemma 7.15 and obtain with
the estimate in Proposition 7.16 that it suffices to show that there are only finitely
many subgroups Γ of Sp(6,Z) of finite index satisfying

12965

1728
·
(

1

#α

∑
α

ramH(Xα)
)
m6

5!
γ(n)

≥ 1

4

(
(1/6!) c1(KX(n) − L)6m6

)
∼ 1

4
· 36

181440
· m

6

6!
γ(n) .

We can rewrite this condition as(
1

#α

∑
α

ramH(Xα)
)

&
1

840
· 1

4325
.

Now Theorem 5.16 proves the claim. �

To finish the proof of the main theorem, we still have to deal with the obstructions
coming from the intersection of two boundary divisors DI , I ∈ I2, in X(n).
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Proposition 7.19 There is an integer n0 such that for all n ≥ n0 and all sub-
groups H < Sp(6,Z/nZ) the following inequality holds for all sufficiently big
m:

dimH0
(
X(n),m(K − L)

)
− dimH0

(
X(n),OX(n)

(
m(K − L)

)
⊗
∏
I∈I2

J 24mn·ramH(DI)
DI

)

< 246 ·
(

1

#I2
∑
I∈I2

ramH(DI)
)
m6

5!
γ(n) ,

where γ(n) is the order of Sp(6,Z/nZ) and #I2 denotes the number of intersec-
tions of two boundary divisors as given in Section 6.1.

Proof. As before we can consider each component DI separately by estimating

dimH0
(
X(n),OX(n)(m(K − L))

)
− dimH0

(
X(n),OX(n)

(
m(K − L)

)
⊗
∏
I∈I2

J 24mn·ramH(DI)
DI

)

≤
∑
I∈I2

[
dimH0

(
X(n),OX(n)

(
m(K − L)

))
(43)

− dimH0
(
X(n),OX(n)

(
m(K − L)

)
⊗ J 24mn·ramH(DI)

DI

)]
.

We consider the blow–up of X(n) along one such DI and obtain

DI ⊂ X(n)

EI ⊂ X̃(n)
........................................................................
...
.........
...
π

........................................................................
...
.........
...

where EI denotes the exceptional divisor of this blow–up. As in the proof of
Proposition 7.16 we have by [CEL, Lemma 3.3] that

dimH0
(
X(n),OX(n)

(
m(K − L)

)
⊗ J 24mn·ramH(DI)

DI

)
= dimH0

(
X̃(n),O

X̃(n)

(
mπ∗(K − L)− 24mn ramH(DI)EI

))
.

for all sufficiently big m, which then implies by the standard exact sequences



146 CHAPTER 7. PUTTING IT ALL TOGETHER

associated to EI ⊂ X̃(n) that

dimH0
(
X(n),OX(n)

(
m(K − L)

))
− dimH0

(
X(n),OX(n)

(
m(K − L)

)
⊗ J 24mn·ramH(DI)

DI

)

≤
24mn·ramH(DI)−1∑

j=0

dimH0
(
EI ,

(
O
X̃(n)

(mπ∗(K − L)− jEI)
)∣∣∣
EI

)
. (44)

As before we can consider EI as a fiber bundle π : EI → DI which can be
identified with the projectivization P(N ∨

DI/X(n)) of the conormal bundle N ∨
DI/X(n)

of DI in X(n). We are now in exactly the same situation as in the proof of
Proposition 7.16 where we applied Griffiths vanishing theorem.

For any inclusion X ⊂ Y ⊂ Z of varieties we have the exact sequence

0→ NX/Y → NX/Z → NY/Z |X → 0

which implies that the normal bundle of an intersection of two varieties is the
sum of their normal bundles. In our situation we thus have

NDI/X(n) = NDi1
/X(n)|DI

⊕NDi2
/X(n)|DI

where I = (i1, i2) ∈ I2. For the conormal bundle we obtain

N ∨
DI/X(n) = N ∨

Di1
/X(n) ⊕N ∨

Di2
/X(n) (45)

where we simplified the notation by omitting the restrictions to DI of the conor-
mal bundles N ∨

Dik
/X(n).

Instead of looking at the conormal bundle N ∨
DI/X(n), we will consider

N ∨
DI/X(n) ⊗ODI

( 1
n
L) =

(
N ∨
Di1

/X(n) ⊕N ∨
Di2

/X(n)

)
⊗ODI

( 1
n
L)

=
(
N ∨
Di1

/X(n) ⊗ODI
( 1
n
L)
)
⊕
(
N ∨
Di2

/X(n) ⊗ODI
( 1
n
L)
)
.

Since we know from the proof of Proposition 7.14 that the two bundlesN ∨
Dik

/X(n)⊗
ODI

( 1
n
L) are nef, we can conclude that N ∨

DI/X(n) ⊗ODI
( 1
n
L) as their direct sum

is nef, too.

As before, we obtain that the canonical bundle on DI is given by

ωDI
= ωX(n)|DI

⊗ det(N ∨
DI/X(n)) . (46)

To apply Griffiths vanishing theorem we will need the identities

Sj
(
N ∨
DI/X(n) ⊗ODI

( 1
n
L)
)

= Sj
(
N ∨
DI/X(n)

)
⊗ODI

( j
n
L) (47)
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and

det
(
N ∨
DI/X(n) ⊗ODI

( 1
n
L)
)

= ODI
( 2
n
L)⊗ det

(
N ∨
DI/X(n)

)
, (48)

where we used that N ∨
DI/X(n) is a rank 2 bundle.

Note that (m − 1)(3L − D) − (1 + 2/n)L is ample on X(n) for n > 4 and all
sufficiently bigm by [Hul, Theorem 0.2]. The same holds for the restriction of this
divisor to DI . If m is sufficiently big we can furthermore subtract 2 det(N ∨

DI/X(n))
and still get something ample on DI . We thus have that

ODI

(
(m− 1)

(
3L−D

)
−
(
1 + 2

n

)
L
)
⊗ det(N ∨

DI/X(n))
⊗(−2)

is ample on DI if n > 4 and m is sufficiently big.

For 0 ≤ j ≤ 24mn · ramH(DI)− 1 < 24mn the bundle (24m− (j/n))L is nef and
we still have that

ODI

(
(m− 1)KX(n) +

(
23m− j+2

n

)
L
)
⊗ det(N ∨

DI/X(n))
⊗(−2)

=ODI

(
(m− 1)

(
3L−D

)
−
(
1 + 2

n

)
L+

(
24m− j

n

)
L
)
⊗ det(N ∨

DI/X(n))
⊗(−2)

is ample for m sufficiently big and n > 4.

Using this and the fact that N ∨
DI/X(n) ⊗ ODI

( 1
n
L) is nef as we have seen in our

above discussion we obtain by Griffiths vanishing theorem that

H i
(
DI ,ODI

(
m(KX(n) + 23L)

)
⊗ Sj

(
N ∨
DI/X(n)

))
(47)
= H i

(
DI ,ODI

(
mKX(n) + (23m− j

n
)L
)
⊗ Sj

(
N ∨
DI/X(n) ⊗ODI

( 1
n
L)
))

= H i
(
DI ,

[
ODI

(KX(n))⊗ det(N ∨
DI/X(n))

]
⊗
[
ODI

( 2
n
L)⊗ det(N ∨

DI/X(n))
]

⊗
[
ODI

(
(m− 1)KX(n) +

(
23m− j+2

n

)
L
)
⊗ det(N ∨

DI/X(n))
⊗(−2)

]
⊗ Sj

(
N ∨
DI/X(n) ⊗ODI

( 1
n
L)
))

(46),(48)
= H i

(
DI , ωDI

⊗ Sj
(
N ∨
DI/X(n) ⊗ODI

( 1
n
L)
)
⊗ det

(
N ∨
DI/X(n) ⊗ODI

( 1
n
L)
)

⊗ODI

(
(m− 1)KX(n) +

(
23m− j+2

n

)
L
)
⊗ det(N ∨

DI/X(n))
⊗(−2)

)
= 0

for all i > 0.

As in the proof of Proposition 7.16 we can translate this into a corresponding
statement on EI using the Leray spectral sequence and the vanishing of the higher
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direct images and obtain

χ
(
π∗
(
ODI

(m(KX(n) + 23L))
)
⊗ ζ⊗j

)
= dimH0

(
EI , π

∗
(
ODI

(m(KX(n) + 23L))
)
⊗ ζ⊗j

)
,

where ζ = OP(N∨
DI/X(n)

)(1) denotes the tautological bundle on EI .

Comparing this with the summands in (44), we get for each integer j the estimate

dimH0
(
EI ,

(
O
X̃(n)

(mπ∗(KX(n) − L)− jEI)
)∣∣∣
EI

)
= dimH0

(
EI , π

∗
(
ODI

(m(KX(n) − L))
)
⊗ ζ⊗j

)
≤ dimH0

(
EI , π

∗
(
ODI

(m(KX(n) + 23L))
)
⊗ ζ⊗j

)
=χ

(
π∗
(
ODI

(m(KX(n) + 23L))
)
⊗ ζ⊗j

)
, (49)

where we used the fact that adding multiples of the line bundle L does not
decrease the dimension of the corresponding space of global sections.

To simplify notation we set for each integer j

Fj := π∗
(
ODI

(m(KX(n) + 23L))
)
⊗ ζ⊗j .

We can now apply Hirzebruch–Riemann–Roch to get that

dimH0(EI ,Fj)
(49)
= χ(Fj) = deg(ch(Fj). td(T ))5 .

We only need an estimate for dimH0(EI ,Fj) for m >> 0 and can thus ignore
the Todd class td T of the tangent sheaf T of EI since it does not contribute any
factors of m, i.e. we have

dimH0(EI ,Fj) ∼
1

5!
c1(Fj)5 (50)

for all sufficiently big m.

This is exactly the same situation as in (34) and we can use again the relation
on the tautological bundle and the fact that all other bundles are coming from
DI to conclude that as in (37)

1

5!
c1(Fj)5 =

1

5!

[
5j
(
m(KX(n) + 23L)

)4
− 10j2

(
m(KX(n) + 23L)

)3
. c1(N ∨)

+ 10j3
(
m(KX(n) + 23L)

)2
.
(
c1(N ∨)2 − c2(N ∨)

)
+ 5j4

(
m(KX(n) + 23L)

)
.
(
2c1(N ∨). c2(N ∨)− c1(N ∨)3

)
+ j5

(
c2(N ∨)2 + c1(N ∨)4 − 3c1(N ∨)2. c2(N ∨)

)]
,

(51)
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where the intersection on the right hand side takes place on DI and N ∨ denotes
the conormal bundle N ∨

DI/X(n) of DI in X(n).

As we observed in (45) the conormal bundle N ∨ is given by

N ∨
DI/X(n) = N ∨

Di1
/X(n) ⊕N ∨

Di2
/X(n)

where I = (i1, i2) ∈ I2. Using the Whitney sum formula, we can calculate the
first and second Chern classes of this direct sum and obtain that

c1(N ∨) = Di1 +Di2 and c2(N ∨) = Di1 . Di2 .

Note carefully that the right hand sides of these equations are intersections on
X(n) which we have to restrict to DI . But, in fact, now all the intersections in
(51) can be expressed as restrictions of intersections on X(n). Hence we can do
the calculation on X(n) and obtain

1

5!
c1(Fj)5 =

1

5!

[
5j
(
m(KX(n) + 23)

)4
− 10j2

(
m(KX(n) + 23L)

)3
.
(
Di1 +Di2

)
+ 10j3

(
m(KX(n) + 23L)

)2
.
(
D2
i1

+Di1 . Di2 +D2
i2

)
− 5j4

(
m(KX(n) + 23L)

)
.
(
D3
i1

+D2
i1
. Di2 +Di1 . D

2
i2

+D3
i2

)
+ j5

(
D4
i1

+D3
i1
. Di2 +D2

i1
. D2

i2
+Di1 . D

3
i2

+D4
i2

)]
. [DI ] ,

(52)

where [DI ] denotes the class of DI = Di1 ∩Di2 in X(n).

To get an estimate for 1
5!
c1(Fj)5 which is independent of j, we first take absolute

values of the terms in (52) and use that 0 ≤ j ≤ 24mn · ramH(DI)− 1 < 24mn.
For instance, the second term in (52) can be estimated as follows:

− 10j2
[(
m(KX(n) + 23L)

)3
.
(
Di1 +Di2

)]
. [DI ]

≤ 10j2
(
m3
∣∣∣(KX(n) + 23L)3. (Di1 +Di2) . [DI ]

∣∣∣)
< 10 · 242m5n2

(∣∣∣(KX(n) + 23L)3. (Di1 +Di2) . [DI ]
∣∣∣)

Note that this estimate is not only independent of j but also of I = (i1, i2) ∈ I2
since all DI are equivalent under the action of Sp(6,Z/nZ). We thus can take
the sum over all DI and obtain

− 10j2
[(
m(KX(n) + 23L)

)3
.
(
Di1 +Di2

)]
. [DI ]

<
1

#I2
∑

I=(i1,i2)∈I2

10 · 242m5n2
(∣∣∣(KX(n) + 23L)3. (Di1 +Di2) . [DI ]

∣∣∣)

=
1

#I2
10 · 242m5n2

(∣∣∣(KX(n) + 23L)3.
∑

I=(i1,i2)∈I2

(
(Di1 +Di2) . [DI ]

)∣∣∣) (53)
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Using that the class of DI = Di1 ∩Di2 in X(n) is just given by Di1 . Di2 , we can

consider the term
∑
I=(i1,i2)∈I2

(
(Di1 +Di2) . [DI ]

)
as a symmetric polynomial in

the Dik . If we denote the k–th elementary symmetric polynomial by ∆k, we get
that

∑
I=(i1,i2)∈I2

(
(Di1 +Di2) . Di1 . Di2

)
=

∑
I=(i1,i2)∈I2

(
D2
i1
. Di2 +Di1 . D

2
i2

)
= ∆1 .∆2 − 3∆3 .

Recalling that KX(n) = 4L−D, we can thus express the intersection given in (53)
in terms of L and boundary components D and ∆k only. Since every boundary
divisor contributes a factor of (1/n), it suffices for sufficiently big n to consider the
terms with the highest power of L involved. This gives us the following estimate

− 10j2
[(
m(KX(n) + 23L)

)3
.
(
Di1 +Di2

)]
. [DI ]

.
1

#I2
10 · 242m5n2

(
27 3

∣∣∣L3.(∆1 .∆2 − 3∆3)
∣∣∣)

for all sufficiently big n and all integers 0 ≤ j < 24mn.

We can proceed analogously with the other terms in (52) and get that

1

5!
c1(Fj)5

.
m5

5!
· 1

#I2

[
5 · 24 · 27 4 n

∣∣∣L4.∆2

∣∣∣+ 10 · 242 · 27 3 n2
∣∣∣L3.(∆1 .∆2 − 3∆3)

∣∣∣
+ 10 · 243 · 27 2 n3

∣∣∣L2.(∆2
1.∆2 − 3∆1 .∆3 −∆2

2 + 6∆4)
∣∣∣

+ 5 · 244 · 27n4
∣∣∣L .(∆3

1.∆2 − 3∆2
1.∆3 + 6∆1 .∆4

− 2∆1 .∆
2
2 + 4∆2 .∆3 − 10∆5

)∣∣∣
+ 245 n5

∣∣∣∆4
1.∆2 − 3∆3

1.∆3 + 6∆2
1.∆4 − 3∆2

1.∆
2
2 − 10∆1 .∆5

+ 8∆1 .∆2 .∆3 − 3∆2
3 + ∆3

2 − 7∆2 .∆4 + 15∆6

∣∣∣]

(54)

for all sufficiently big n and all integers 0 ≤ j < 24mn. Here we used the following
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identities of symmetric polynomials:∑
I=(i1,i2)∈I2

Di1 . Di2 = ∆2

∑
I=(i1,i2)∈I2

(
D3
i1
. Di2 +D2

i1
. D2

i2
+Di1 . D

3
i2

)
= ∆2

1.∆2 − 3∆1 .∆3 −∆2
2 + 6∆4

∑
I=(i1,i2)∈I2

(
D4
i1
. Di2 +D3

i1
. D2

i2
+D2

i1
. D3

i2
+Di1 . D

4
i2

)
= ∆3

1.∆2 − 3∆2
1.∆3 + 6∆1 .∆4 − 2∆1 .∆

2
2 + 4∆2 .∆3 − 10∆5∑

I=(i1,i2)∈I2

(
D5
i1
. Di2 +D4

i1
. D2

i2
+D3

i1
. D3

i2
+D2

i1
. D4

i2
+Di1 . D

5
i2

)
= ∆4

1.∆2 − 3∆3
1.∆3 + 6∆2

1.∆4 − 3∆2
1.∆

2
2 − 10∆1 .∆5

+ 8∆1 .∆2 .∆3 − 3∆2
3 + ∆3

2 − 7∆2 .∆4 + 15∆6 .

The intersection numbers in (54) are given by

L4.∆2 = 0

L3.(∆1 .∆2 − 3∆3) = 0

L2.(∆2
1.∆2 − 3∆1 .∆3 −∆2

2 + 6∆4) = 0

L .(∆3
1.∆2 − 3∆2

1.∆3 + 6∆1 .∆4 − 2∆1 .∆
2
2 + 4∆2 .∆3 − 10∆5) = − 1

12
· γ(n)

n5

∆4
1.∆2 − 3∆3

1.∆3 + 6∆2
1.∆4 − 3∆2

1.∆
2
2 − 10∆1 .∆5

+ 8∆1 .∆2 .∆3 − 3∆2
3 + ∆3

2 − 7∆2 .∆4 + 15∆6 =
5

16
· γ(n)

n6

as can be computed from the results of van der Geer (cf. [vdG2]). Hence

1

5!
c1(Fj)5

.
m5

5!
· 1

#I2

[
5 · 244 · 27n4

(
1

12
· γ(n)

n5

)
+ 245 n5

(
5

16
· γ(n)

n6

)]

<
m5

5!
· 1
n
· 1

#I2
245 γ(n)

for all sufficiently big n. This statement can be made precise, i.e. there is an
integer n0 such that in the above estimate the strict inequality holds for all n ≥ n0.
Note that the integer n0 can be chosen independently of m and I = (i1, i2).

By (50) we thus have for all n ≥ n0 and all sufficiently big m that

dimH0
(
EI ,

(
O
X̃(n)

(mπ∗(K − L)− jEI)
)∣∣∣
EI

)
<
m5

5!
· 1
n
· 1

#I2
245 γ(n) . (55)
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This estimate holds for all integers 0 ≤ j ≤ 24mn · ramH(DI)− 1, so we can take
the sum over all j and obtain

dimH0
(
X(n),OX(n)

(
m(K − L)

))
− dimH0

(
X(n),OX(n)

(
m(K − L)

)
⊗ J 24mn·ramH(DI)

DI

)
(44)

≤
24mn·ramH(DI)−1∑

j=0

dimH0
(
EI ,

(
O
X̃(n)

(mπ∗(K − L)− jEI)
)∣∣∣
EI

)
(55)
<
[
24mn · ramH(DI)

]
· m

5

5!
· 1
n
· 1

#I2
245 γ(n)

=
1

#I2
ramH(DI) ·

m6

5!
· 246 γ(n) .

Summing now over all DI as in (43) gives the desired result. �

The above result can again be used to prove that condition (iv) of Proposition 7.13
is satisfied by at most finitely many subgroups Γ.

Lemma 7.20 There are only finitely many subgroups Γ of Sp(6,Z) of finite index
which satisfy

dimH0
(
X(n),m(K − L)

)
− dimH0

(
X(n),OX(n)

(
m(K − L)

)
⊗
∏
I∈I2

J 24mn·ramH(DI)
DI

)

� 1

4

(
(1/6!) c1(KX(n) − L)6m6

)
as m tends to infinity.

Proof. This proof is completely analogous to the ones given in Lemma 7.15 and
Lemma 7.18. We can use the estimate in Proposition 7.19 to get a lower bound
on 1

#I2

∑
I∈I2

ramH(DI) and then use Theorem 6.3 to finish the proof. �

7.4 Proof of the Main Theorem

We are now ready to prove the main theorem of this thesis:

Theorem 7.14 There are only finitely many subgroups Γ of Sp(6,Z) of finite

index such that the space of pluricanonical sections on
(
ÃVor

Γ

)(2)
does not grow

maximally.
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Proof. If Γ is a subgroup of Sp(6,Z) for which the space of pluricanonical

sections on
(
ÃVor

Γ

)(2)
does not grow maximally, then one of the four conditions

(i) to (iv) of Proposition 7.13 has to be satisfied. However in Proposition 7.2 and
Remark 7.3 we have seen that condition (i) is only satisfied by a finite number
of subgroups. The same is true for conditions (ii), (iii) and (iv) by Lemma 7.15,
Lemma 7.18 and Lemma 7.20 respectively. �
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Appendix A

The group S2g−1

In this section we will collect various results on the group S2g−1, the stabilizer
of V2g−1 in Sp(2g,Z/pZ). They play an important role in the proof of the main
theorem of Chapter 4 (cf. Lemma 4.8).

For any prime p we consider the symplectic group G := Sp(2g,Z/pZ) and its
action on the vector space V = (Z/pZ)g. More precisely, we are interested in the
subspace

V2g−1 := (∗, . . . , ∗, 0) ⊂ V

and its stabilizer in G which is given by

S2g−1 :=




A 0 B m3

mT
1 u mT

2 m4

C 0 D m5

0 0 0 u−1

 ;

(
A B
C D

)
∈ Sp(2g − 2,Z/pZ),

u ∈ (Z/pZ)∗,m1,m2,m3,m5 ∈ (Z/pZ)g−1,m4 ∈ Z/pZ,
A ·m2 −B ·m1 = u ·m3 ,
C ·m2 −D ·m1 = u ·m5

 .

as can be easily seen by a short calculation. We will first compute the order of
this group.

Proposition A.1 The group S2g−1 has order

|S2g−1| = pg
2 · (p− 1) ·

g−1∏
i=1

(p2i − 1)

and its index in Sp(2g,Z/pZ) is given by

[Sp(2g,Z/pZ) : S2g−1] =
p2g − 1

p− 1
.

155
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Proof. It suffices to note that for any choice of u,m3 and m5 together with
A,B,C,D the vectors m1 and m2 are uniquely determined and then use the
known formula for Sp(2g − 2,Z/pZ). Comparing the order of S2g−1 with the
order of Sp(2g,Z/pZ) gives the result on the index. �

Consider the set of subspaces Wg ⊂ V2g−1 which are isomorphic to (Z/pZ)g. The
group S2g−1 acts on this set, however, this action is not transitive. This means
that we have more than one orbit under this action. We will be interested in the
orbit containing the canonical choice for a subspace Wg

∼= (Z/pZ)g, namely the
subspace Vg ⊂ V2g−1 given by

Vg := (∗, . . . , ∗︸ ︷︷ ︸
g times

, 0, . . . , 0︸ ︷︷ ︸
g times

) ⊂ V .

The stabilizer in S2g−1 of Vg can be computed to be

StabS2g−1(Vg) =




A 0 B m3

mT
1 u mT

2 m4

0 0 A−T m5

0 0 0 u−1

 ; A ∈ GL(g − 1,Z/pZ),

B ∈ Mat(g − 1,Z/pZ), ABT = BAT , u ∈ (Z/pZ)∗,
m1,m2,m3,m5 ∈ (Z/pZ)g−1,m4 ∈ Z/pZ,
m1 = −u · AT ·m5, A ·m2 −B ·m1 = u ·m3

 ,

where A−T =
(
AT
)−1

.

Proposition A.2 The group StabS2g−1(Vg) has order

∣∣∣StabS2g−1(Vg)
∣∣∣ = pg

2 · (p− 1) ·
g−1∏
i=1

(pi − 1) .

Proof. Note that given A ∈ GL(g − 1,Z/pZ) there are exactly pg(g−1)/2 choices
for B such that the relation ABT = BAT is satisfied. Together with u,m3 and
m5 these two matrices determine m1 and m2 uniquely. Using this observation
together with the well–known formula for the order of GL(g−1,Z/pZ) this proves
the claim. �

Comparing this with the order of S2g−1 computed in Proposition A.1, we obtain
as an immediate consequence the size of the orbit of Vg in S2g−1.

Corollary A.3 The order of the orbit of Vg under the action of S2g−1 is given
by ∣∣∣orbS2g−1(Vg)

∣∣∣ = g−1∏
i=1

(pi + 1) .
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Let e1 and eg denote the first and the g-th vector of the canonical basis of V =
(Z/pZ)2g respectively. By calculating the stabilizers of these two vectors under
the action of S2g−1, we can calculate the orders of their orbits which are given by∣∣∣orbS2g−1(e1)

∣∣∣ = p(p2g−2 − 1) ,
∣∣∣orbS2g−1(eg)

∣∣∣ = p− 1 .

Comparing this with the order of V2g−1 we obtain that{
0
}
∪̇
{
orbS2g−1(eg)

}
∪̇
{
orbS2g−1(e1)

}
= V2g−1 .

This implies that ⋃
Wg∈orbS2g−1

(Vg)

Wg = V2g−1 ,

i.e. Vg sweeps out all of V2g−1 under the action of S2g−1. Or to state it in a
different way, every primitive vector in V ∗

2g−1 := V2g−1 \ {0} is contained in at
least one subspace Wg ∈ orbS2g−1(Vg). However, in Chapter 4 we will need a more
precise statement.

Proposition A.4 Let v be any primitive vector in V ∗
2g−1.

(i) If v is lying in the orbit of e1 under the action of S2g−1, it is contained in
exactly

∏g−2
i=1 (pi + 1) subspaces Wg ∈ orbS2g−1(Vg)

(ii) If v is lying in the orbit of eg under the action of S2g−1, it is contained in
exactly

∏g−1
i=1 (pi + 1) subspaces Wg ∈ orbS2g−1(Vg)

Proof. It suffices to prove the results for e1 and eg. Consider the set of pairs
(v,Wg) where (Z/pZ)g ∼= Wg ⊂ V2g−1 and v ∈ W ∗

g . The group S2g−1 acts on
this set of pairs and so does its subgroup Se1 , the stabilizer of e1 in S2g−1. The
stabilizer of the standard pair (e1, Vg) under the action of Se1 can be computed
by intersecting the stabilizer of Vg in S2g−1 with Se1 . Its order is given by

∣∣∣StabSe1 ((e1,Vg))

∣∣∣ = pg
2−1 · (p− 1) ·

g−2∏
i=1

(pi − 1) .

By comparing this to the order of Se1 , which can be easily computed to be

|Se1| =
∣∣∣StabS2g−1(e1)

∣∣∣ = pg
2−1 · (p− 1) ·

g−2∏
i=1

(p2i − 1) ,

we can conclude that the orbit of the standard pair (e1, Vg) in Se1 has size

∣∣∣orbSe1
((e1, Vg))

∣∣∣ = g−2∏
i=1

(pi + 1) .
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This means that the primitive vector e1 is contained in exactly
∏g−2
i=1 (pi + 1)

subspaces Wg ∈ orbS2g−1(Vg) as claimed. A similar calculation for the orbit of
the pair (eg, Vg) yields the corresponding result for eg. �

As an easy consequence we obtain

Corollary A.5 Every vector v ∈ V ∗
2g−1 is contained in at least

∏g−2
i=1 (pi + 1)

different subspaces Wg ∈ orbS2g−1(Vg).



Appendix B

Combinatorics and number
theoretic computations

In this section we will provide a combinatorial result which is frequently used in
the counting arguments in the proofs of Chapters 4 and 6. Moreover, we will do
some number theoretic computations which are needed in the proof of the main
result of Chapter 5.

We often have to deal with certain means over finite sets, e.g. the ramification
mean given in Definition 4.2. There we usually have the situation that we know
the mean, but not the individual values. Nevertheless, we want to conclude that
we are guaranteed to have a sufficiently big number of individual values which
exceed a given lower bound. This can be done by a counting argument as given
by the following proposition:

Proposition B.1 Let S be a finite set together with a function v : S → [0, 1].
Let µ denote the mean of S with respect to v, i.e.

µ :=
1

|S|
∑
s∈S

v(s) .

Given 0 ≤ ε < 1 there are at least

µ− ε
1− ε

· |S|

different s ∈ S with v(s) > ε.

Proof. Let γ denote the number of s ∈ S with the property that v(s) > ε. We
can then estimate the mean of S with respect to v as follows:

µ · |S| =
∑
s∈S

v(s) ≤ γ · 1 +
(
|S| − γ

)
· ε

159



160 APPENDIX B. COMBINATORICS AND NUMBER THEORY

This is equivalent to
(µ− ε) · |S| ≤ γ(1− ε)

which proves the claim. �

To estimate the orders of subgroups of Sp(2g,Z/nZ) (or any other matrix group
with coefficients in Z/nZ), one often has to know something about the greatest
common divisors of the coefficients of the elements of these subgroups with n.
To get lower bounds for the orders of such groups, one is interested in identifying
those elements which have a small gcd. For that, the knowledge of the combina-
torics involved is required which is provided by the following two propositions:

Proposition B.2 Let n = pt be a prime power and 0 ≤ s ≤ t. Then there are
exactly (n/ps)k different (α1, . . . , αk) ∈ (Z/nZ)k with

gcd(α1, . . . , αk, n) ≥ ps .

Proof. This statement is easy to check for k = 1. Then it suffices to note that,
since n = pt, we have gcd(α1, . . . , αk, n) ≥ ps if and only if gcd(αi, n) ≥ ps for all
i = 1, . . . , k. �

While this proposition told us something about the greatest common divisors of
all coefficients, the following deals with a certain sum:

Proposition B.3 Let n = pt be a prime power and 0 ≤ s ≤ t. Then there
are for every (α1, . . . , αk) ∈ (Z/nZ)k with gcd(α1, . . . , αk, n) = 1 exactly (nk/ps)
different (β1, . . . , βk) ∈ (Z/nZ)k satisfying

gcd(α1β1 + · · ·+ αkβk, n) ≥ ps .

Proof. Since gcd(α1, . . . , αk, n) = 1, at least one αi satisfies gcd(αi, n) = 1.
W.l.o.g. we can assume that this is the case for α1.

For any (β2, . . . , βk) ∈ (Z/nZ)k−1 and any given γ ∈ Z/nZ there is exactly one
β1 ∈ Z/nZ such that

γ = α1β1 + α2β2 + · · ·+ αkβk ,

since α1 is invertible in Z/nZ. This implies that for each (β2, . . . , βk) ∈ (Z/nZ)k−1

there are exactly (n/ps) different choices for β1 ∈ Z/nZ such that

gcd(α1β1 + · · ·+ αkβk, n) ≥ ps .

Since there are nk−1 different (β2, . . . , βk) ∈ (Z/nZ)k−1 this proves the claim. �



Appendix C

Geometry of the boundary
components

In this section, we will describe the structure of the boundary divisors Dα of
AVor

3 (n). This description is given in detail in Section 3 of [Hul] and goes back to
results of Nakamura ([Nak]) and Tsushima ([Tsu]). We will use this description
to show the nefness of a certain line bundle which we will need in Chapter 7.

Recall that each boundary divisor Dα of AVor
3 (n) can be considered as the closure

of the preimage of a top–dimensional component Aα2 (n) of the Satake compactifi-
cation. The fibration π : D◦

α → Aα2 (n) ∼= A2(n) is the universal family of abelian
surfaces with a level–n structure if n ≥ 3 (cf. [Mum2]). This can be extended
to a flat family π : Dα → AVor

2 (n) of surfaces. The fibers over the boundary of
AVor

2 (n) are degenerate abelian surfaces (cf. [Nak] and [Tsu]). To describe the
fibers in more detail we have to recall that every boundary component of AVor

2 (n)
is isomorphic to a Shioda modular surface S(n) → AVor

1 . The type of a point
P ∈ AVor

2 (n) can then be defined as follows:

P has type I ⇐⇒ P ∈ A2(n)

P has type II ⇐⇒ P lies on a smooth fiber of a boundary component S(n)

P has type IIIa ⇐⇒ P is a smooth point on a singular fiber of S(n)

P has type IIIb ⇐⇒ P is a singular point of an n–gon in S(n) .

The structure of the fiber AP = π−1(P ) in each case is described in [Hul, Propo-
sition 3.1], a result which goes back to Nakamura and Tsushima. The fibers are
smooth abelian surfaces and cycles of n elliptic ruled surfaces in cases I and II
respectively, and consist of n2 copies of P1×P1 or 2n2 copies of P2 and n2 copies
of P2 blown–up in 3 points in cases IIIa and IIIb respectively.

With the above description we will now show that a certain line bundle is nef.
This result will be useful when we calculate the obstructions coming from the
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boundary divisors in Chapter 7. Instead of just looking at the conormal bundle
of Dα, we consider the line bundle

M(n) = −nDα|Dα + L

on Dα which has been introduced in [Hul, p. 262], where L is just the restriction
of the line bundle of modular forms to Dα. I am indebted to Prof. K. Hulek for
providing the following result.

Proposition C.1 The line bundle M(n) on Dα is nef for n ≥ 3.

Proof. We first recall that the restriction of M(n) to each fibre AP is an even
multiple of a (degenerate) theta divisor and thus ample (cf. [Ale2, Theorem 5.3]).
Hence if C is a curve such that π(C) is a point, then M(n) . C > 0. Note that
this applies in particular to curves contained in a fiber of type IIIb.

We still have to consider the case where C is a curve in Dα such that π(C) is again
a curve. We consider also the projection πSat : Dα → ASat

2 (n) and distinguish
three cases

(1) πSat(C) ∩ A2(n) 6= ∅ ,

(2) πSat(C) ⊂ ASat
1 (n), but πSat(C) ∩ A1(n) 6= ∅ ,

(3) πSat(C) ⊂ A0(n) .

We shall prove the result by showing that for a given irreducible curve C one can
find a section s ∈ H0(Dα,M(n)⊗k) for some k > 0 such that s does not vanish
identically on the curve C. Recall that we can use theta functions to construct
explicit sections of M(n)⊗k (cf. [Hul, Proposition 3.2]).

Case (1): Here the result can be deduced immediately from [Hul, Proposition
4.1]. In fact, this proposition gives a much stronger result since it does also give
a bound on the vanishing order of s along the boundary. Alternatively, one can
write down explicit theta functions which generate M(n)⊗k restricted to a given
smooth fiber AP .

Case (2): For a general point Q ∈ C the fiber Aπ(Q) is a cycle of n elliptic ruled
surfaces. We consider one such surface and denote it by Y . The restriction of
M(n) to Y has degree 2n on the base curve and degree 2 on the fibers. Again,
one can write down explicit theta functions which define sections of M(n) and
whose restrictions to Y form a basis of H0(Y,M(n)). For details of this stan-
dard computation, we refer to the analogous computations in [HKW, Part II,
Proposition 5.7] and [HW, Lemma 4.1.4].

By [EP, Theorem 5] M(n)|Y is globally generated and by [EP, Theorem 7]
M(n)⊗2|Y is very ample. In particular, we can find a section of M(n) which
does not vanish identically on C.



163

Case (3): We have already mentioned that we can assume that C is not contained
in a fiber of type IIIb. Hence C intersects fibers of type IIIa which are unions
of n2 copies of P1 × P1. We can then repeat the arguments from Case (2). For
analogous computations see [HKW, Part II, Section 5].

Alternatively, we can consider one irreducible component P1 ×P1 of a type IIIb
fiber which intersects with C. We can use the standard theta function θ00(τ, z)
to construct a section of M(n) which is nonzero on all torus orbits of P1 × P1

(cf. [HKW, Part II, Proposition 5.22]). One can then use the torus action to
move C away from the zero set of this particular section. Since the torus action
is continuous this does not change the intersection number and we can again
conclude that M(n) . C ≥ 0. �
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